首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rate of diffusion of Ca2+ and Ba2+ in a nerve cell body.   总被引:4,自引:0,他引:4       下载免费PDF全文
A spectrophotometric method was developed to directly measure the diffusion rate of Ca2+ and some other ions in nerve cell bodies, using pulsed ionophoretic injections and an optical microprobe to record locally absorbance changes of the dye arsenazo III. We report here that Ca2+ and Ba2+ diffuse at approximately the same rate in nerve soma cytoplasm, having effective diffusion coefficients in the range of 7-12 X 10(-7) cm2/s, while identical measurements conducted in an electrolytic solution yielded values of 5.2 X 10(-6) cm2/s for Ca and 5.4 X 10(-6) cm2/s for Ba. The results are discussed in relation to the mechanisms that regulate the intracellular concentration of free Ca.  相似文献   

2.
The influence of high K solution on the longitudinal movement of Lucifer Yellow CH along dog atrial trabeculae was investigated. It was found that in normal heart muscle the dye diffused from cell-to-cell and the average diffusion coefficient (D) was 4.3 +/- 1.3 X 10(-7) cm2/s. In muscles exposed to 20, 40 or 60 mM K solution the resting potential was reduced from -78 mV (S.E. +/- 0.71) (control) to -41 mV (S.E. +/- 0.95), -30 mV (S.E. +/- 0.64) and -22.5 mV (S.E. +/- 0.64), respectively. Despite the maintained depolarization the cell-to-cell diffusion of Lucifer Yellow CH did not change. These findings indicate that the junctional permeability in heart muscle is not influenced by the non-junctional membrane potential.  相似文献   

3.
Holographic relaxation spectroscopy has been used to measure tracer diffusion coefficients for photochromically labeled bovine serum albumin in solutions having total bovine serum albumin concentrations in the range 3.25 to 257 g/liter. In the limit of zero concentration, the diffusion coefficient (20 degrees C, 0.1 M NaCl, 0.05 M Tris, pH 8.0) was found to be (5.9 +/- 0.1) X 10(-7) cm2/s and the initial slope was zero. The concentration dependence of the diffusion coefficient was not significantly affected by the fraction of protein molecules which were labeled. Holographic relaxation spectroscopy permits rapid, accurate determination of tracer diffusion coefficients for proteins in mixtures.  相似文献   

4.
Intracellular diffusion of water   总被引:10,自引:0,他引:10  
Self-diffusion of cell water has been measured at diffusion times ranging from 0.3 ms to 1.0 s for human red cells, yeast, and brine shrimp using various pulsed gradient NMR methods. Intracellular diffusion coefficients and membrane permeabilities are calculated from these data with the aid of previous theoretical results for regularly spaced permeable planar barriers. The intracellular diffusion coefficients of water range from 1.2 X 10(-6) to 6 X 10(-6) cm2/s for the various samples. Outer-membrane permeabilities to water range from 0.0001 to 0.01 cm/s. The self-diffusion coefficient of lipid in a sample of human breast adipose tissue was found to be 1.5 X 10(-7) cm2/s.  相似文献   

5.
Asymmetric [14C]albumin transport across bullfrog alveolar epithelium   总被引:1,自引:0,他引:1  
Bullfrog lungs were prepared as planar sheets and bathed with Ringer solution in Ussing chambers. In the presence of a constant electrical gradient (20, 0, or -20 mV) across the tissue, 14C-labeled bovine serum albumin or inulin was instilled into the upstream reservoir and the rate of appearance of the tracer in the downstream reservoir was monitored. Two lungs from the same animal were used to determine any directional difference in tracer fluxes. An apparent permeability coefficient was estimated from a relationship between normalized downstream radioactivities and time. Results showed that the apparent permeability of albumin in the alveolar to pleural direction across the alveolar epithelial barrier is 2.3 X 10(-7) cm/s, significantly greater (P less than 0.0005) than that in the pleural to alveolar direction (5.3 X 10(-8) cm/s) when the tissue was short circuited. Permeability of inulin, on the other hand, did not show any directional dependence and averaged 3.1 X 10(-8) cm/s in both directions. There was no effect on radiotracer fluxes permeabilities of different electrical gradients across the tissue. Gel electrophoretograms and corresponding radiochromatograms suggest that the large and asymmetric isotope fluxes are not primarily due to digestion or degradation of labeled molecules. Inulin appears to traverse the alveolar epithelial barrier by simple diffusion through hydrated paracellular pathways. On the other hand, [14C]albumin crosses the alveolar epithelium more rapidly than would be expected by simple diffusion. These asymmetric and large tracer fluxes suggest that a specialized mechanism is present in alveolar epithelium that may be capable of helping to remove albumin from the alveolar space.  相似文献   

