首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Exogenous carbon monoxide (CO) can induce pulmonary vasodilation by acting directly on pulmonary artery (PA) smooth muscle cells. We investigated the contribution of K+ channels to the regulation of resistance PA resting membrane potential on control (PAC) rats and rats exposed to CO for 3 wk at 530 parts/million, labeled as PACO rats. Whole cell patch-clamp experiments revealed that the resting membrane potential of PACO cells was more negative than that of PAC cells. This was associated with a decrease of membrane resistance in PACO cells. Additional analysis showed that outward current density in PACO cells was higher (50% at +60 mV) than in PAC cells. This was linked to an increase of iberiotoxin (IbTx)-sensitive current. Chronic CO hyperpolarized membrane of pressurized PA from -46.9 +/- 1.2 to -56.4 +/- 2.6 mV. Additionally, IbTx significantly depolarized membrane of smooth muscle cells from PACO arteries but not from PAC arteries. The present study provides initial evidence of an increase of Ca2+-activated K+ current in smooth muscle cells from PA of rats exposed to chronic CO.  相似文献   

2.
Cellular redox change regulates pulmonary vascular tone by affecting function of membrane and cytoplasmic proteins, enzymes, and second messengers. This study was designed to test the hypothesis that functional modulation of ion channels by thiol oxidation contributes to regulation of excitation-contraction coupling in isolated pulmonary artery (PA) rings. Acute treatment with the thiol oxidant diamide produced a dose-dependent relaxation in PA rings; the IC50 was 335 and 58 microM for 40 mM K+ - and 2 microM phenylephrine-induced PA contraction, respectively. The diamide-mediated pulmonary vasodilation was affected by neither functional removal of endothelium nor 8-bromoguanosine-3'-5'-cyclic monophosphate (50 microM) and HA-1004 (30 microM). A rise in extracellular K+ concentration (from 20 to 80 mM) attenuated the thiol oxidant-induced PA relaxation. Passive store depletion by cyclopiazonic acid (50 microM) and active store depletion by phenylephrine (in the absence of external Ca2+ both induced PA contraction due to capacitative Ca2+ entry. Thiol oxidation by diamide significantly attenuated capacitative Ca2+ entry-induced PA contraction due to active and passive store depletion. The PA rings isolated from left and right PA branches appeared to respond differently to store depletion. Although the active tension induced by passive store depletion was comparable, the active tension induced by active store depletion was 3.5-fold greater in right branches than in left branches. These data indicate that thiol oxidation causes pulmonary vasodilation by activating K+ channels and inhibiting store-operated Ca2+ channels, which subsequently attenuate Ca2+ influx and decrease cytosolic free Ca2+ concentration in pulmonary artery smooth muscle cells. The mechanisms involved in thiol oxidation-mediated pulmonary vasodilation or activation of K+ channels and inhibition of store-operated Ca2+ channels appear to be independent of functional endothelium and of the cGMP-dependent protein kinase pathway.  相似文献   

3.
We investigated the role of K(+) channels in the attenuated pulmonary artery (PA) contractility characteristic of acute Pseudomonas pneumonia. Contractility of PA rings from the lungs of control or pneumonia rats was assessed in vitro by obtaining cumulative concentration-response curves to the contractile agonists KCl, phenylephrine, or PGF(2 alpha) on PA rings before and after treatment with K(+) channel blockers. In rings from pneumonia rats, paxilline (10 microM), tetraethylammonium (2 mM) (blockers of large-conductance Ca(2+)-activated K(+) channels), and glybenclamide (ATP-sensitive K(+) channel blocker, 80 microM) had no significant effect on the attenuated contractile responses to KCl, phenylephrine, and PGF(2 alpha). However, 4-aminopyridine (2 mM), a blocker of voltage-gated K(+) channels (delayed rectifier K(+) channel) reversed this depressed contractility. Therefore, large-conductance Ca(2+)-activated K(+) and ATP-sensitive K(+) channels do not contribute to the attenuated PA contractility observed in this model of acute pneumonia. In contrast, 4-aminopyridine enhances contraction in PA rings from pneumonia lungs, consistent with involvement of a voltage-gated K(+) channel in the depressed PA contractility in acute pneumonia. Unraveling the precise mechanism of attenuated contractility in pneumonia could lead to innovative therapies for the pulmonary vascular abnormalities associated with this disease.  相似文献   

