首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Gene transfer in the marine environment   总被引:2,自引:0,他引:2  
Abstract This review summarises the literature on bacterial gene transfer in marine ecosystems. Relevant experiments carried out in model systems are also included. Prerequisites for the main gene transfer mechanisms, transformation, transduction and conjugation are discussed, such as concentrations of extracellular DNA in marine waters, numbers of bacteriophages in sea water and frequency of plasmids in marine bacteria. Transfer of chromosomal genes as well as plasmids are considered. We also discuss the possibility that gene transfer is more frequent in surface-associated bacterial communities. Examples of relevant studies using various solid surfaces and from the air-water interface are summarized. We suggest that there is a higher ‘flow-rate’ of genetic information through surface-associated communities compared to bulk water communities.  相似文献   

2.
Bacterial conjugation systems are highly promiscuous macromolecular transfer systems that impact human health significantly. In clinical settings, conjugation is exceptionally problematic, leading to the rapid dissemination of antibiotic resistance genes and other virulence traits among bacterial populations. Recent work has shown that several pathogens of plants and mammals - Agrobacterium tumefaciens, Bordetella pertussis, Helicobacter pylori and Legionella pneumophila - have evolved secretion pathways ancestrally related to conjugation systems for the purpose of delivering effector molecules to eukaryotic target cells. Each of these systems exports distinct DNA or protein substrates to effect a myriad of changes in host cell physiology during infection. Collectively, secretion pathways ancestrally related to bacterial conjugation systems are now referred to as the type IV secretion family. The list of putative type IV family members is increasing rapidly, suggesting that macromolecular transfer by these systems is a widespread phenomenon in nature.  相似文献   

3.
细菌的IV型分泌系统   总被引:2,自引:0,他引:2  
细菌的分泌系统与细菌的生存及致病性密切相关。细菌的分泌系统包括I-VI型,其中,IV型分泌系统是与细菌接合机制有关的一类分泌系统。IV型分泌系统不但可以转运DNA,还可以转运蛋白质及核糖核蛋白复合物等大分子物质,这点区别于其他几种分泌系统。IV型分泌系统介导基因水平转移,通过细菌间接合作用,传递抗性基因和毒力基因,有利于细菌进化;另一方面,IV型分泌系统转运效应蛋白质分子到宿主细胞,参与细菌致病。本文着重从IV型分泌系统几种主要类型的分泌机制等方面对IV型分泌系统进行概述。  相似文献   

4.
Staddon JH  Bryan EM  Manias DA  Chen Y  Dunny GM 《Plasmid》2006,56(2):102-111
Conjugation is a major contributor to lateral gene transfer in bacteria, and pheromone-inducible conjugation systems in Enterococcus faecalis play an important role in the dissemination of antibiotic resistance and virulence in enterococci and related bacteria. We have genetically dissected the determinants of DNA processing of the enterococcal conjugative plasmid pCF10. Insertional inactivation of a predicted relaxase gene pcfG, via insertion of a splicing-deficient group II intron, severely reduced pCF10 transfer. Restoration of intron splicing ability by genetic complementation restored conjugation. The pCF10 origin of transfer (oriT) was localized to a 40-nucleotide sequence within a non-coding region with sequence similarity to origins of transfer of several other plasmids in gram positive bacteria. Deletion of the oriT reduced pCF10 transfer by more than five orders of magnitude without affecting pCF10-dependent mobilization of co-resident oriT-containing plasmids. Although the host range for pCF10 replication is limited to enterococci, we found that the pCF10 conjugation system promotes mobilization of oriT-containing plasmids to multiple bacterial genera. Therefore, this transfer system may have applications for gene delivery to a variety of poorly-transformed bacteria.  相似文献   

5.
Transmission of unmodified plasmid CoIIb-P9 by bacterial conjugation is markedly resistant to restriction compared with transfer by transformation. One process allowing evasion of type I and II restriction systems involves conjugative transfer of multiple copies of the plasmid. A more specialized evasion mechanism requires the Ard (alleviation of restriction of DNA) system encoded by CoIIb. The ard gene is transferred early in conjugation and specifically alleviates DNA restriction by all known families of type I enzyme, including EcoK. CoIIb has no effect on EcoK modification but this activity is impaired by multicopy recombinant plasmids supporting overexpression of ard. Genetic evidence shows that Ard protects CoIIb from EcoK restriction following conjugative transfer and that this protection requires expression of the gene on the immigrant plasmid. It is proposed that carriage of ard facilitates transfer of CoIIb between its natural enterobacterial hosts and that the route of DNA entry is important to the restriction-evasion mechanism.  相似文献   

