首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Growth-induced Water Potentials in Plant Cells and Tissues   总被引:32,自引:20,他引:12       下载免费PDF全文
Molz FJ 《Plant physiology》1978,62(3):423-429
A physical analysis of water movement through elongating soybean (Glycine max L. Merr.) hypocotyls was made to determine why significant water potentials persist in growing tissues even though the external water potentials were zero and transpiration is virtually zero. The analysis was based on a water transport theory modified for growth and assumed that water for growing cells would move through and along the cells in proportion to the conductivity of the various pathways.

Water potentials calculated for individual cells were nearly in local equilibrium with the water potentials of the immediate cell surroundings during growth. However, water potentials calculated for growing tissue were 1.2 to 3.3 bars below the water potential of the vascular supply in those cells farthest from the xylem. Only cells closest to the xylem had water potentials close to that of the vascular supply. Gradients in water potential were steepest close to the xylem because all of the growth-sustaining water had to move through this part of the tissue. Average water potentials calculated for the entire growing region were −0.9 to −2.2 bars depending on the tissue diffusivity.

For comparison with the calculations, average water potentials were measured in elongating soybean hypocotyls using isopiestic thermocouple psychrometers for intact and excised tissue. In plants having virtually no transpiration and growing in Vermiculite with a water potential of −0.1 bar, rapidly growing hypocotyl tissue had water potentials of −1.7 to −2.1 bars when intact and −2.5 bars when excised. In mature, nongrowing hypocotyl tissue, average water potentials were −0.4 bar regardless of whether the tissue was intact or excised.

The close correspondence between predicted and measured water potentials in growing tissue indicates that significant gradients in water potential are required to move growth-associated water through and around cells over macroscopic distances. The presence of such gradients during growth indicates that cells must have different cell wall and/or osmotic properties at different positions in the tissue in order for organized growth to occur. The mathematical development used in this study represents the philosophy that would have to be followed for the application of contemporary growth theory when significant tissue water potential gradients are present.

  相似文献   

2.
Comparative resistance of the soil and the plant to water transport   总被引:11,自引:1,他引:10       下载免费PDF全文
The resistances to liquid water transport in the soil and plant were determined directly and simultaneously from measurements of soil, root, and leaf water potentials and the flux of water through the soil-plant system to the sites of evaporation in the leaf. For soybean (Merr.) transporting water at a steady rate, water potential differences between soil and root were smaller than between root and leaf over the range of soil water potentials from −0.2 to −11 bars. As soil water was depleted, water flow through the soil and plant decreased to one-tenth the maximum rate, but both the soil resistance and plant resistance increased. The plant resistance remained larger than the soil resistance over the entire range of soil water availability. Previous suggestions that the soil is the major resistance have ignored the increase in plant resistance and/or assumed root densities that were too low.  相似文献   

3.
The objective of this study was to determine the effects of soil water and soil strength on root growth in situations where the individual effects of both of these factors were important. Three grain legumes were grown from pre-germinated seeds for five days on 50-mm compacted columns of two major soils of Sri Lanka. Four or five levels of bulk density (1.1 to 1.8 Mg.m–3) and five or six levels of matric potential (–0.02 to–2.0 MPa) were used.Soil strength and matric potential effects on root growth were independently significant for most crop and soil combinations. Under high (wet) matric potential (>–0.77 MPa) soil conditions, the effect of soil water on root growth was evident only in its effect on soil strength. Bulk density had a significant effect on root growth independent of soil strength and matric potential in three cases.For all crops and soils, root penetration was 80% of the maximum or greater when the average soil strength (soil water not limiting) was 0.75 MPa or less, and when the average matric potential (soil strength not limiting) was –0.77 MPa or greater (wetter). Root penetration was 20% of the maximum or less when the soil strength was greater than 3.30 MPa (soil water not limiting), and when matric potential (soil strength not limiting) was less than –3.57 MPa. The use of pre-germinated seeds, which contained imbibed water, combined with a lack of water loss from the closed chambers containing the plants is the probable cause for the very low (–3.57 MPa) matric potential that allowed root growth at 20% of the maximum.  相似文献   