4.
Alterations in a redox oxygen sensing mechanism in chronic hypoxia.   总被引:12,自引:0,他引:12  
The mechanism of acute hypoxic pulmonary vasoconstriction (HPV) may involve the inhibition of several voltage-gated K+ channels in pulmonary artery smooth muscle cells. Changes in PO2 can either be sensed directly by the channel(s) or be transmitted to the channel via a redox-based effector mechanism. In control lungs, hypoxia and rotenone acutely decrease production of activated oxygen species, inhibit K+ channels, and cause constriction. Two-day and 3-wk chronic hypoxia (CH) resulted in a decrease in basal activated oxygen species levels, an increase in reduced glutathione, and loss of HPV and rotenone-induced constriction. In contrast, 4-aminopyridine- and KCl-mediated constrictions were preserved. After 3-wk CH, pulmonary arterial smooth muscle cell membrane potential was depolarized, K+ channel density was reduced, and acute hypoxic inhibition of whole cell K+ current was lost. In addition, Kv1.5 and Kv2.1 channel protein was decreased. These data suggest that chronic reduction of the cytosol occurs before changes in K+ channel expression. HPV may be attenuated in CH because of an impaired redox sensor.  相似文献   

5.
6.
Pneumonia was induced in rats by instillation of carrageenin (0.5 ml of 0.7% solution) into the trachea. Three or four days after instillation, the lungs were isolated, perfused with blood of healthy rat blood donors, and ventilated with air + 5% CO2 or with various hypoxic gas mixtures. Pulmonary vascular reactivity to acute hypoxic challenges was significantly lower in lungs of rats with pneumonia than in lungs of controls. The relationship between O2 concentration in the inspired gas and Po2 in the blood effluent from the preparation was shifted significantly to lower Po2 in lungs with pneumonia compared to control ones. These changes were not present in rats allowed to recover for 2-3 weeks after carrageenin instillation. We suppose that blunted hypoxic pulmonary vasoconstriction may contribute to hypoxaemia during acute pulmonary inflammation. Decreased Po2 in the blood effluent from the isolated lungs with pneumonia implies significant increase of oxygen consumption by the cells involved in the inflammatory process.  相似文献   

7.
Xie W  Wang H  Wang H  Hu G 《Life sciences》2004,75(17):2065-2076
To investigate whether pulmonary artery remodeling could be prevented or not in hypoxic pulmonary hypertensive rats by treatment, the effects of iptakalim hydrochloride, a novel KATPCO, were evaluated. Iptakalim hydrochloride was orally administered at the doses of either 1.5 mg/kg/day or 0.75 mg/kg/day before their 4-week exposure to hypoxia (10% oxygen). It was demonstrated that iptakalim hydrochloride could reverse all pathological indices of pulmonary arterial remodeling and significantly reduce right ventricular hypertrophy in hypoxic rats. The reversal of hypoxic indices was dose-dependent, in which the higher dose of iptakalim hydrochloride reversed pathological indices more effectively than the lower dose did. This was further confirmed electrophysiologically using whole cell patch-clamp technique, which revealed that the outward potassium currents could be enhanced by iptakalim hydrochloride, and the decrease of K+ current density and increase of membrane capacitance could be reversed by chronic iptakalim hydrochloride treatment. These findings implied that iptakalim hydrochloride could play its role through activating plasmalemmal K+ channels of pulmonary arterial SMCs. The results indicated that iptakalim hydrochloride had anti-remodeling properties of pulmonary artery in hypoxic pulmonary hypertensive rats. It is therefore suggested that KATPCOs might be promising in the treatment of patients with hypoxic, and even possibly other forms of, pulmonary hypertension.  相似文献   

