首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fatty acids from the several lipid classes of selected steelhead trout (Salmo gairdnerii) parr and smolt tissues, previously separated by thin-layer chromatography, were analyzed by gas-liquid chromatography. The fatty acid composition of the parr was markedly different from that of the smolt; the former being characterized by relatively low amounts of polyunsaturated fatty acids and relatively high amounts of linoleic acid, much like the typical freshwater lipid pattern. The fatty acid composition of the smolt was characterized by large proportions of long-chain polyunsaturated fatty acids. Generally, the fatty acid composition of the smolt resembled the typical seawater lipid pattern. The change in fatty acid composition of the smolt is anticipatory to seawater entry and is independent of diet and water temperature. These alterations suggest that the assumption of a polyunsaturated lipid pattern during parr-smolt transformation (smoltification) is preadaptive to seawater entry.  相似文献   

2.
The lipid and fatty acid composition of Porphyridium cruentum was determined as a function of light intensity, temperature, pH, and salinity. In cultures cultivated at the optimal temperature under non-limiting light conditions, eicosapentaenoic acid was the main polyunsaturated fatty acid. When growth rate was reduced by decreased light intensity, increased cell concentration, suboptimal temperature, suboptimal pH, or increased salinity, the content of eicosapentaenoic acid decreased and that of arachidonic acid increased, the latter becoming the major polyunsaturated fatty acid.  相似文献   

3.
Digestion and absorption of polyunsaturated fatty acids.   总被引:6,自引:0,他引:6  
Polyunsaturated fatty acids play an important part in the structure and function of cellular membranes and are precursors of lipid mediators which play a key role in cardiovascular and inflammatory diseases. Dietary sources of essential fatty acids are vegetable oils for either linoleic or alpha-linolenic acids, and sea fish oils for eicosapentaenoic and docosahexaenoic acids. Because of the specificity of the pancreatic lipid hydrolases, triglyceride fatty acid distribution is an essential parameter in the digestibility of fats. The efficiency of the intestinal uptake depends on the hydrolysis and especially on their micellarization. n-3 polyunsaturated fatty acid ethyl ester digestion is recognized to be impaired, but n-3 polyunsaturated fatty acid triglyceride hydrolysis remains a controversial point, and to some authors explains differences observed between vegetable and fish oil absorption. So additional studies are required to investigate this intestinal step. In enterocytes, morphological and biochemical absorption processes involve reesterification of long-chain fatty acids and lipoprotein formation. At this level, specific affinity of I- and L-FABPc (cytosolic fatty acid binding proteins) to polyunsaturated fatty acids requires further investigation. A better understanding of the role of these FABPc might bring to light the esterification step, particularly the integration of polyunsaturated fatty acids into phospholipids. With reference to differences published between fish and vegetable oil absorption, longer-term absorption studies appear essential to some authors. Polyunsaturated fatty acid absorption is thought to be not very dissimilar to that of long-chain mono-unsaturated fatty acid absorption. However, several digestion and absorption specific steps are worth studying with reference to the crucial role of polyunsaturated fatty acids in the organism, and for example adaptation of possible dietary supplements.  相似文献   

4.
Interaction of active oxygen species with polyunsaturated fatty acids (PUFA) results in a series of reactions called lipid peroxidation. During the process of peroxidation of polyunsaturated fatty acids there is a scission of an alkane fragment extending from the methyl end of the fatty acid to the double bond. Thus, with a w-6 polyunsaturated fatty acid pentane is released, and with a w-3 polyunsaturated fatty acid ethane is released. These hydrocarbons are distributed in the body, partly metabolized, and excreted in the breath, making it possible to estimate the magnitude of in vivo lipid peroxidation by measuring pentane and ethane exhaled in breath. Advantages of this method are discussed as well as limitations and possible sources of error.  相似文献   

5.
Relative polyunsaturated fatty acid content and unsaturation index are very important composition variables in the use of microalgae both for animal and human nutrition and biofuel production. A readily available technique to rapidly and inexpensively estimate relative fatty acid composition is very important for mass screening of new strains for the production of different types of oil. This study demonstrates the validity of Nile Red staining and flow cytometry for quick estimation of unsaturation index and relative fatty acid content in microalgae. Nile Red staining allows polar and neutral lipid contents to be estimated, and in this study a significant correlation was observed between polar/neutral ratio and fatty acid content in the species studied, corresponding to higher polyunsaturated fatty acid content in the polar lipid fraction of microalgae. This technique enables quick estimation of relative polyunsaturated fatty acid content and interspecific variation, as well as variations caused by culture conditions. In the species studied, most variability in fatty acid composition was due to variation in monounsaturated and polyunsaturated fatty acids, with less variation observed in saturated fatty acid content.  相似文献   