4.
Behavior of Corn and Sorghum under Water Stress and during Recovery   总被引:10,自引:9,他引:1       下载免费PDF全文
Corn (Zea mays L.) and sorghum (Sorghum vulgare, Pers.) plants were grown in a vermiculite-gravel mixture in controlled environment chambers until they were 40 days old. Water was withheld until they were severely wilted, and they were then rewatered. During drying and after rewatering stomatal resistance was measured with a diffusion porometer each morning, and water saturation deficit and water potential were measured on leaf samples. The average resistance of the lower epidermis of well watered plants was lower for corn than for sorghum. When water stress developed, the stomata began to close at a higher water potential in corn than in sorghum. The stomata of both species began to reopen normally soon after the wilted plants were rewatered, and on the 2nd day the leaf resistances were nearly as low as those of the controls. The average leaf water potential of well watered corn was −4.5 bars; that of sorghum, −6.4 bars. The lowest leaf water potential in stressed corn was −12.8 bars at a water saturation deficit of 45%. The lowest leaf water potential in stressed sorghum was −15.7 bars, but the water saturation deficit was only 29%. At these values the leaves of both species were tightly rolled or folded and some injury was apparent. Thus, although the average leaf resistance of corn is little lower than that of sorghum, corn loses much more of its water before the stomata are fully closed than does sorghum. The smaller reduction in water content of sorghum for a given reduction in leaf water potential is characteristic of drought-resistant species.  相似文献   

5.
The effect of bacterial secretion of an exopolysaccharide (EPS) on rhizosphere soil physical properties was investigated by inoculating strain NAS206, which was isolated from the rhizosphere of wheat (Triticum durum L.) growing in a Moroccan vertisol and was identified as Pantoea aglomerans. Phenotypic identification of this strain with the Biotype-100 system was confirmed by amplified ribosomal DNA restriction analysis. After inoculation of wheat seedlings with strain NAS206, colonization increased at the rhizoplane and in root-adhering soil (RAS) but not in bulk soil. Colonization further increased under relatively dry conditions (20% soil water content; matric potential, −0.55 MPa). By means of genetic fingerprinting using enterobacterial repetitive intergenic consensus PCR, we were able to verify that colonies counted as strain NAS206 on agar plates descended from inoculated strain NAS206. The intense colonization of the wheat rhizosphere by these EPS-producing bacteria was associated with significant soil aggregation, as shown by increased ratios of RAS dry mass to root tissue (RT) dry mass (RAS/RT) and the improved water stability of adhering soil aggregates. The maximum effect of strain NAS206 on both the RAS/RT ratio and aggregate stability was measured at 24% average soil water content (matric potential, −0.20 MPa). Inoculated strain NAS206 improved RAS macroporosity (pore diameter, 10 to 30 μm) compared to the noninoculated control, particularly when the soil was nearly water saturated (matric potential, −0.05 MPa). Our results suggest that P. agglomerans NAS206 can play an important role in the regulation of the water content (excess or deficit) of the rhizosphere of wheat by improving soil aggregation.  相似文献   

6.
Relationship of water potential to growth of leaves   总被引:33,自引:9,他引:24       下载免费PDF全文
Boyer JS 《Plant physiology》1968,43(7):1056-1062
A thermocouple psychrometer that measures water potentials of intact leaves was used to study the water potentials at which leaves grow. Water potentials and water uptake during recovery from water deficits were measured simultaneously with leaves of sunflower (Helianthus annuus L.), tomato (Lycopersicon esculentum Mill.), papaya (Carica papaya L.), and Abutilon striatum Dickson. Recovery occurred in 2 phases. The first was associated with elimination of water deficits; the second with cell enlargement. The second phase was characterized by a steady rate of water uptake and a relatively constant leaf water potential. Enlargement was 70% irreversible and could be inhibited by puromycin and actinomycin D. During this time, leaves growing with their petioles in contact with pure water remained at a water potential of —1.5 to —2.5 bars regardless of the length of the experiment. It was not possible to obtain growing leaf tissue with a water potential of zero. It was concluded that leaves are not in equilibrium with the potential of the water which is absorbed during growth. The nonequilibrium is brought about by a resistance to water flow which requires a potential difference of 1.5 to 2.5 bars in order to supply water at the rate necessary for maximum growth.

Leaf growth occurred in sunflower only when leaf water potentials were above —3.5 bars. Sunflower leaves therefore require a minimum turgor for enlargement, in this instance equivalent to a turgor of about 6.5 bars. The high water potentials required for growth favored rapid leaf growth at night and reduced growth during the day.