8.
The aim of this study was to determine the relative contribution of nitric oxide (NO), endothelium-derived hyperpolarizing factor (EDHF) and prostanoids in histamine-induced relaxation of isolated pulmonary artery from normotensive and hypertensive rats. The hypertension was induced by oral administration of NO synthase inhibitor N(G)-nitro-L-arginine methylester (L-NAME, 50 mg/kg/day) to normotensive rats for 8 weeks. In phenylephrine-precontracted arterial rings the histamine-induced relaxation was significantly reduced in L-NAME-treated rats compared to the controls. Indomethacin (cyclooxygenase inhibitor) and glibenclamide (ATP-sensitive K+-channel blocker) did not inhibit the relaxation response in either control or hypertensive rats. On the other hand, tetraethylammonium (TEA), a K+-channel blocker with a broad specificity, significantly reduced histamine-induced relaxation in the pulmonary artery from both groups examined. The TEA-resistant relaxation was completely abolished by additional administration of L-NAME to the incubation medium. The results indicate that histamine-induced relaxation of the pulmonary artery in both normotensive and hypertensive rats is mediated mainly by nitric oxide, whereas EDHF seems to play a minor role.  相似文献   

9.
Sex differences exist in a variety of cardiovascular disorders. Sex hormones have been shown to mediate pulmonary artery (PA) vasodilation. However, the effects of fluctuations in physiological sex hormone levels due to sex and menstrual cycle on PA vasoreactivity have not been clearly established yet. We hypothesized that sex and menstrual cycle affect PA vasoconstriction under both normoxic and hypoxic conditions. Isometric force displacement was measured in isolated PA rings from proestrus females (PF), estrus and diestrus females (E/DF), and male (M) Sprague-Dawley rats. The vasoconstrictor response under normoxic conditions (organ bath bubbled with 95% O(2)-5% CO(2)) was measured after stimulation with 80 mmol/l KCl and 1 mumol/l phenylephrine. Hypoxia was generated by changing the gas to 95% N(2)-5% CO(2). PA rings from PF demonstrated an attenuated vasoconstrictor response to KCl compared with rings from E/DF (75.58 +/- 3.2% vs. 92.43 +/- 4.24%, P < 0.01). Rings from M also exhibited attenuated KCl-induced vasoconstriction compared with E/DF (79.34 +/- 3.2% vs. 92.43 +/- 4.24%, P < 0.05). PA rings from PF exhibited an attenuated vasoconstrictor response to phenylephrine compared with E/DF (59.61 +/- 2.98% vs. 70.03 +/- 4.61%, P < 0.05). While the maximum PA vasodilation during hypoxia did not differ between PF, E/DF, and M, phase II of hypoxic pulmonary vasoconstriction was markedly diminished in the PA from PF (64.10 +/- 7.10% vs. 83.91 +/- 5.97% in M, P < 0.05). We conclude that sex and menstrual cycle affect PA vasoconstriction in isolated PA rings. Even physiological increases in circulating estrogen levels attenuate PA vasoconstriction under both normoxic and hypoxic conditions.  相似文献   

10.
Transient receptor potential (TRP) cation channels are a critical pathway for Ca2+ entry during pulmonary artery (PA) smooth muscle contraction. However, whether canonical TRP (TRPC) subunits and which TRP channel isoforms are involved in store depletion-induced pulmonary vasoconstriction in vivo remain unclear. This study was designed to test whether overexpression of the human TRPC1 gene (hTRPC1) in rat PA enhances pulmonary vasoconstriction due to store depletion-mediated Ca2+ influx. The hTRPC1 was infected into rat PA rings with an adenoviral vector. RT-PCR and Western blot analyses confirmed the mRNA and protein expression of hTRPC1 in the arterial rings. The amplitude of active tension induced by 40 mM K+ (40K) in PA rings infected with an empty adenoviral vector (647 +/- 88 mg/mg) was similar to that in PA rings infected with hTRPC1 (703 +/- 123 mg/mg, P = 0.3). However, the active tension due to capacitative Ca2+ entry (CCE) induced by cyclopiazonic acid was significantly enhanced in PA rings overexpressing hTRPC1 (91 +/- 13% of 40K-induced contraction) compared with rings infected with an empty adenoviral vector (61 +/- 14%, P < 0.001). Endothelial expression of hTRPC1 was not involved since the CCE-induced vasoconstriction was also enhanced in endothelium-denuded PA rings infected with the adenoviral vector carrying hTRPC1. These observations demonstrate that hTRPC1 is an important Ca(2+)-permeable channel that mediates pulmonary vasoconstriction when PA smooth muscle cell intracellular Ca2+ stores are depleted.  相似文献   