6.
The IncI1 plasmid ColIb-P9 was found to encode an antirestriction function. The relevant gene, ard (alleviation of restriction of DNA), maps about 5 kb from the origin of transfer, in the region transferred early during bacterial conjugation. Ard inhibits both restriction and modification by each of the four type I systems of Escherichia coli tested, but it had no effect on restriction by either EcoRI, a type II system, or EcoP1, a type III system. The nucleotide sequence of the ColIb ard gene was determined; the predicted molecular weight of the Ard polypeptide is 19,193. The proposed polypeptide chain contains an excess of 25 negatively charged amino acids, suggesting that its overall character is very acidic. Deletion analysis of the gene revealed that the Ard protein contained a distinct functional domain located in the COOH-terminal half of the polypeptide. We suggest that the biological role of the ColIb Ard protein is associated with overcoming host-controlled restriction during bacterial conjugation.  相似文献   

7.
In vivo gene transfer systems and transposons   总被引:16,自引:0,他引:16  
  相似文献   

8.
Translocation of DNA across bacterial membranes.   总被引:20,自引:1,他引:19       下载免费PDF全文
DNA translocation across bacterial membranes occurs during the biological processes of infection by bacteriophages, conjugative DNA transfer of plasmids, T-DNA transfer, and genetic transformation. The mechanism of DNA translocation in these systems is not fully understood, but during the last few years extensive data about genes and gene products involved in the translocation processes have accumulated. One reason for the increasing interest in this topic is the discussion about horizontal gene transfer and transkingdom sex. Analyses of genes and gene products involved in DNA transfer suggest that DNA is transferred through a protein channel spanning the bacterial envelope. No common model exists for DNA translocation during phage infection. Perhaps various mechanisms are necessary as a result of the different morphologies of bacteriophages. The DNA translocation processes during conjugation, T-DNA transfer, and transformation are more consistent and may even be compared to the excretion of some proteins. On the basis of analogies and homologies between the proteins involved in DNA translocation and protein secretion, a common basic model for these processes is presented.  相似文献   

9.
The F sex factor of Escherichia coli is a paradigm for bacterial conjugation and its transfer (tra) region represents a subset of the type IV secretion system (T4SS) family. The F tra region encodes eight of the 10 highly conserved (core) gene products of T4SS including TraAF (pilin), the TraBF, -KF (secretin-like), -VF (lipoprotein) and TraCF (NTPase), -EF, -LF and TraGF (N-terminal region) which correspond to TrbCP, -IP, -GP, -HP, -EP, -JP, DP and TrbLP, respectively, of the P-type T4SS exemplified by the IncP plasmid RP4. F lacks homologs of TrbBP (NTPase) and TrbFP but contains a cluster of genes encoding proteins essential for F conjugation (TraFF, -HF, -UF, -WF, the C-terminal region of TraGF, and TrbCF) that are hallmarks of F-like T4SS. These extra genes have been implicated in phenotypes that are characteristic of F-like systems including pilus retraction and mating pair stabilization. F-like T4SS systems have been found on many conjugative plasmids and in genetic islands on bacterial chromosomes. Although few systems have been studied in detail, F-like T4SS appear to be involved in the transfer of DNA only whereas P- and I-type systems appear to transport protein or nucleoprotein complexes. This review examines the similarities and differences among the T4SS, especially F- and P-like systems, and summarizes the properties of the F transfer region gene products.  相似文献   

10.
Conjugal gene transfer among bacteria in the residuesphere (area between decaying plant material and soil) of leaves of barley straw was studied. The residuesphere was shown to be a hot-spot for conjugal gene transfer compared to conjugation in sterile sand and non-sterile bulk soil. Impact of fungal colonisation of the residuesphere on bacterial colonisation and conjugation was also investigated. The inhibition of fungal colonisation, due to the application of an eukaryotic inhibitor, increased bacterial colonisation of the residuesphere in soil microcosms compared to non-treated leaves. This treatment also had a transient, positive effect on conjugation. Bacterial conjugation in the residuesphere of leaves subjected to 17 days of fungal colonisation was significantly lower than in the residuesphere of non-colonised leaves. Fungal biomass, as measured by chitinase activity, was inversely related to the conjugation efficiency.  相似文献   