  相似文献   

7.
Colonization potential of bacteria in the rhizosphere   总被引:4,自引:0,他引:4  
The effect of inoculum density on growth and steady-state populations of aPseudomonas sp., aMycoplana sp., and aCurtobacterium sp. in the rhizosphere if gnotobiotic barley plants was studied. Inoculation of sterile barley seedling at concentrations of about 1×103, 1×105 and 1×107 viable cells (mg dry wt root)–1 resulted in rapid colonization; maximum populations of about 5×107 viable cells (mg dry wt root)–1 developed in each case. We define this maximum population as the colonization potential. Measurement of growth of known rhizosphere bacteria might be a useful index of the amount of available carbon and energy lost by growing roots.  相似文献   

8.
Hydraulic redistribution (HR), the passive movement of water via roots from moist to drier portions of the soil, occurs in many ecosystems, influencing both plant and ecosystem-water use. We examined the effects of HR on root hydraulic functioning during drought in young and old-growth Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco] and ponderosa pine (Pinus ponderosa Dougl. Ex Laws) trees growing in four sites. During the 2002 growing season, in situ xylem embolism, water deficit and xylem vulnerability to embolism were measured on medium roots (2–4-mm diameter) collected at 20–30 cm depth. Soil water content and water potentials were monitored concurrently to determine the extent of HR. Additionally, the water potential and stomatal conductance (gs) of upper canopy leaves were measured throughout the growing season. In the site with young Douglas-fir trees, root embolism increased from 20 to 55 percent loss of conductivity (PLC) as the dry season progressed. In young ponderosa pine, root embolism increased from 45 to 75 PLC. In contrast, roots of old-growth Douglas-fir and ponderosa pine trees never experienced more than 30 and 40 PLC, respectively. HR kept soil water potential at 20–30 cm depth above –0.5 MPa in the old-growth Douglas-fir site and –1.8 MPa in the old-growth ponderosa pine site, which significantly reduced loss of shallow root function. In the young ponderosa pine stand, where little HR occurred, the water potential in the upper soil layers fell to about –2.8 MPa, which severely impaired root functioning and limited recovery when the fall rains returned. In both species, daily maximum gs decreased linearly with increasing root PLC, suggesting that root xylem embolism acted in concert with stomata to limit water loss, thereby maintaining minimum leaf water potential above critical values. HR appears to be an important mechanism for maintaining shallow root function during drought and preventing total stomatal closure.  相似文献   

9.
Kanemasu ET  Tanner CB 《Plant physiology》1969,44(11):1547-1552
Concurrent measurements of abaxial and adaxial stomatal resistance and leaf-water potentials of snap beans (Phaseolus vulgaris L.) in the field and growth chamber show that the stomata on the 2 surfaces of the leaflet react differently to water deficit. The stomata on the abaxial surface, which are about 7 times more numerous than on the adaxial surface, are not significantly affected at leaf-water potentials greater than —11 bars, but with further decrease in leaf-water potential, the resistance rapidly increases. On the other hand, the resistance of the adaxial stomata increases sharply at a leaf-water potential of about —8 bars and is constant at higher water potentials. The average stomatal resistance for both surfaces of the leaf, which is the major diffusive resistance to water vapor, to a first approximation acts as an on-off switch and helps prevent further decline in leaf-water potential. The relation between the leaf-water potential and the stomatal resistance links the soil-water potential to the transpiration stream as needed for soil-plant-atmosphere models.  相似文献   

10.
Summary The effect of 2-day cycles of osmotically induced leaf moisture stress followed by partial recovery on the nodulation and nitrogenase activity of 2 soya cultivars was studied. Fourteen days after plant inoculation (mid-growth stage) the total leaf electrochemical water potential (wleaf) of control plants ranged from –0.8 to –1.9 bars, whereas the concentrations of osmoticum (polyethylene glycol 4000) induced wleaf values ranging from –1.4 (recovery value) to –3.1 bars (low stress), –1.8 to –4.4 bars (mild stress), and –2.2 to –6.2 bars (medium stress). The low stress treatment reduced nodule numbers and their specific activity in both cultivars, without affecting nodule size or the time required for nodule initiation. Nodule initiation was delayed in both cultivars by the mild and medium stress treatments, the former treatment reducing the number and size of the nodules and such nodules exhibited very low specific activity. The medium stress treatment prevented the further development of nodule initials, which remained inactive throughout the experiment. Such results imply an effect of water stress on the infection process and on nodule morphogenesis. The reduction in nodule numbers observed in water stressed plants was not associated with a reduced number of rhizobia in the rhizoplane nor due to an effect on root growth or root hair formation.At a stage prior to the formation of macroscopic nodule initials, the roots of plants under medium stress (wleaf=–5.5 bar)s) had a higher content of abscisic acid (ABA) (4-fold increase) and a lower content of gibberellin (GA)-like substances (21.4% reduction) as compared to control plants (wleaf=–1.0 bar). Although the medium stress treatment slightly increased the stomatal resistance of leaves, photosynthetic and transpiration rates were unaffected. Similar alterations of the hormononal balance occurred in the nodulated roots of plants subjected to naturally induced leaf moisture stress.Since the foliar application of ABA (1.92×10–5 M) to unstressed plants inhibited nodulation (45% reduction in nodule numbers), the increased endogenous content of thishormone in the roots of plants under leaf moisture stress may provide some physiological insight into the inhibitory effect of water stress on the nodulation process.  相似文献   