6.
The onset of lipid peroxidation within cellular membranes is associated with changes in their physicochemical properties and with the impairment of protein functions located in the membrane environment. This article provides current information on the origin and function of polyunsaturated fatty acids in nature, lipid peroxidation of cellular membranes: enzymatic (lipoxygenases) and non-enzymatic. The latest knowledge on in vivo biomarkers of lipid peroxidation including isoprostanes, isofurans and neuroprostanes are discussed. A further focus is placed on analytical methods for studying lipid peroxidation in membranes with emphasis in chemiluminescence and its origin, rod outer segments of photoreceptors, the effect of antioxidants, fatty acid hydroperoxides and lipid protein modifications. Since rhodopsin, the major integral protein of rod outer segments is surrounded by phospholipids highly enriched in docosahexaenoic acid, the author proposes the outer segments of photoreceptors as an excellent model to study lipid peroxidation using the chemiluminescence assay since these membranes contain the highest concentration of polyunsaturated fatty acids of any vertebrate tissue and are highly susceptible to oxidative damage.  相似文献   

7.
The involvement of superoxide free radicals and lipid peroxidation in brain swelling induced by free fatty acids has been studied in brain slices and homogenates. The polyunsaturated fatty acids linoleic acid (18:2), linolenic acid (18:3), arachidonic acid (20:4), and docosahexaenoic acid (22:6) caused brain swelling concomitant with increases in superoxide and membrane lipid peroxidation. Palmitic acid (16:0) and oleic acid (18:1) had no such effect. Furthermore, superoxide formation was stimulated by NADPH and scavenged by the addition of exogenous superoxide dismutase in cortical slice homogenates. These in vitro data support the hypothesis that both superoxide radicals and lipid peroxidation are involved in the mechanism of polyunsaturated fatty acid-induced brain edema.  相似文献   

8.
It has been reported that glutamate decreased the intracellular glutathione (GSH) concentration and thereby induced cell death in C6 rat glioma cells. Polyunsaturated fatty acids such as arachidonic acid, gamma-linolenic acid, and linoleic acid enhanced lipid peroxidation promoting 8-hydroxy-2'-deoxyguanosine (8-OH-dG) formation under the glutamate-induced GSH-depletion. The enhancement of lipid peroxidation by polyunsaturated fatty acids was species-dependent. Some antioxidants capable of scavenging oxygen and lipid radicals and some iron or copper scavengers inhibited both the lipid peroxidation and the 8-OH-dG formation, consequently protecting against cell death induced by glutamate-induced GSH depletion. These results suggest that GSH depletion caused by glutamate induces lipid peroxidation and consequently 8-OH-dG formation and that polyunsaturated fatty acids enhance lipid peroxidation associated with mediated 8-OH-dG formation through a chain reaction.  相似文献   

9.
The effect of dietary hydrogenated fat (Indian vanaspati) high in trans fatty acids (6 en%) on lipid composition, fluidity and function of rat intestinal brush border membrane was studied at 2 and 8 en% of linoleic acid. Three groups of weanling rats were fed rice-pulse based diet containing 10% fat over a ten week period: Group I (groundnut oil), Group II (vanaspati), Group III (vanaspati + safflower oil). The functionality of the brush border membrane was assessed by the activity of membrane bound enzymes and transport of D-glucose and L-leucine. The levels of total cholesterol and phospholipids were similar in all groups. The data on fatty acid composition of membrane phospholipids showed that, at 2 en% of linoleic acid in the diet, trans fatty acids lowered arachidonic acid and increased linoleic acid contents indicating altered polyunsaturated fatty acid metabolism. Alkaline phosphatase activity was increased while the activities of sucrase, gamma-glutamyl transpeptidase and transport of D-glucose and L-leucine were not altered by dietary trans fatty acids. However at higher intake of linoleic acid in the diet, trans fatty acids have no effect on polyunsaturated fatty acid composition and alkaline phosphatase activity of intestinal brush border membrane. These data suggest that feeding dietary fat high in trans fatty acids is associated with alteration in intestinal brush border membrane polyunsaturated fatty acid composition and alkaline phosphatase activity only when the dietary linoleic acid is low.  相似文献   

