共查询到12条相似文献,搜索用时 0 毫秒
1.
Plateau-phase Chinese V79 hamster cells were sequentially treated after exposure to gamma rays in medium made hypertonic by the addition of sodium chloride (370 mM) and with various concentrations of 9-beta-D-arabinofuranosyladenine (araA) to study their combined effect on fixation of potentially lethal damage (PLD). A 10-min treatment in hypertonic medium fixed an extensive amount of PLD and caused a decrease in D0 from 1.8 to 1.2 Gy without significantly affecting Dq. Subsequent treatment with araA caused further fixation of PLD but resulted in a specific, concentration-dependent reduction in Dq from 4.9 to 1.6 Gy after a 4-h exposure to 150 microM araA. A 30-min treatment in hypertonic medium reduced not only Do (from 1.8 to 1.0 Gy) but also Dq (from 4.9 to 2.7 Gy). Subsequent treatment with araA in this case affected only the residual shoulder, reducing it to 1.6 Gy after a 4-h treatment with 100 microM araA, a value similar to that obtained after treatment with araA of cells exposed to salt for only 10 min. When the repair of PLD fixed by a 10-min treatment with salt was measured by delaying its postirradiation application in the presence of various amounts of araA, a small decrease in the repair rate was observed but no significant effect on the relative increase in survival. Qualitatively similar results were obtained for repair of PLD sensitive to araA after a 10-min treatment in hypertonic medium. These results suggest the radiation induction of forms of PLD with different sensitivity to fixation by postirradiation treatments. araA is proposed to fix a form of PLD termed alpha-PLD, the repair of which takes place within 4-6 h and which causes the formation of the shoulder in the survival curve of cells plated immediately after irradiation. Short treatments in hypertonic medium (less than 10 min) are proposed to fix a form of PLD termed beta-PLD, the repair of which takes place within 1 h and leads to restoration of the slope to values equal to those obtained in the survival curve of cells plated immediately after irradiation. However, longer treatments in hypertonic medium also affect Dq and thus also alpha-PLD. Repair of beta-PLD was not significantly affected by araA and repair of alpha-PLD was not significantly affected by short hypertonic treatment, thus indicating the independence of the two forms of PLD.(ABSTRACT TRUNCATED AT 400 WORDS) 相似文献
2.
3.
Summary OH mouse 10 T1/2 cells showing strong inhibition of growth at confluency were grown under daily refeeding in the presence of BrdUrd (from 0 to 1 µM) and exposed to-rays either while exponentially growing or in the plateau phase. An increase in radiosensitivity was observed in both growth conditions mainly reflected by a reduction in Dq. Greater radiosensitization was observed in exponentially growing than in plateau-phase cells, and 3–4 times higher BrdUrd concentrations were required in plateau-phase cells for similar potentiation in killing. This effect could not be entirely attributed to a reduction in BrdUrd incorporation since measurements with3H-BrdUrd showed reductions in incorporation between only 17–47% in plateau-phase cells. The rate of repair of potentially lethal damage (PLD) as demonstrated by delayed plating was not affected by the incorporation of BrdUrd, but the amount of repair (measured as the relative increase in cell survival) was higher for BrdUrd-containing cells. Post-irradiation treatment of cells in the plateau-phase (no BrdUrd) with 9--d-arabinofuranosyladenine (araA) caused fixation of radiation-induced PLD. AraA treatment of cells grown in the presence of various amounts of BrdUrd also caused fixation of PLD, but resulted in survival levels similar to those observed with cells growing in BrdUrd-free medium. This result indicates that BrdUrd mediated radiosensitization cannot be observed when cells are prevented from repairing PLD by postirradiation incubation with araA. Based on these findings we propose that the mechanism of radiosensitization by BrdUrd incorporation might be, by increasing probability of fixation, mediated by the postirradiation progression of cells through the cycle, of a sector of PLD also sensitive to post-irradiation treatment with araA. For this sector of PLD the term -PLD has been proposed.This investigation was partly supported by PHS grants CA33951, CA39938 and CA42026 awarded by NCI, DHHS 相似文献
4.