11.
Peptidoglycan hydrolases that are specifically associated with bacterial conjugation systems are postulated to facilitate the assembly of the transfer apparatus by creating a temporally and spatially controlled local opening in the peptidoglycan layer. To date little is known about the role of such enzymes in conjugation systems from Gram-positive bacteria. Conjugative plasmids from the Gram-positive pathogen Clostridium perfringens all encode two putative peptidoglycan hydrolases, TcpG and TcpI, within the conserved tcp transfer locus. Mutation and complementation analysis was used to demonstrate that a functional tcpG gene, but not the tcpI gene, was required for efficient conjugative transfer of pCW3. Furthermore, it was also shown that each of the two predicted catalytic domains of TcpG was functional in C. perfringens and that the predicted catalytic site residues, E-111, D-136, and C-238, present within these functional domains were required for optimal TcpG function. Escherichia coli cells producing TcpG demonstrated a distinctive autoagglutination phenotype and partially purified recombinant TcpG protein was shown to have peptidoglycan hydrolase-like activity on cognate peptidoglycan from C. perfringens. Based on these results it is suggested that TcpG is a functional peptidoglycan hydrolase that is required for efficient conjugative transfer of pCW3, presumably by facilitating the penetration of the pCW3 translocation complex through the cell wall.  相似文献   

12.
The rapid evolution of bacteria is crucial to their survival and is caused by exchange, transfer, and uptake of DNA, among other things. Conjugation is one of the main mechanisms by which bacteria share their DNA, and it is thought to be controlled by varied bacterial immune systems. Contradictory results about restriction-modification systems based on phenotypic studies have been presented as reasons for a barrier to conjugation with and other means of uptake of exogenous DNA. In this study, we show that inactivation of the R.EcoKI restriction enzyme in strain Escherichia coli K-12 strain MG1655 increases the conjugational transfer of plasmid pOLA52, which carriers two EcoKI recognition sites. Interestingly, the results were not absolute, and uptake of unmethylated pOLA52 was still observed in the wild-type strain (with an intact hsdR gene) but at a reduction of 85% compared to the uptake of the mutant recipient with a disrupted hsdR gene. This leads to the conclusion that EcoKI restriction-modification affects the uptake of DNA by conjugation but is not a major barrier to plasmid transfer.  相似文献   

13.
Bacterial conjugation results in the transfer of DNA of either plasmid or chromosomal origin between microorganisms. Transfer begins at a defined point in the DNA sequence, usually called the origin of transfer (oriT). The capacity of conjugative DNA transfer is a property of self-transmissible plasmids and conjugative transposons, which will mobilize other plasmids and DNA sequences that include a compatible oriT locus. This review will concentrate on the genes required for bacterial conjugation that are encoded within the transfer region (or regions) of conjugative plasmids. One of the best-defined conjugation systems is that of the F plasmid, which has been the paradigm for conjugation systems since it was discovered nearly 50 years ago. The F transfer region (over 33 kb) contains about 40 genes, arranged contiguously. These are involved in the synthesis of pili, extracellular filaments which establish contact between donor and recipient cells; mating-pair stabilization; prevention of mating between similar donor cells in a process termed surface exclusions; DNA nicking and transfer during conjugation; and the regulation of expression of these functions. This review is a compendium of the products and other features found in the F transfer region as well as a discussion of their role in conjugation. While the genetics of F transfer have been described extensively, the mechanism of conjugation has proved elusive, in large part because of the low levels of expression of the pilus and the numerous envelope components essential for F plasmid transfer. The advent of molecular genetic techniques has, however, resulted in considerable recent progress. This summary of the known properties of the F transfer region is provided in the hope that it will form a useful basis for future comparison with other conjugation systems.  相似文献   

14.
15.
Integrative and conjugative elements (ICEs), also known as conjugative transposons, are mobile genetic elements that can transfer from one bacterial cell to another by conjugation. ICEBs1 is integrated into the trnS-leu2 gene of Bacillus subtilis and is regulated by the SOS response and the RapI-PhrI cell-cell peptide signaling system. When B. subtilis senses DNA damage or high concentrations of potential mating partners that lack the element, ICEBs1 excises from the chromosome and can transfer to recipients. Bacterial conjugation usually requires a DNA relaxase that nicks an origin of transfer (oriT) on the conjugative element and initiates the 5'-to-3' transfer of one strand of the element into recipient cells. The ICEBs1 ydcR (nicK) gene product is homologous to the pT181 family of plasmid DNA relaxases. We found that transfer of ICEBs1 requires nicK and identified a cis-acting oriT that is also required for transfer. Expression of nicK leads to nicking of ICEBs1 between a GC-rich inverted repeat in oriT, and NicK was the only ICEBs1 gene product needed for nicking. NicK likely mediates conjugation of ICEBs1 by nicking at oriT and facilitating the translocation of a single strand of ICEBs1 DNA through a transmembrane conjugation pore.  相似文献   