11.
This study aimed to investigate the vasoactivity of sulfur dioxide (SO2), a novel gas identified from vascular tissue, in rat thoracic aorta. The thoracic aorta was isolated, cut into rings, and mounted in organ-bath chambers. After equilibrium, the rings were gradually stretched to a resting tension. Isometric tension was recorded under the treatments with vasoconstrictors, SO2 derivatives, and various drugs as pharmacological interventions. In endothelium-intact aortic rings constricted by 1 microM phenylephrine (PE), SO2 derivatives (0.5-8 mM) caused a dose-dependent relaxation. Endothelium removal and a NOS inhibitor L-NAME reduced the relaxation to low doses of SO2 derivatives, but not that to relatively high doses (>or=2 mM). In endothelium-denuded rings, SO2 derivatives attenuated vasoconstriction induced by high K+ (60 mM) or CaCl2 (0.01-10 mM). The relaxation to SO2 derivatives in PE-constricted rings without endothelium was significantly inhibited by blockers of ATP-sensitive K+(KATP) and Ca2+-activated K+ (KCa) channels, but not by those of voltage-dependent K+ channels, Na+- K+-ATPase or Na+-Ca2+ exchanger. SO2 relaxed vessel tone via endothelium-dependent mechanisms associated with NOS activation, and via endothelium-independent mechanisms dependent on the inhibition of voltage-gated Ca2+ channels, and the opening of KATP and KCa channels.  相似文献   

12.
A J Patel  M Lazdunski    E Honoré 《The EMBO journal》1997,16(22):6615-6625
The molecular structure of oxygen-sensitive delayed-rectifier K+ channels which are involved in hypoxic pulmonary artery (PA) vasoconstriction has yet to be elucidated. To address this problem, we identified the Shab K+ channel Kv2.1 and a novel Shab-like subunit Kv9.3, in rat PA myocytes. Kv9.3 encodes an electrically silent subunit which associates with Kv2.1 and modulates its biophysical properties. The Kv2.1/9.3 heteromultimer, unlike Kv2.1, opens in the voltage range of the resting membrane potential of PA myocytes. Moreover, we demonstrate that the activity of Kv2.1/Kv9.3 is tightly controlled by internal ATP and is reversibly inhibited by hypoxia. In conclusion, we propose that metabolic regulation of the Kv2.1/Kv9.3 heteromultimer may play an important role in hypoxic PA vasoconstriction and in the possible development of PA hypertension.  相似文献   

13.
Tang B  Tang M  Du YM  Liu CJ  Hong ZG  Luo HY  Hu XW  Song YL  Xi JY  Hescheler J 《生理学报》2004,56(5):625-631
为了从离子通道水平上探讨机体低氧适应的离子机制,本实验将雄性 SD 大鼠随机分为常氧对照组和慢性间歇性低氧组[氧浓度(10 ± 0.5) %, 间断缺氧每天 8 h]。用酶解法急性分离单个大鼠肺内动脉平滑肌细胞(pulmonary artery smoothmuscle cells, PASMCs),以全细胞膜片钳技术记录 PASMCs 膜上的电压门控性钾通道 (voltage-gated potassium channel, KV) 电流,观察急性缺氧对慢性间歇性低氧大鼠 PASMCs 的 KV 的影响, 为机体适应低氧能力提供实验依据。结果显示:⑴常氧对照组在电流钳下,急性缺氧可使膜电位明显去极化(由-47.2 ±2.6 mV 去极到 -26.7 ±1.2 mV ); 在电压钳下, 急性缺氧可显著抑制 KV电流( 60 mV 时, KV电流密度从 153.4 ± 9.5 pA/pF降到 70.1 ± 10.6 pA/pF), 峰电流的抑制率为(57.6 ± 3.3) %, 电流-电压关系曲线向右下移。⑵慢性间歇性低氧组KV电流密度随低氧时间延长而逐渐减少(慢性低氧10 d后就有显著性意义),电流- 电压关系曲线逐渐右下移。⑶急性缺氧对慢性间歇性低氧大鼠PASMCs KV电流的抑制作用随慢性间歇性低氧时间延长而逐渐减弱。上述观察结果提示慢性间歇性低氧减弱急性缺氧对 KV 的抑制, 这可能是机体低氧适应的一种重要机制。  相似文献   