Expotentially growing and plateau-phase V79 cells were exposed to various doses of neutrons and plated either immediately or after treatment in hypertonic medium (250-500 mM NaCl) to express radiation-induced potentially lethal damage (PLD). Postirradiation treatment of exponentially growing cells in hypertonic medium (500 mM) resulted in a decrease in both Dq and D0, whereas postirradiation treatment of plateau-phase cells in hypertonic medium (in the range between 200 to 1,500 mM) resulted mainly in a reduction of Dq. This difference in response between exponentially growing and plateau-phase cells may reflect differences in the chromatin structure in cells at various stages of the cell cycle, affecting fixation of radiation-induced damage. Exposure of plateau-phase cells to gamma rays, on the other hand, resulted in a treatment time and salt concentration-dependent decrease in Dq along with a decrease in D0. Repair of neutron-induced, hypertonic treatment-sensitive PLD, measured by delaying treatment for various periods after irradiation, was found to proceed with a t1/2 of about 1 h. This is similar to the repair kinetics obtained by delaying treatment of plateau-phase cells with 150 microM beta-D-arabinofuranosyladenine (araA) after exposure to gamma rays or neutrons and contrasts the repair kinetics observed after exposure of cells to gamma rays. In this case, hypertonic treatment was found to affect a form of PLD repaired with a t1/2 of 10-15 min (beta-PLD) and araA, a different form of PLD, repaired with a t1/2 of about 1 h (alpha-PLD). Based on these results it is hypothesized that the sector of lesions affected by hypertonic treatment and araA coincides after exposure to neutrons (effect on alpha-PLD) but only partly overlaps after exposure to gamma rays (due to the effect on beta-PLD of hypertonic treatment). The results presented, together with previously published observations, suggest a differential induction and/or fixation by hypertonic medium of the alpha- and beta-PLD forms as the LET of the radiation increases. Furthermore, they indicate that direct comparison of the effects of a postirradiation treatment, as well as of the repair kinetics obtained by its delayed application after exposure to radiations of various LET, should be made with caution. 相似文献
5.
Michihiro Kasahara 《Archives of biochemistry and biophysics》1977,184(1):400-407
Exposure of Ehrlich ascites tumor cells to the polyanion dextran sulfate impaired the active transport of α-aminoisobutyric acid and made the cells nonspecifically permeable to sorbitol and erythrosin B. Subsequent incubation with ascites fluid from tumor-bearing mice restored active transport and repaired the permeability barrier in dextran sulfate-treated cells. Ascites fluid was ineffective after dialysis or the addition of ethylene glycol bis(β-aminoethyl ether)-N,N′-tetraacetic acid, suggesting the involvement of Ca2+ ions in repair. Treatment with CaCl2 and glucose under specific conditions restored the transport activity of dextran sulfate-treated cells about three-fourths as effectively as was the case for ascites fluid. This procedure, which involves chemically characterized materials, may be advantageous when one wishes to incorporate impermeable substances into the cells. 相似文献
6.
There is evidence suggesting that radiosensitization induced in mammalian cells by substitution in the DNA of thymidine with BrdU has a component that relies on inhibition of repair and/or fixation of radiation damage. Here, experiments designed to study the mechanism of this phenomenon are described. The effect of BrdU incorporation into DNA was studied on cellular repair capability, rejoining of interphase chromosome breaks, as well as induction and rejoining of DNA double- and single-stranded breaks (DSBs and SSBs) in plateau-phase CHO cells exposed to X rays. Repair of potentially lethal damage (PLD), as measured by delayed plating of plateau-phase cells, was used to assay cellular repair capacity. Rejoining of interphase chromosome breaks was assayed by means of premature chromosome condensation (PCC); induction and rejoining of DNA DSBs were assayed by pulsed-field gel electrophoresis and induction and rejoining of DNA SSBs by DNA unwinding. A decrease was observed in the rate of repair of PLD in cells grown in the presence of BrdU, the magnitude of which depended upon the degree of thymidine replacement. The relative increase in survival caused by PLD repair was larger in cells substituted with BrdU and led to a partial loss of the radiosensitizing effect compared to cells tested immediately after irradiation. A decrease was also observed in the rate of rejoining of interphase chromosome breaks as well as in the rate of rejoining of the slow component of DNA DSBs in cells substituted with BrdU. The time constants measured for the rejoining of the slow component of DNA DSBs and of interphase chromosome breaks were similar both in the presence and in the absence of BrdU, suggesting a correlation between this subset of DNA lesions and interphase chromosome breaks. It is proposed that a larger proportion of radiation-induced potentially lethal lesions becomes lethal in cells grown in the presence of BrdU. Potentially lethal lesions are fixed via interaction with processes associated with cell cycle progression in cells plated immediately after irradiation, but can be partly repaired in cells kept in the plateau-phase. It is hypothesized that fixation of PLD is caused by alterations in chromatin conformation that occur during normal progression of cells throughout the cell cycle.(ABSTRACT TRUNCATED AT 400 WORDS) 相似文献
7.
George Iliakis 《Mutation research》1984,126(2):215-225
We have studied the influence of postirradiation conditions resulting in repair or fixation of X-ray-induced potentially lethal damage (PLD) on the induction of 6-thioguanine-resistant mutants in plateau phase Ehrlich ascites tumour cells. For repair of PLD cells were incubated under plateau-phase conditions for 6–8 hours after irradiation. For fixation of PLD we used either a 4-h treatment with 120 μM β-araA or a 50-min treatment in hypertonic medium (2.5 times the normal tonicity). These treatment are known to effectively reduce or eliminate the shoulder of the X-ray survival care. The mutants were allowed to form colonies in agar medium containing 1.5 μg/ml 6-thioguanine, after expression times of 6–12 days.We observed a decrease in the number of mutants induced (per 105 cells) when the cells were allowed to repair PLD, as compared with that of cells processed immediately after irradiation, and an increase in their number after treatment either with β-araA or in hypertonic medium. The curves obtained for the induction of mutants as a function of the radiation dose were usually upward bending.After irradiation at low dose rate we obtained an exponential survival curve and a linear induction of mutants as a function of the dose.Based on these results we suggest that potentially lethal lesions resulting in the formation of the shoulder of the survival curve are not identical with those lesions responsible for the induction of mutants. 相似文献
8.