16.
The type IV secretion system (TFSSs) is a multifunctional family of translocation pathways that mediate the transfer of DNA among bacteria and deliver DNA and proteins to eukaryotic cells during bacterial infections. Horizontal transmission has dominated the evolution of the TFSS, as demonstrated here by a lack of congruence between the tree topology inferred from components of the TFSS and the presumed bacterial species divergence pattern. A parsimony analysis suggests that conjugation represents the ancestral state and that the divergence from conjugation to secretion of effector molecules has occurred independently at multiple sites in the tree. The result shows that the nodes at which functional shifts have occurred coincide with those of horizontal gene transfers among distantly related bacteria. We suggest that it is the transfer between species that paved the way for the divergence of the TFSSs and discuss the general role of horizontal gene transfers for the evolution of novel gene functions.  相似文献   

17.
18.
Pulsed-field gel electrophoresis (PFGE) revealed three previously uncharacterized megaplasmids in the genome of Rhodococcus erythropolis AN12. These megaplasmids, pREA400, pREA250, and pREA100, are approximately 400, 250, and 100kb, respectively, based on their migration in pulsed-field gels. Genetic screening of an AN12 transposon insertion library showed that two megaplasmids, pREA400, and pREA250, are conjugative. Mobilization frequencies of these AN12 megaplasmids to recipient R. erythropolis SQ1 were determined to be approximately 7x10(-4) and 5x10(-4) events per recipient cell, respectively. It is known for other bacterial systems that a relaxase encoded by the traA gene is required to initiate DNA transfer during plasmid conjugation. Sequences adjacent to the transposon insertion in megaplasmid pREA400 revealed a putative traA-like open reading frame. A targeted gene disruption method was developed to generate a traA mutation in AN12, which allowed us to address the role of the traA gene product for Rhodococcus megaplasmid conjugation. We found that the AN12 traA mutant is no longer capable of transferring the pREA400 megaplasmid to SQ1. Furthermore, we confirmed that the conjugation defect was specifically due to the disruption of the traA gene, as pREA400 megaplasmid conjugation defect is restored with a complementing copy of the traA gene.  相似文献   

19.
There has been much interest in bioremediation based on the introduction of bacteria able to catabolise recalcitrant compounds deposited in the environment. In particular, the delivery of catabolic information in the form of conjugative plasmids to bacterial populations in situ has great potential. As most bacteria in the environment live in surface-associated communities (biofilms), the gene transfer systems within these communities need to be better characterised for bio-enhancement strategies to be developed. Recent findings suggest that gene transfer does take place within biofilms, but studies also identified limitations and bottlenecks of the process. The dense population structure in biofilms increases plasmid dispersal by conjugation, and the conjugation mechanism itself may stimulate biofilm development. Moreover, DNA release and transformation seem to be part of a biofilm-related life cycle and released DNA stabilises the biofilm structure. Both of these gene-transfer mechanisms may be autocatalytically promoted in biofilms, presenting new possibilities for efficient bio-enhancement strategies.  相似文献   

20.
COSMIC-rules, an individual-based model for bacterial adaptation and evolution, has been used to study virtual transmission of plasmids within bacterial populations, in an environment varying between supportive and inhibitory. The simulations demonstrate spread of antibiotic resistance (R) plasmids, both compatible and incompatible, by the bacterial gene transfer process of conjugation. This paper describes the behaviour of virtual plasmids, their modes of exchange within bacterial populations and the impact of antibiotics, together with the rules governing plasmid transfer. Three case studies are examined: transfer of an R plasmid within an antibiotic-susceptible population, transfer of two incompatible R plasmids and transfer of two compatible R plasmids. R plasmid transfer confers antibiotic resistance on recipients. For incompatible plasmids, one or other plasmid could be maintained in bacterial cells and only that portion of the population acquiring the appropriate plasmid-encoded resistance survives exposure to the antibiotics. By contrast, the compatible plasmids transfer and mix freely within the bacterial population that survives in its entirety in the presence of the antibiotics. These studies are intended to inform models for examining adaptive evolution in bacteria. They provide proof of principle in simple systems as a platform for predicting the behaviour of bacterial populations in more complex situations, for example in response to changing environments or in multi-species bacterial assemblages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号