6.
The apparent cytoplasmic proton diffusion coefficient was measured using pH electrodes and samples of cytoplasm extracted from the giant neuron of a marine invertebrate. By suddenly changing the pH at one surface of the sample and recording the relaxation of pH within the sample, an apparent diffusion coefficient of 1.4 +/- 0.5 x 10(-6) cm2/s (N = 7) was measured in the acidic or neutral range of pH (6.0-7.2). This value is approximately 5x lower than the diffusion coefficient of the mobile pH buffers (approximately 8 x 10(-6) cm2/s) and approximately 68x lower than the diffusion coefficient of the hydronium ion (93 x 10(-6) cm2/s). A mobile pH buffer (approximately 15% of the buffering power) and an immobile buffer (approximately 85% of the buffering power) could quantitatively account for the results at acidic or neutral pH. At alkaline pH (8.2-8.6), the apparent proton diffusion coefficient increased to 4.1 +/- 0.8 x 10(-6) cm2/s (N = 7). This larger diffusion coefficient at alkaline pH could be explained quantitatively by the enhanced buffering power of the mobile amino acids. Under the conditions of these experiments, it is unlikely that hydroxide movement influences the apparent hydrogen ion diffusion coefficient.  相似文献   

7.
The permeability of human platelets to glycerol was determined at 37 degrees C, 25 degrees C, and 0 degrees C from the rate of change of cell volume after abrupt addition of 0.5 mol/liter glycerol in phosphate-buffered saline. Intracellular water volume was measured employing both tritiated water and a photometric method. Intracellular glycerol was measured employing tritiated glycerol. The glycerol permeability coefficient derived from the tracer cell volume data was 4.0 +/- 0.7 X 10(-7) cm/s at 37 degrees C, and 1.1 +/- 0.4 X 10(-7) cm/s at 25 degrees C, and the photometric data gave a permeability coefficient of 5.4 +/- 0.4 X 10(-7) cm/s at 37 degrees C. The activation energy between 23 degrees C and 37 degrees C for glycerol permeation was 19.8 kcal/mol. The cells were virtually impermeable to glycerol at 0 degrees C. The minimum intracellular water volume attained after the addition of 0.5 mol/liter glycerol at 37 degrees C determined by the photometric method was 47.8% of normal water volume, whereas the minimum water volume calculated assuming that glycerol exerted its full osmotic effect (i.e., sigma = 1) was 45.6%. The reflexion coefficient was therefore assumed to be unity. Neither method of cell volume determination could be used with 1 or 2 mol/liter glycerol: adequate separation of the cells from the labeled medium could not be achieved in the tracer method; in the photometric method, it was apparent that transmittance (660 nm) was influenced by one or more variables in addition to cell volume.  相似文献   

8.
To quantify the diffusion constant of small molecules in the plant cell wall, fluorescence from carboxyfluorescein (CF) in the intact roots of Arabidopsis thaliana was recorded. Roots were immersed in a solution of the fluorescent dye and viewed through a confocal fluorescence microscope. These roots are sufficiently transparent that much of the apoplast can be imaged. The diffusion coefficient, D(cw), of CF in the cell wall was probed using two protocols: fluorescence recovery after photobleaching and fluorescence loss following perfusion with dye-free solution. Diffusion coefficients were obtained from the kinetics of the fluorescent transients and modelling apoplast geometry. Apoplastic diffusion constants varied spatially in the root. In the elongation zone and mature cortex, D(cw)=(3.2+/-1.4)x10(-11) m(2) s(-1), whereas in mature epidermis, D(cw)=(2.5+/-0.7)x10(-12) m(2) s(-1), at least an order of magnitude lower. Relative to the diffusion coefficient of CF in water, these represent reductions by approximately 1/15 and 1/195, respectively. The low value for mature epidermis is correlated with a suberin-like permeability barrier that was detected with either autofluorescence or berberine staining. This study provides a quantitative estimate of the permeability of plant cell walls to small organic acids-a class of compounds that includes auxin and other plant hormones. These measurements constrain models of solute transport, and are important for quantitative models of hormone signalling during plant growth and development.  相似文献   