14.
Huang Y  Bourreau JP  Chan HY  Lau CW  Wong JW  Yao X 《Life sciences》2001,69(14):1661-1672
Apart from the well-described K+ channel blocking effects in vascular smooth muscle cells, monovalent quaternary ammonium ions may also interact with endothelial cells in the endothelium-intact mammalian arteries. The present study was aimed to examine the effect of tetrabutylammonium ions on endothelium-dependent and -independent relaxation in the rat isolated aortic rings. Pretreatment with tetrabutylammonium concentration dependently reduced the endothelium-dependent relaxation induced by acetylcholine, cyclopiazonic acid and ionomycin. Tetrabutylammonium also inhibited endothelium-independent relaxation induced by hydroxylamine or nitroprusside. Pretreatment of endothelium-denuded rings with tetrabutylammonium did not affect relaxation induced by NS1619 or by diltiazem. In contrast, tetrabutylammonium significantly reduced the pinacidil- or cromakalim-induced relaxation. Tetrabutylammonium also inhibited the acetylcholine- but not nitroprusside-induced increase of tissue content of cyclic GMP in the aortic rings. The present study indicates that tetrabutylammonium ions could inhibit endothelial and exogenous nitric oxide-mediated aortic relaxation while it had no effect on relaxation induced by activation of Ca2+-activated K+ channels (by NS1619) or by inhibition of voltage-gated Ca2+ channels (by diltiazem). The inhibitory effect on pinacidil- and cromakalim-induced relaxation suggests that tetrabutylammonium ions also inhibit ATP-sensitive K+ channels in aortic smooth muscle cells.  相似文献   

15.
Lü CL  Ye H  Tang XB  Zhu DL 《生理学报》2005,57(5):605-611
缺氧诱导的15-羟二十碳四烯酸(15-hydroxyeicosatetraenoic acid,15-HETE)是引起肺动脉收缩的重要介导因子。15-HETE引起肺动脉收缩的信号转导途径尚不清楚。本研究旨在确定细胞外信号调节激酶1/2(extracellular signal-regulated kinase-1/2,ERK1/2)信号转导通路是否参与15-HETE收缩缺氧火鼠肺动脉的过程。采用组织浴槽肺动脉环张力检测、蛋白质免疫印迹Western blot)和免疫细胞化学方法。制备缺氧大鼠动物模型,成年雄性Wistar大鼠在低氧环境下(吸入氧分数为0.12)正常喂养9d。显微分离直径1-1.5mm肺动脉,剪成长为3mm的动脉环,进行血管张力检测。用ERK1/2上游激酶(MEK)抑制剂PD98059抑制ERK1/2活性。结果显示,PD98059可明显抑制15-HETE对缺氧大鼠肺动脉环的收缩作用。在去除内皮的肺动脉环,PD98059仍叮明显降低15-HETE的缩血管作用。Western blot和免疫细胞化学结果都显示,15-HETE能促进ERK1/2磷酸化。由此表明ERK1/2信号转导通路参与15-HETE收缩缺氧大鼠肺动脉的过程。  相似文献   