10.
Seasonal changes in the fatty acid composition of neutral and polar lipids were measured in the ovary, liver, white muscle, and adipopancreatic tissue of northern pike. The role of environmental and physiological factors underlying these changes was evaluated. From late summer (August–September) to winter (January–March), the weight percentage of n-3 polyunsaturated fatty acids (especially 22:6n3) declined significantly in the neutral lipids of all somatic tissues examined. However, large quantities of n-3 polyunsaturated fatty acids accumulated in the recrude cing ovaries during fall and the weight percentage of n-3 polyunsaturated fatty acids in ovary polar lipids also increased significantly. Additionally, the n-3 polyunsaturated fatty acid content of somatic polar lipids increased significantly during fall due to increases in the total polar lipid content of the somatic tissues. This suggests that during fall n-3 polyunsaturated fatty acid are diverted away from somatic neutral lipids and thereby conserved for use in ovary construction and for incorporation into tissue polar lipids. The percentage of n-3 polyunsaturated fatty acid in ovary neutral lipids also declined during fall and early winter, perhaps as an adaptation to conserve these fatty acids for storage in oocyte polar lipids and later incorporation into cellular membranes of the developing embryo. Reductions in the n-3 polyunsaturated fatty acids content of somatic and ovarian neutral lipids during fall were compensated for specifically by increases in the percentage of monounsaturated fatty acids rather than saturated fatty acids. This suggests that the ratio of saturated to unsaturated fatty acids in pike neutral lipid, is regulated physiologically, and hence may influence the physiological functioning of these lipids. During fall and early winter the percentage of saturated fatty acids declined significantly in the polar lipids of all tissues examined. This change was consistent with the known effects of cold acclimation on the fatty acid composition of cellular membranes. As the ovaries were recrudescing from September to January, liver polar lipids exhibited significant decreases in the percentage of total polyunsaturated fatty acids and n-3 polyunsaturated fatty acids and increases in monounsaturated fatty acids, and acquired a fatty acid composition very similar to that of ovary polar lipids. Therefore, seasonal changes in the percentage of polyunsaturated and monounsaturated fatty acids in liver polar lipids probably reflect the liver's role in vitellogenesis rather than the effects of temperature on membrane fatty acid composition. At all times of year, the fatty acid compositions of white muscle and adipopancreatic tissue neutral lipids were very similar, which may indicate a close metabolic relationship between these lipid compartments.Abbreviations AP adipopancreatic - BHT butylated hydroxytoluene - CI confidence interval - EFA essential fatty acids - MUFA monounsaturated fatty acids - NL neutral lipids - PL polar lipids - PUFA polyunsaturated fatty acids - SFA saturated fatty acids  相似文献   

11.
The fatty acid composition of cultured Friend erythroleukemia cells was modified by supplementation of the medium with oleic or linoleic acid. There was a 30% reduction in saturated and a 35% reduction in polyunsaturated fatty acids in microsomal phospholipids when the cells were grown in media supplemented with oleic acid, and a 3-fold increase in polyunsaturated fatty acids when the cells were grown in linoleic acid-supplemented media. Electron-spin resonance studies with the 5-nitroxystearate probe demonstrated that there was no appreciable change in microsomal lipid mobility as measured by the order parameters. In contrast, changes in lipid mobility were detected with the spin-label probe when microsomes were first isolated from Friend erythroleukemia cells and subsequently modified by incubation with liposomes composed of either dioleoyl- or dilinoleoylphosphatidylcholine plus bovine liver phospholipid-exchange protein. The fatty acid compositional changes produced in these microsomes were similar to those obtained when the intact cells were grown in media containing supplemental fatty acids. These findings indicate that the lipid mobility of Friend cell microsomes can be altered by phospholipid replacements in vitro, but that this does not occur when similar microsomal fatty acid modifications are produced during culture of the intact cell.  相似文献   