Repair of potentially lethal damage (PLD) was investigated in cells with functional G1-phase arrest with wild-type TP53 and wild-type RB and in cells in which G1-phase arrest was abrogated by inactivation of TP53 or RB. Confluent cultures of cells were plated for clonogenic survival assay either immediately or 24 h after irradiation. Induction of color junctions, an exchange between a painted and unpainted chromosome, was studied in chromosomes 18 and 19 after irradiation with 4 Gy gamma rays. Significant repair of PLD was found in cells carrying both wild-type TP53 and wild-type RB. In cells in which TP53 or RB was inactivated, the survival curves from immediately plated and delayed-plated cells were not significantly different. The numbers of radiation-induced color junctions in chromosomes 18 and 19 were similar in all cell lines. From this study we conclude that a functional G1-phase arrest is important for repair of PLD and that TP53 and RB do not affect the frequencies of induction of color junctions in chromosome 18 or 19. 相似文献
9.
Summary The effects of radiosensitization by bromodeoxyuridine (BrdUrd) substitution and radioprotection by dimethyl sulfoxide (DMSO) have been examined in relation to fixation and repair of radiation damage by anisotonic treatment. The fixation of radiation damage in cells exposed to 0.05 M or 1.5 M NaCl after irradiation was the same at equal survival levels irrespective of (BrdUrd) incorporation into the DNA. Also, during incubation between irradiation and a subsequent anisotonic treatment, cells containing BrdUrd repaired radiation damage to the same extents as cells without BrdUrd.DMSO treatment resulted in radiprotection. Fixation, by anisotonic salt treatment, of damage resulting from irradiation in the presence of DMSO was less extensive than from irradiation in the absence of DMSO, even though X-ray doses were adjusted to give equal survival levels. Recovery during incubation at 37° C between irradiation and a subsequent salt treatment occurred for irradiation in the presence and absence of DMSO. These data show that the alteration of DNA radiosensitivity by BrdUrd had no effect on fixation or repair of radiation damage as assessed by salt treatment, while DMSO which is an OH scavenger caused the damage to be less susceptible to fixation and this damage was repaired during incubation at 37° C. 相似文献
10.
Summary The nature of the post-irradiation lesions and processes leading to cellular reproductive death or survival were investigated in mouse lymphoblastic leukemia L5178Y-S (LY-S) cells. Post-(x-)irradiation incubation at 25° C protects LY-S cells against the fixation of biologically expressed damage which takes place at 37° C. An optimal condition for the repair of damage, assayed in split-dose experiments as split-dose recovery (SDR), is 1 h at 37° C followed by 4 h holding at 25° C prior to the second half of a split dose, or 5 h holding at 25° C without a 37° C incubation during the interval between doses. Longer incubations at 37° C resulted in progressively decreased survivals. Postirradiation inhibition of DNA synthesis at 37° C was observed only during the first 30 min; thereafter,3H-dThdR incorporation washigher than in unirradiated controls. Theexcess synthesis effect was removed by shifting irradiated cells to 25° C holding. The inhibition observed at 25° C was reversed by shifting to 37° C. Thus the degree of postirradiation DNA synthesis is inversely related to SDR. DNA filter elution shows complete strand break repair by 20 min at 37° C, and by 3 h at 25° C; DNA double-strand break (DSB) repair plateaus at 80% (37° C) and 60% (25° C) after 90 min. An inverse correlation was found between total strand break repair rate, as assayed by filter elution methods, and cell survival. This work was supported by a grant from The Mathers Charitable Foundation.A preliminary report of this work was presented at the 35th Annual Meeting of the Radiation Research Society, Atlanta, GA 1987, USA 相似文献
11.
12.
DNA damage and repair in Arabidopsis thaliana as measured by the comet assay after treatment with different classes of genotoxins 总被引:5,自引:0,他引:5
We have studied the occurrence of the apoptosis phenomenon in the action of adriamycin (ADR) on human melanoma cells sensitive (ME18) and resistant (ME18/R) to ADR.
The study has shown that the intensity of apoptotic morphological changes noted in melanoma cells depended on the duration of the ADR treatment.
We have not observed any positive correlation between the induction of apoptosis and sensitivity to ADR.
We have used a fluorescence microscope and flow cytometer to evaluate apoptotic events in cells treated with ADR. 相似文献