9.
Electrophysiological methods reveal that the cell-to-cell movement of inorganic ions in the epidermis of the beetle larva is facilitated by exposing the tissue to β-ecdysone in vitro. After exposure to 2 × 10?6 M β-ecdysone for 24 hr, the resistivity of the intercellular pathway drops by 30%, from 389 Ωcm to 264 Ωcm. This response does not occur when α-ecdysone is used for extended incubation periods. As the resistivity of the epidermal cytoplasm in the absence (64 Ωcm) and presence of β-ecdysone (65 Ωcm) is constant, the hormone must exert its effect at the cell junctions. A simple geometrical model for the epidermal monolayer allows one to calculate that the ionic permeability of the junctional membrane increases by 66% in cells exposed to β-ecdysone for 24 hr in vitro.  相似文献   

10.
The binding constants of Acanthamoeba profilin to fluorescein-labeled actin from Acanthamoeba and from rabbit skeletal muscle have been determined by measuring the reduction in the actin tracer diffusion coefficients, determined by fluorescence photobleaching recovery, as a function of added profilin concentration. Data were analyzed using a two-parameter nonlinear regression analysis to determine the profilin-actin dissociation constant Kd and the profilactin diffusion coefficient, DPA. For fluorescein-labeled Acanthamoeba actin, the least-squares estimates for Kd and DPA, along with approximate single standard deviation confidence intervals, are Kd = 48 (36, 63) microM and DPA = 6.72 (6.62, 6.81) X 10(-7) cm2s-1. For fluorescein-labeled skeletal muscle actin, the corresponding values are Kd = 147 (94, 225) microM and DPA = 6.7 (6.3, 7.0) X 10(-7) cm2s-1. These dissociation constants are the first to be determined from direct physical measurement; they are in agreement with values inferred from earlier studies on the effect of profilin on the assembly of actin that had been fluorescently labeled or otherwise modified at Cys 374. These results place important restrictions on the interpretation of experiments in which fluorescently labeled actin is used as a probe of living cytoplasm or cytoplasmic extracts that include profilin.  相似文献   

11.
The effects of insulin (10(-10)-10(-8) mol/l) on lateral diffusion of three fluorescent lipid probes, 1-acyl-2-(N-4-nitrobenzo-2-oxa-1,3-diazole)aminocaproyl phosphatidylcholine (NBD-PC), 5-(N-hexadecanoyl)aminofluorescein (F-C16), 5-(N-dodecanoyl)aminofluorescein (F-C12), and of fluorescein isothiocyanate-labeled proteins in the plasma membrane of intact rat hepatocytes were studied by the technique of fluorescence recovery after photobleaching. The absolute lateral diffusion coefficients of the lipid analogues NBD-PC, F-C16 and F-C12 at 21 degrees C were 2.5 X 10(-9) cm2/s, 5.4 X 10(-9) cm2/s and 19 X 10(-9) cm2/s, respectively. The diffusion coefficient mean of proteins labeled with fluorescein isothiocyanate was 6.4 X 10(-10) cm2/s. Insulin at 10(-9) and 10(-8) mol/l reduced the lateral diffusion coefficient for F-C12- and F-C16-labeled cells by 20% and for NBD-PC-labeled cells by 30% (P less than 0.025). The insulin effect was specific as tested by cell incubation with proinsulin and desoctapeptide insulin (10(-8) mol/l) and was detectable after 7 min of insulin preincubation. In contrast to lateral diffusion of lipid probes, lateral mobility of unselected membrane proteins was not altered by insulin. The observed modulation of lipid dynamics in the plasma membrane of intact hepatocytes, by which a variety of membrane functions can be influenced, may be an important step in the mechanism of insulin action.  相似文献   