11.
When intact roots of lentil (Lens culinaris Med.) are subjected to severe osmotic stress by treatment with a solution of low water potential, they immediately begin to shrink. Within 10 to 15 minutes, shrinkage ceases, and within 20 minutes, the roots resume growth. The time lag between application of osmoticum and resumption of growth varies from about 10 to 30 minutes over the range of external water potentials of −2 to −12.4 bars. For external water potentials as low as −8.7 bars the new steady rate of growth in the presence of osmoticum is approximately equal to that prevailing before application of osmoticum. For external water potentials between −8.7 and −13 bars growth resumes, but the new rate is less than that prior to addition of osmoticum. Measurements of changes in the internal solute content during adaptation show that the solute content of the root increases but that the magnitude of the increase is, by itself, insufficient to account for the resumption of rapid growth.  相似文献   

12.
Changes in microbial biomass in the rhizosphere of young barley seedlings was studied. A fumigation-extraction (FE) method with measurement of ninhydrin-reactive nitrogen (NR-N) and a substrate-induced respiration (SIR) method were applied on a microscale to rhizosphere soil samples of approximately 0.1 g. Rhizosphere soil was defined as the soil adhering to the roots when they were carefully separated from the bulk soil. The rhizosphere soil was gently washed off the roots with either distilled water (FE) or with glucose solution (SIR). Shaking and mild sonication was used to disperse the soil without disrupting the roots. Fumigation was carried out by direct addition of liquid chloroform to the isolated soil. These techniques were proven to give reliable results under the experimental conditions of this investigation. Rhizosphere soil was isolated from segments of the roots representing different distances to the seed different root ages. In the rhizosphere of young barley seedlings, biomass NR-N increased significantly compared to the bulk soil from day 6 after sowing (average increases of 33–97%), especially where adventitious roots had developed. From this time, SIR rates were also significantly higher in the rhizosphere than in bulk soil (average increases 72–170%). The average ratio of SIR rate to biomass NR-N was found to be approximately 50% higher in the rhizosphere than in the bulk soil, which may indicate that a larger fraction of the microbial community is potentially active in the rhizosphere as compared to the bulk soil.  相似文献   

13.
Stress-induced osmotic adjustment in growing regions of barley leaves   总被引:8,自引:11,他引:8       下载免费PDF全文
Young barley seedlings were stressed using nutrient solutions containing NaCl or polyethylene glycol and measurements were made of leaf growth, water potential, osmotic potential and turgor values of both growing (basal) and nongrowing (blade) tissues. Rapid growth responses similar to those noted for corn (Plant Physiology 48: 631-636) were obtained using either NaCl or polyethylene glycol treatments by which exposure of seedlings to solutions with water potential values of −3 to −11 bars effected an immediate cessation of leaf elongation with growth resumption after several minutes or hours. Latent periods were increased and growth resumption rates were decreased as water potential values of nutrient solutions were lowered. In unstressed transpiring seedlings, water potential and osmotic potential values of leaf basal tissues were usually −6 to −8 bars, and −12 to −14 bars, respectively. These tissues began to adjust osmotically when exposed to any of the osmotic solutions, and hourly reductions of 1 to 2 bars in both water potential and osmotic potential values usually occurred for the first 2 to 4 hours, but reduction rates thereafter were lower. When seedlings were exposed to solutions with water potential values lower than those of the leaf basal tissues, growth resumed about the time water potential values of those tissues fell to that of the nutrient solution. After 1 to 3 days of seedling exposure to solutions with different water potential values, cumulative leaf elongation was reduced as the water potential values of the root medium were lowered. Reductions in water potential and osmotic potential values of tissues in leaf basal regions paralleled growth reductions, but turgor value was largely unaffected by stress. In contrast, water potential, osmotic potential, and turgor values of leaf blades were usually changed slightly regardless of the degree and duration of stress, and blade water potential values were always higher than water potential values of the basally located cells. It is hypothesized that blades have high water potential values and are generally unresponsive to stress because water in most of the mesophyll cells in this area does not exchange readily with water present in the transpiration stream.  相似文献   