12.
Characterization of highly purified ornithine decarboxylase from rat heart   总被引:3,自引:0,他引:3  
The fatty acid composition of cultured Friend erythroleukemia cells was modified by supplementation of the medium with oleic or linoleic acid. There was a 30% reduction in saturated and a 35% reduction in polyunsaturated fatty acids in microsomal phospholipids when the cells were grown in media supplemented with oleic acid, and a 3-fold increase in polyunsaturated fatty acids when the cells were grown in linoleic acid-supplemented media. Electron-spin resonance studies with the 5- nitroxystearate probe demonstrated that there was no appreciable change in microsomal lipid mobility as measured by the order parameters. In contrast, changes in lipid mobility were detected with the spin-label probe when microsomes were first isolated from Friend erythroleukemia cells and subsequently modified by incubation with liposomes composed of either dioleoyl- or dilinoleoylphosphatidylcholine plus bovine liver phospholipid-exchange protein. The fatty acid compositional changes produced in these microsomes were similar to those obtained when the intact cells were grown in media containing supplemental fatty acids. These findings indicate that the lipid mobility of Friend cell microsomes can be altered by phospholipid replacements in vitro, but that this does not occur when similar microsomal fatty acid modifications are produced during culture of the intact cell.  相似文献   

13.
14.
Tobacco cell suspensions were grown under controlled conditions to determine whether temperature aftected the fatty acid pattern of the cellular lipids. At any temperature ranging between 17° and 35°, the total fatty acid content and the levels of fatty acids or individual lipids varied during the growth period, The optimum temperature for lipid biosynthesis and polyunsaturated fatty acid accumulation was between 20° and 26°. Increase in the level of polyunsaturated fatty acids was associated with lower temperatures during the active cell division period.  相似文献   

15.
Paramecium requires oleic acid for growth and can grow in media containing no other fatty acids. In the present study, we have shown that this ciliate utilized oleate mainly as a carbon and energy source, even though this fatty acid was the only substrate available for synthesis of polyunsaturated fatty acids. Culture growth was inhibited by the addition of the drug triparanol. Triparanol decreased the formation of polyunsaturated fatty acids from oleate by preventing desaturation to form the dienoic acid, linoleate. Triparanol inhibition resulted in an altered phospholipid fatty acyl composition, an increased fragility and an altered behavioral response of the cells to a depolarizing stimulation solution. Therefore, although most of the dietary oleate was not used by the cells for polyunsaturated fatty acid synthesis, the desaturation of oleic acid was critical for normal culture growth, cell integrity and swimming behavior, all of which are expected to be dependent on normal membrane lipid composition.  相似文献   

16.
The objective was to examine the effect of polyunsaturated fatty acid type (plant vs fish oil-derived n-3, compared to n-6 fatty acids in the presence of constant proportions of saturated, monounsaturated and polyunsaturated fatty acids) on obesity, insulin resistance and tissue fatty acid composition in genetically obese rats. Six-week-old fa/fa and lean Zucker rats were fed with a 10% (w/w) mixed fat diet containing predominantly flax-seed, menhaden or safflower oils for 9 weeks. There was no effect of dietary lipid on obesity, oral glucose tolerance (except t=60 min insulin), pancreatic function or molecular markers related to insulin, glucose and lipid metabolism, despite increased n-3 fatty acids in muscle and adipose tissue. The menhaden oil diet reduced fasting serum free fatty acids in both fa/fa and lean rats. These data suggest that n-3 composition does not alter obesity and insulin resistance in the fa/fa Zucker rat model when dietary lipid classes are balanced.  相似文献   

17.
The ability of surfactant protein A (SP-A) to inhibit the ascorbate-Fe(2+) induced lipid peroxidation of polyunsaturated fatty acids found in porcine lung surfactant (surfacen) was assessed by measuring the light emission - chemiluminescence during a 180-min incubation period at 37 degrees C. The light emission (chemiluminescence) was concentration dependent. Changes in the fatty acid composition of surfacen were observed when the lung surfactant was incubated in an ascorbate-Fe(2+) system. The main polyunsaturated fatty acids C18:2 n6 and C20:4 n6 found in the lung surfactant decreased considerably after a 180-min lipid peroxidation process. Native SP-A isolated from pig lungs inhibited oxidation of surfactant long chain polyunsaturated fatty acids, mainly arachidonic acid, in a dose-dependent fashion that was half-maximal (60% inhibition) at a concentration of 2.0 microg/ml and almost complete (73.6% inhibition) at 4.0 microg/ml, as indicated by inhibition of light emission and fatty acid composition analysis. At the highest concentration of lung SP-A used a very good correlation between the protection of the most polyunsaturated fatty acids and inhibition of light emission was observed.  相似文献   