12.
The diffusion coefficient of tubulin has been measured in the cytoplasm of eggs and embryos of the sea urchin Lytechinus variegatus. We have used brain tubulin, conjugated to dichlorotriazinyl-aminofluorescein, to inject eggs and embryos. The resulting distributions of fluorescence were perturbed by bleaching with a microbeam of light from the 488-nm line of an argon ion laser. Fluorescence redistribution after photobleaching was monitored with a sensitive video camera and photography of the television-generated image. With standard photometric methods, we have calibrated this recording system and measured the rates of fluorescence redistribution for tubulin, conjugated to dichlorotriazinyl-aminofluorescein, not incorporated into the mitotic spindle. The diffusion coefficient (D) was calculated from these data using Fick's second law of diffusion and a digital method for analysis of the photometric curves. We have tested our method by determining D for bovine serum albumin (BSA) under conditions where the value is already known and by measuring D for fluorescein-labeled BSA in sea urchin eggs with a standard apparatus for monitoring fluorescence redistribution after photobleaching. The values agree to within experimental error. Dcytoplasmtubulin = 5.9 +/- 2.2 X 10(-8) cm2/s; DcytoplasmBSA = 8.6 +/- 2.0 X 10(-8) cm2/s. Because DH2OBSA = 68 X 10(-8) cm2/s, these data suggest that the viscosity of sea urchin cytoplasm for protein is about eight times that of water and that most of the tubulin of the sea urchin cytoplasm exists as a dimer or small oligomer, which is unbound to structures that would impede its diffusion. Values and limitations of our method are discussed, and we draw attention to both the variations in D for single proteins in different cells and the importance of D for the upper limit to the rates of polymerization reactions.  相似文献   

13.
Using solid phase systems, the kinetics of binding of monoclonal antibody (LRB 45, IgG2b,kappa) to apoC-I and apoC-I on lipoproteins were investigated. At 25 degrees C, the association constant of LRB 45 antibody to apoC-I (3.56 X 10(6) M-1 X sec-1) was almost three times slower than the association constant LRB 45 antibody to lipoproteins (10.4 X 10(6) M-1 X sec-1). However, the dissociation constant of apoC-I from LRB 45 antibody (0.865 X 10(-4) sec-1) was also slower than the dissociation constant of lipoprotein from antibody (1.5 X 10(-4) sec-1). Thus, the calculated affinity constant (association constant/dissociation constant) of LRB 45 antibody for apoC-I was approximately half of that for lipoproteins (4.12 X 10(10) M-1 vs. 6.92 X 10(10) M-1). The intrinsic affinity constants for antibody binding to apoC-I and apoC-I on lipoproteins were determined by Scatchard analysis. The intrinsic affinity constant of antibody bound to apoC-I was estimated to be 5.49 X 10(10) M-1 whereas that of antibody binding to lipoproteins was 30 to 200 times less. Furthermore, ascites fluid from LRB 45 cell lines could immunoprecipitate serum lipoproteins. Thus, it is concluded that there is multiple binding of antibody to apoC-I on lipoproteins. This binding appears to increase the calculated affinity constant (avidity) for antibody-antigen interaction.  相似文献   

14.
We compared the properties in human melanoma cell line A875 and rat pheochromocytoma cell line PC12 of nerve growth factor receptor (NGFr). We also analyzed NGFr and a truncated NGFR lacking the cytoplasmic domain, which were transiently expressed in COS cells. The full-length NGFR expressed in COS cells bound nerve growth factor (NGF) with positive cooperativity, but A875 NGFr and truncated NGFr in COS cells did not display positive cooperativity. The anti-human NGFr monoclonal antibody NGFR5 was characterized and found not to compete with NGF for binding to NGFr. Fabs were prepared from NGFR5 and 192, an anti-rat NGFR monoclonal antibody that was previously shown not to compete with NGF for binding. Fluorescein-labeled Fabs were used to measure the distribution and lateral diffusion of the NGFr. NGFr expressed on COS and A875 cells are diffusely distributed, but NGFr on the surface of PC12 cells appeared, for some cells, to be patched. In A875 cells, 51% of the NGFr was free to diffuse with diffusion coefficient (D) approximately 7 X 10(-10) cm2/s. In COS cells, 43% diffused with D approximately 5 X 10(-10) cm2/s. There was no significant difference in diffusibility between the full-length NGFr and the truncated NGFr. We compared NGFr diffusion on PC12 cells in suspension or adherent to collagen-coated coverslips. For suspension cells, we obtained 32% recovery with D approximately 2.5 X 10(-9) cm2/s. On adherent cells, we obtained 17% recovery with 6 X 10(-9) cm2/s. Binding of NGF enhanced lateral diffusion of NGFr in A875 cells and in PC12 cells in suspension but did not alter lateral diffusion of NGFr in COS cells or in adherent PC12 cells. NGF had no effect on the diffusing fraction or the distribution of NGFR for any cell line.  相似文献   