16.
We hypothesized that the phosphodiesterase 5 inhibitor, sildenafil, and the guanosine cyclase stimulator, atrial natriuretic peptide (ANP), would act synergistically to increase cGMP levels and blunt hypoxic pulmonary hypertension in rats, because these compounds act via different mechanisms to increase the intracellular second messenger. Acute hypoxia: Adult Sprague-Dawley rats were gavaged with sildenafil (1 mg/ kg) or vehicle and exposed to acute hypoxia with and without ANP (10(-8)-10(-5) M ). Sildenafil decreased systemic blood pressure (103 +/- 10 vs. 87 +/- 6 mm Hg, P < 0.001) and blunted the hypoxia-induced increase in right ventricular systolic pressure (RVSP; percent increase 73.7% +/- 9.4% in sildenafil-treated rats vs. 117.2% +/- 21.1% in vehicle-treated rats, P = 0.03). Also, ANP and sildenafil had synergistic effects on blunting the hypoxia-induced increase in RVSP (P < 0.001) and on rising plasma cGMP levels (P < 0.05). Chronic hypoxia: Other rats were exposed to prolonged hypoxia (3 weeks, 0.5 atm) after subcutaneous implantation of a sustained-release pellet containing lower (2.5 mg), or higher (25 mg) doses of sildenafil, or placebo. Higher-dose, but not lower-dose sildenafil blunted the chronic hypoxia-induced increase in RVSP (P = 0.006). RVSP and plasma sildenafil levels were inversely correlated in hypoxic rats (r(2) = 0.68, P = 0.044). Lung cGMP levels were increased by both chronic hypoxia and sildenafil, with the greatest increase achieved by the combination. Plasma and right ventricular (RV) cGMP levels were increased by hypoxia, but sildenafil had no effect. RV hypertrophy and pulmonary artery muscularization were also unaffected by sildenafil. In conclusion, sildenafil and ANP have synergistic effects on the blunting of hypoxia-induced pulmonary vasoconstriction. During chronic hypoxia, sildenafil normalizes RVSP, but in the doses used, sildenafil has no effect on RV hypertrophy or pulmonary vascular remodeling.  相似文献   

17.
We administered antifibrotic agent beta-aminopropionitrile (BAPN) to rats exposed to 10% O2-90% N2 for 3 wk to prevent excess vascular collagen accumulation. Groups of Sprague-Dawley rats studied were air breathing, hypoxic, and hypoxic treated with BAPN, 150 mg/kg twice daily intraperitoneally. After the 3-wk period, we measured mean right ventricular pressure (RVP), the ratio of weight of right ventricle to left ventricle plus septum (RV/LV + S), and hydroxyproline content of the main pulmonary artery (PA) trunk. Hypoxia increased RVP from 14 to 29 mmHg; RVP was 21 mmHg in hypoxic BAPN-treated animals. Hypoxia increased the RV/LV + S ratio from 0.28 to 0.41; the ratio was 0.32 in hypoxic BAPN-treated animals. Hypoxia increased PA hydroxyproline from 20 to 239 micrograms/artery; hydroxyproline was 179 micrograms/artery in hypoxic BAPN-treated animals. Thus BAPN prevented pulmonary hypertension, right ventricular hypertrophy, and excess vascular collagen produced by hypoxia. We conclude that vascular collagen contributes to the maintenance of chronic hypoxic pulmonary hypertension.  相似文献   

18.
The effect of chronic hypoxia (CH) for 14 days on Ca2+ signaling and contraction induced by agonists in the rat main pulmonary artery (MPA) was investigated. In MPA myocytes obtained from control (normoxic) rats, endothelin (ET)-1, angiotensin II (ANG II), and ATP induced oscillations in intracellular Ca2+ concentration ([Ca2+]i) in 85-90% of cells, whereas they disappeared in myocytes from chronically hypoxic rats together with a decrease in the percentage of responding cells. However, both the amount of mobilized Ca2+ and the sources of Ca2+ implicated in the agonist-induced response were not changed. Analysis of the transient caffeine-induced [Ca2+]i response revealed that recovery of the resting [Ca2+]i value was delayed in myocytes from chronically hypoxic rats. The maximal contraction induced by ET-1 or ANG II in MPA rings from chronically hypoxic rats was decreased by 30% compared with control values. Moreover, the D-600- and thapsigargin-resistant component of contraction was decreased by 40% in chronically hypoxic rats. These data indicate that CH alters pulmonary arterial reactivity as a consequence of an effect on both Ca2+ signaling and Ca2+ sensitivity of the contractile apparatus. A Ca2+ reuptake mechanism appears as a CH-sensitive phenomenon that may account for the main effect of CH on Ca2+ signaling.  相似文献   