14.
Water potential gradients in field tobacco   总被引:25,自引:8,他引:17       下载免费PDF全文
A pressure chamber was used to establish the vertical gradients of leaf water potential (ΨLeaf) and stem water potential (ΨStem) in field-grown tobacco (Nicotiana tabacum L. var. Havanna seed 211) at three different times of day. Leaves enclosed in polyethylene bags and aluminum foil the previous afternoon and left to equilibrate overnight were used to determine ΨStem. The greatest difference between ΨLeaf and ΨStem occurred in the upper part of the plant at 1100 hours Eastern Standard Time and was 5.5 bars. The largest vertical gradient in ΨStem occurred at 1300 hours. The soil water potential (ΨSoil), extrapolated from the potential of leaves on a completely enclosed plant, was higher than −1 bar. The vertical gradient in ΨStem and the difference between ΨLeaf and ΨStem showed the existence of a resistance to water movement within the stem (rstem) and a further resistance between the stem and leaf (rpetiole). The rpetiole and root resistance (rroot) were estimated to be 931 and 102 bars seconds per cubic centimeter, respectively. The rstem was low (94 bars seconds per cubic centimeter) at 1100 hours but increased to 689 bars seconds per cubic centimeter at 1300 hours.  相似文献   

15.
Root exudates as mediators of mineral acquisition in low-nutrient environments   总被引:39,自引:3,他引:36  
Plant developmental processes are controlled by internal signals that depend on the adequate supply of mineral nutrients by soil to roots. Thus, the availability of nutrient elements can be a major constraint to plant growth in many environments of the world, especially the tropics where soils are extremely low in nutrients. Plants take up most mineral nutrients through the rhizosphere where micro-organisms interact with plant products in root exudates. Plant root exudates consist of a complex mixture of organic acid anions, phytosiderophores, sugars, vitamins, amino acids, purines, nucleosides, inorganic ions (e.g. HCO3 , OH, H+), gaseous molecules (CO2, H2), enzymes and root border cells which have major direct or indirect effects on the acquisition of mineral nutrients required for plant growth. Phenolics and aldonic acids exuded directly by roots of N2-fixing legumes serve as major signals to Rhizobiaceae bacteria which form root nodules where N2 is reduced to ammonia. Some of the same compounds affect development of mycorrhizal fungi that are crucial for phosphate uptake. Plants growing in low-nutrient environments also employ root exudates in ways other than as symbiotic signals to soil microbes involved in nutrient procurement. Extracellular enzymes release P from organic compounds, and several types of molecules increase iron availability through chelation. Organic acids from root exudates can solubilize unavailable soil Ca, Fe and Al phosphates. Plants growing on nitrate generally maintain electronic neutrality by releasing an excess of anions, including hydroxyl ions. Legumes, which can grow well without nitrate through the benefits of N2 reduction in the root nodules, must release a net excess of protons. These protons can markedly lower rhizosphere pH and decrease the availability of some mineral nutrients as well as the effective functioning of some soil bacteria, such as the rhizobial bacteria themselves. Thus, environments which are naturally very acidic can pose a challenge to nutrient acquisition by plant roots, and threaten the survival of many beneficial microbes including the roots themselves. A few plants such as Rooibos tea (Aspalathus linearis L.) actively modify their rhizosphere pH by extruding OH and HCO3 to facilitate growth in low pH soils (pH 3 – 5). Our current understanding of how plants use root exudates to modify rhizosphere pH and the potential benefits associated with such processes are assessed in this review.  相似文献   