18.
As a first step in determining the mechanism of action of specific fatty acids on immunological function of macrophages, a comparative study of the effect of long-chain polyunsaturated fatty acids (PUFA) in the medium was conducted in two macrophage cell lines, J774A.1 and WEHI-3. The baseline fatty-acid profiles of the two cell lines differed in the % distribution of saturated (SFA) and unsaturated fatty acids (UFA). J774A.1 cells had a higher % of SFA (primarily palmitic acid) than WEHI-3 cells. Conversely, WEHI-3 cells had a higher % of UFA (primarily oleic acid) than J774A.1 cells. Neither cell line had detectable amounts of alpha-linolenic acid (ALA) or eicosapentaenoic acid (EPA). The most abundant polyunsaturated fatty acid in both cells lines was arachidonic acid (AA). The efficiency of transport of fatty acids from the medium to the macrophages by two delivery vehicles (BSA complexes and ethanolic suspensions) was compared. Overall, fatty acids were transported satisfactorily by both delivery systems. Alpha-linolenic acid and doscosahexenoic acid (DHA) were transported more efficiently by the ethanolic suspension system. Linoleic acid (LA) was taken up more completely than ALA, and DHA was taken up more completely than EPA by both cell cultures and delivery systems. A dose-response effect was demonstrated for LA, ALA, EPA and DHA in both J774A.1 and WEHI-3 cells. Addition of polyunsaturated fatty acids (PUFA) to the cell cultures modified the total lipid fatty acid composition of the cells. The presence of ALA in the culture medium resulted in a significant decrease in AA in both cell lines. The omega-3/omega-6 fatty acid ratio (omega-3/omega-6), polyunsaturated/saturated fatty acid ratio (P/S), and unsaturation index (UI) increased directly with the amount of PUFA and omega-3 fatty acid provided in the medium. The results indicate that the macrophage cell lines have similar, but not identical, fatty acid profiles that may be the result of differences in fatty acid metabolism. These distinctions could in turn produce differences in immunological function. The ethanol fatty-acid delivery system, when compared with the fatty acid-BSA complex system, is preferable for measurement of dose-response effects, because the cellular fatty acid content increased in proportion to the amount of fatty acid provided in the medium. Similar dose-response results were observed in a previous in vivo study using flaxseed, rich in ALA, as a source of PUFA.  相似文献   

19.
Membrane lipids play an important role in the function of blood platelets but the mechanisms by which the lipid composition of the platelet membrane is adjusted remain unclear. It has been shown that stress and poly-unsaturated fatty acids modified the lipid composition of blood plasma and platelet lipids, but very little is known about the effect of stress and fatty acids on membrane platelet lipid composition. The purpose of the present investigation was to study the influence of the essential fatty acids: linoleic, linolenic and arachidonic acids on the composition of the platelet membrane lipids of rats assigned to heat and restraint stress. It was shown that injections of polyunsaturated fatty acids decrease or suppress the stress-induced increase in platelet aggregation, suppress the stress-induced modification of the composition of the platelet membrane lipids and modify the fatty acid composition of the platelet membrane phospholipids.  相似文献   

20.
A procedure for isolating the carotenoid-containing oil droplets of cone retinal photoreceptors of Gallus domesticus is described. The oil droplets, composed almost entirely of neutral lipids and carotenoids, have been separated into ten chromatographic components. Similar separations have been carried out on the total retinal neutral lipids for comparison. The neutral lipids represented 26.1% of the total retinal lipid. Cholesterol, cholesterol ester, mono-, di- and triacylglycerols represented 92.6% of the total neutral lipid. Each of these and other minor neutral lipid components were also present in the lipids extracted from the isolated oil droplets in correspondingly similar concentrations. However, the concentrations of carotenoids were greatly enriched in the neutral lipids of the oil droplets. Each of the major fatty acyl-containing neutral lipids from the chromatography of oil droplet lipids is greatly enriched in polyunsaturated fatty acids when compared with the corresponding component from the total neutral lipid chromatography. In the acylglycerols and free fatty acid fraction from the oil droplets, linoleic and arachidonic acid together represented 52-83% of the total polyunsaturated fatty acids present. The remainder was generally distributed about equally among six other acids. Except for the diacylglycerol fraction, linoleic acid was usually the most enriched acid in a specific oil droplet fraction when compared with any other polyunsaturated fatty acids. A similar pattern of polyunsaturated fatty acid enrichment observed in the fatty acids of the outer segment phospholipids relative to the corresponding total phospholipid fractions of this cone rich retina (Johnston, D. and Hudson, R.A. (1974) Biochim. Biophys. Acta 369, 269) suggest possible metabolic relationships between the oil droplet neutral lipids and the outer segment membrane phospholipids of the cone photoreceptors. A mechanism for the accumulation of the carotenoids in the oil droplets is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号