19.
Impairment of endothelium-dependent pulmonary vasodilation has been implicated in the development of pulmonary hypertension. Pulmonary vascular smooth muscle cells and endothelial cells communicate electrically through gap junctions; thus, membrane depolarization in smooth muscle cells would depolarize endothelial cells. In this study, we examined the effect of prolonged membrane depolarization induced by high K(+) on the endothelium-dependent pulmonary vasodilation. Isometric tension was measured in isolated pulmonary arteries (PA) from Sprague-Dawley rats, and membrane potential was measured in single PA smooth muscle cells. Increase in extracellular K(+) concentration from 4.7 to 25 mM significantly depolarized PA smooth muscle cells. The 25 mM K(+)-mediated depolarization was characterized by an initial transient depolarization (5-15 s) followed by a sustained depolarization that could last for up to 3 h. In endothelium-intact PA rings, ACh (2 microM), levcromakalim (10 microM), and nitroprusside (10 microM) reversibly inhibited the 25 mM K(+)-mediated contraction. Functional removal of endothelium abolished the ACh-mediated relaxation but had no effect on the levcromakalim- or the nitroprusside-mediated pulmonary vasodilation. Prolonged ( approximately 3 h) membrane depolarization by 25 mM K(+) significantly inhibited the ACh-mediated PA relaxation (-55 +/- 4 vs. -29 +/- 2%, P < 0.001), negligibly affected the levcromakalim-mediated pulmonary vasodilation (-92 +/- 4 vs. -95 +/- 5%), and slightly but significantly increased the nitroprusside-mediated PA relaxation (-80 +/- 2 vs. 90 +/- 3%, P < 0. 05). These data indicate that membrane depolarization by prolonged exposure to high K(+) concentration selectively inhibited endothelium-dependent pulmonary vasodilation, suggesting that membrane depolarization plays a role in the impairment of pulmonary endothelial function in pulmonary hypertension.  相似文献   

20.
Oxygen causes perinatal pulmonary dilatation. Although fetal pulmonary artery smooth muscle cells (PA SMC) normally respond to an acute increase in oxygen (O2) tension with a decrease in cytosolic calcium ([Ca2+]i), an acute increase in O2 tension has no net effect on [Ca(2+)](i) in PA SMC derived from lambs with chronic intrauterine pulmonary hypertension (PHTN). The present experimental series tests the hypothesis that an acute increase in O2 tension decreases capacitative calcium entry (CCE) in normal, but not hypertensive, fetal PA SMC. PA SMC were isolated from late-gestation fetal lambs after either ligation of the ductus arteriosus (PHTN) or sham (control) operation at 127 days gestation. PA SMC were isolated from the distal PA (>or=4th generation) and maintained under hypoxic conditions ( approximately 25 Torr) in primary culture. After fura 2 loading, apparent [Ca2+]i in PA SMC was determined as the ratio of 340- to 380-nm fluorescence intensity. Under both hypoxic and normoxic conditions, cyclopiazonic acid (CPA) increased [Ca2+]i more in PHTN than in control PA SMC. CCE was determined in PA SMC under hypoxic and normoxic conditions, after superfusion with zero extracellular Ca2+ and intracellular store depletion with CPA, followed by superfusion with Ca2+-containing solution, in the presence of the voltage-operated calcium channel blockade. CCE was increased in PHTN compared with control PA SMC under conditions of both acute and sustained normoxia. Transient receptor potential channel gene expression was greater in control compared with PHTN PA SMC. PHTN may compromise perinatal pulmonary vasodilation, in part, by modulating PA SMC CCE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号