16.
Summary The influence of soil moisture content and soil water potential on plant water potential, transpiration and net-photosynthesis of potted larch (Larix decidua), spruce (Picea abies) and pine (Pinus cembra) was studied under constant and close to optimum conditions in a laboratory.The equilibrium plant water potential measured under non-transpiring conditions came close to soil water potential, but in moist soil the equilibrium potential was slightly lower, particularly in larch where transpiration was not fully arrested. In very dry soil, plants had higher water potential than soil, presumably due to roots exploiting the wettest points within the soil.Pine, spruce and larch utilised a large part of soil moisture (down to 25wt.% soil water content or –1.5 bars potential) while maintaining plant water potential near –8, –9.5 and –12.5 bars respectively. A similar pattern occurred in dry soil. The differences between species are explained by differing stomatal sensitivity to water potential.Pine began a gradual reduction in gas-exchange below a soil water potential of –0.4 bars. Larch showed no marked reduction until the soil potential fell to –3.5 bars but below this the shut-down in gas-exchange was rapid. Spruce lay in between.In spite of the early and sensitive gas-exchange reduction with decreasing soil moisture, pine maintained the highest net photosynthesis/transpiration ratio and thus used limited soil water more slowly and economically than the other species.Seedlings maintained a higher rate of gas-exchange in strong light than in weak light, especially at low soil water potentials.  相似文献   

17.
Individual groups of peach (Prunus persica [L.] Batsch) seedlings stressed to −17, −26 and −36 bars recovered to control levels within 1, 3, and 4 days, respectively. Stomatal resistance was significantly correlated with both leaf water potential and net photosynthesis. In seedlings stressed to −52 bars, leaf water potential and stomatal resistance recovered sooner than net photosynthesis, despite recovery of 02 evolution at a rate similar to leaf water potential. Therefore, some nonstomatal factor other than reduction in photochemical activity must be responsible for the lag in recovery of CO2 assimilation following irrigation.  相似文献   

18.
Detrimental effect of rust infection on the water relations of bean   总被引:3,自引:0,他引:3       下载免费PDF全文
Bean plants (Phaseolus vulgaris L.) infected with the rust Uromyces phaseoli became unusually susceptible to drought as sporulation occurred. Under the conditions used (1,300 ft-c, 27 C, and 55% relative humidity) such plants wilted at soil water potentials greater than −1 bar, whereas healthy plants did not wilt until the soil water potential fell below −3.4 bars. Determinations of leaf water and osmotic potentials showed that an alteration in leaf osmotic potential was not responsible for the wilting of diseased plants. When diffusive resistance was measured as a function of decreasing leaf water content, the resistance of healthy leaves increased to 50 sec cm−1 by the time relative water content decreased to 70%, whereas the resistance of diseased leaves remained less than 8 sec cm−1 down to 50% relative water content. Apparently, water vapor loss through cuticle damaged by the sporulation process, together with the reduction in root to shoot ratio which occurs in diseased plants, upset the water economy of the diseased plant under mild drought conditions.  相似文献   

19.
Boyer JS 《Plant physiology》1971,47(6):816-820
Photosynthesis was studied in sunflower plants subjected to 1 to 2 days of desiccation and then permitted to recover. The leaf water potential to which leaves returned after rewatering was dependent on the severity of desiccation and the evaporative conditions. Under moderately evaporative conditions, leaf water potential returned to predesiccation levels after 3 to 5 hours when desiccation was slight. Leaf water potentials remained below predesiccation levels for several days after rewatering when leaf water potentials decreased to −13 to −19 bars during desiccation. Leaf water potential showed no sign of recovery when leaf water potentials decreased to −20 bars or below during desiccation. The lack of full recovery of leaf water potential was attributable to increased resistance to water transport in the roots and stem. The resistance ultimately became large enough to result in death of the leaves because net water loss continued even after the soil had been rewatered.  相似文献   

20.
R. E. Redmann 《Oecologia》1976,23(4):283-295
Summary Seasonal and diurnal patterns of osmotic and leaf water potential of several mixed grassland species were studied. The osmotic potential (OP) of Agropyron dasystachyum ranged from about-15 bars early in the growing season to about-30 bars during late summer droughts. Seasonal trends in A. smithii and Koeleria cristata were similar. Minimum osmotic potentials of Eurotia lanata and Artemisia frigida were-42 and-35 bars, respectively. The mesophytes Geum triflorum and Lomatium foeniculaceum did not exhibit OP below-20 bars. Soil water, particularly in the 0–15 cm layer, strongly influenced OP and leaf water potential (WP). Seasonal trends in WP were similar to OP. Under low stress, WP was about 10 bars greater than OP; under high stress WP was equal or even lower then OP (negative turgor). Diurnal fluctuations in WP were greater than those of OP when low stress conditions existed. Diurnal changes in potential were related to global radiation which was an index of atmospheric evaporative demand. Ecological implications of water status are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号