15.
Mobility in the mitochondrial electron transport chain   总被引:1,自引:0,他引:1  
The role of lateral diffusion in mitochondrial electron transport has been investigated by measuring the diffusion coefficients for lipid, cytochrome c, and cytochrome oxidase in membranes of giant mitoplasts from cuprizone-fed mice using the technique of fluorescence redistribution after photobleaching (FRAP). The diffusion coefficient of the phospholipid analogue N-(7-nitro-2,1,3-benzoxadiazol-4-yl)phosphatidylethanolamine is dependent on the technique used to remove the outer mitochondrial membrane. A sonication technique yields mitoplasts with monophasic recovery of the lipid probe (D = 6 X 10(-9) cm2/s), while digitonin-treated mitochondria show biphasic recoveries (D1 = 5 X 10(-9) cm2/s; D2 = 1 X 10(-9) cm2/s). Digitonin appears to incorporate into mitoplasts, giving rise to decreased lipid mobility concomitant with increased rates of electron transfer from succinate to oxygen, in a manner reminiscent of the effects of cholesterol incorporation [Schneider, H., Lemasters, J. J., Hochli, M., & Hackenbrock, C. R. (1980) J. Biol. Chem. 255, 3748-3756]. FRAP measurements on tetramethylrhodamine cytochrome c modified at lysine-39 and on a mixture of active morpholinorhodamine derivatives of cytochrome c gave diffusion coefficients of (3.5-7) X 10(-10) cm2/s depending on the assay medium. With morpholinorhodamine-labeled antibodies purified on a cytochrome oxidase affinity column, the diffusion coefficient for cytochrome oxidase was determined to be 1.5 X 10(-10) cm2/s. The results are discussed in terms of a dynamic aggregate model in which an equilibrium exists between freely diffusing and associated electron-transfer components.  相似文献   

16.
Laser light scattering has been applied to a systematic study of a heterogeneous solution of tubulin at low temperature--conditions under which tubulin assembly into microtubules does not take place. Methods of analyzing laser light scattering results obtained from solutions containing multiple components are discussed. Data analysis techniques are described and their application to the determination of diffusion constants from experimental data is extensively illustrated. Multiple components were found under the conditions that the tubulin was studied. We have identified one component having D20,w = 4.41 X 10(-7) cm2/s (sigma = 0.54 X 10(-7) cm2/s) which has the expected value for tubulin dimer. In addition, we have found two components which are significantly larger than tubulin. One large component has D 20,w approximately 0.55 X 10(-7) cm2/s and is present in all samples at 4 degrees C even after centrifugation to remove components greater than 10 S. Another large component having 3.2 X 10(-7) cm2/s greater than or equal to D20,w greater than or equal to 1.5 X 10(-7) cm2/s has been found to sediment with 10 S less than or equal to s less than 20 S.  相似文献   

17.
Surface diffusion in human serum lipoproteins   总被引:1,自引:0,他引:1  
From the viscosity dependence of the 31P NMR signals, the diffusion coefficients DT of phospholipid molecules in the surface monolayer of HDL, LDL and VLDL have been determined. DT for HDL3 and HDL2 are found to be 2.3 X 10(-8) cm2/s and 1.8 X 10(-8) cm2/s, respectively. These values are similar to values reported for diffusion of phospholipid molecules in phospholipid bilayers above the gel to liquid crystalline phase transition temperature. Viscosity dependence of [16,16,16-2H3]phosphatidylcholine incorporated into HDL2 yielded a value similar to that determined by 31P (DT = 1.9 X 10(-8) cm2/s). Slower diffusion coefficients were measured for LDL2 and VLDL. VLDL had a value DT = 9.1 X 10(-9) cm2/s. The diffusion coefficient for LDL2 was 1.4 X 10(-9) cm2/s. Thus, diffusion of phospholipids in LDL2 is a full order of magnitude slower at 25 degrees C than diffusion of phospholipids in the HDLs.  相似文献   

18.
Human red cell permeability to the homologous series of methanol, ethanol, n-propanol, n-butanol, and n-hexanol was determined in tracer efflux experiments by the continuous flow tube method, whose time resolution is 2-3 ms. Control experiments showed that unstirred layers in the cell suspension were less than 2 X 10(-4) cm, and that permeabilities less than or equal to 10(-2) cm s-1 can be determined with the method. Alcohol permeability varied with the chain length (25 degrees C): Pmeth 3.7 X 10(-3) cm s-1, Peth 2.1 X 10(-3) cm s-1, Pprop 6.5 X 10(-3) cm s-1, Pbut less than or equal to 61 X 10(-3) cm s-1, Phex 8.7 X 10(-3) cm s-1. The permeability for methanol, ethanol, and n- propanol was concentration independent (1-500 mM). The permeability to n-butanol and n-hexanol, however, increased above the upper limit of determination at alcohol concentrations of 100 and 25 mM, respectively. The activation energies for the permeability to methanol, n-propanol, and n-hexanol were similar, 50-63 kJ mol-1. Methanol permeability was not reduced by p-chloromercuribenzene sulfonate (PCMBS), thiourea, or phloretin, which inhibit transport of water or hydrophilic nonelectrolytes. It is concluded (a) that all the alcohols predominantly permeate the membrane lipid bilayer structure; (b) that both the distribution coefficient and the diffusion coefficient of the alcohols within the membrane determine the permeability, and (c) that the relative importance of the two factors varies with changes in the chain length.  相似文献   

19.
The effective diffusion coefficient of sucrose in 5% calcium alginate gel containing 41.6 g.d.c. l-1. Saccharomyces cerevisiae was investigated. Both free and immobilized S. cerevisiae in 0.175 cm and 0.3 cm diameter particles were used and the reactions were achieved in a medium containing 100 g l-1 sucrose and 0.05 M CaCl2. With the assumption that the microorganisms did not grow or die in this medium, the results were analyzed according to Michaelis-Menten kinetics and the values of the parameters were determined as: Vm = 0.256 g ml-1 gel h-1, Km0 = 0.097 g ml-1, Km1 = 0.125 g ml-1, and Km2 = 0.165 g ml-1. Using these values, effectiveness factors were calculated as eta 1 = 0.89 and eta 2 = 0.76, and effective diffusion coefficients for sucrose in calcium alginate gel were determined as De1 = 4.1 X 10(-6) cm2 s-1 and De2 = 4.0 X 10(-6) cm2 s-1, for the particle size involved.  相似文献   

20.
R Bülow  P Overath  J Davoust 《Biochemistry》1988,27(7):2384-2388
The membrane form of the variant surface glycoprotein (mfVSG) is anchored in the plasma membrane of Trypanosoma brucei by a dimyristoylphosphatidylinositol residue connected via a glycan to the COOH-terminal amino acid. The glycoprotein molecules are tightly packed, forming a coat that is impenetrable to lytic serum components. Lateral diffusion of mfVSG was measured by the fluorescence recovery after photobleaching technique. mfVSG labeled on the cell surface with rhodamine-conjugated anti-VSG Fab fragments showed a diffusion coefficient of 1 X 10(-10) cm2/s at 37 degrees C and of 0.7 X 10(-10) cm2/s at 27 degrees C. About 80% of the molecules were mobile. Affinity-purified mfVSG molecules implanted into the plasma membrane of baby hamster kidney cells exhibited a similar mobility to that found in the trypanosome coat [D = (0.4-0.7) X 10(-10) cm2/s at 4 degrees C]. Phospholipid mobility in the plasma membrane of trypanosomes was characterized by a diffusion coefficient of 2.2 X 10(-9) cm2/s at 37 degrees C. It is concluded that mfVSG mobility in the surface coat of the parasite is rapid and comparable to that of other membrane-bound glycoproteins but slower than that of phospholipids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号