首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Catecholamine turnover in brain areas innervated by dopaminergic neurons was examined 2, 6, and 12 days after bilateral, N-methyl-D-aspartate lesions confined to the rat medial prefrontal cortex. The lesion produced a significant regional increase in the concentration of 3,4-dihydroxyphenylethylamine (DA, dopamine) in both the medial prefrontal cortex and the ventral tegmental area. DA concentrations were increased in the nucleus accumbens on day 6 (128% of control), in the ventral tegmental area on day 2 (130% of control), and in the medial prefrontal cortex on days 2 (145% of control) and 6 (127% of control). The only significant changes in the concentration of 3,4-dihydroxyphenylacetic acid (DOPAC) (197% of control), and in the ratio DOPAC/DA (163% of control) were found in the medial prefrontal cortex on day 6 post-lesion. All parameters had returned to control levels by day 12. DA depletion after the administration of alpha-methyl-p-tyrosine (AMPT) was not significantly different between excitotoxin-lesioned and sham animals on day 6 in all brain regions. Noradrenaline (NA) and 3,4-dihydroxyphenylethyleneglycol concentrations and their ratios, and the depletion of noradrenaline after AMPT were also determined, and the lesion resulted in a significant regional increase in NA in both the nucleus accumbens and the ventral tegmental area. An elevation of NA (147% of control) in the nucleus accumbens was found on day 12. Since the excitotoxin lesion destroys corticofugal efferents from medial prefrontal cortex to the nucleus accumbens, the anterior corpus striatum and the ventral tegmental area, our results provide no evidence for a role of these cortical projections in the regulation of subcortical DA metabolism.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
A Argiolas  F Fadda  M R Melis  G L Gessa 《Life sciences》1979,24(24):2279-2284
Haloperidol (0.1 to 0.5 mg/kg) caused a dose related increase in DOPAC content both in the substantia nigra (pars compacta + pars reticulata) (by 27 to 134%) and in the caudate nucleus (by 127 to 252%). On the contrary even 5 mg/kg of haloperidol failed to modify DOPAC level in the ventral tegmental area. The results indicate that DA cells in ventral tegmental area differ from those in the substantia nigra not only on anatomical grounds but also on a functional point of view.  相似文献   

3.
E Torre  M E Celis 《Life sciences》1988,42(17):1651-1657
The effect of alpha-melanotropin (alpha-MSH) on the rat mesolimbic dopaminergic activity was estimated by measuring the changes in dihydroxyphenyl acetic acid (DOPAC) and dopamine (DA) endogenous levels in the nucleus accumbens (Ac) and caudate putamen (CP). A marked increase of DOPAC/DA ratios resulting from an increase in DOPAC and decrease in DA levels was found in the Ac 30 and 65 min after bilateral alpha-MSH-injections (1 microgram) into the ventral tegmental area (VTA). Similar changes were observed in the CP 65 min post-injections. These peptide-induced changes were completely inhibited by a previous VTA injection of atropine (1 microgram), at a dose that totally blocked the alpha-MSH-induced excessive grooming and motor activation. These results confirms that alpha-MSH affects a cholinergic afferent to the VTA which modifies the mesolimbic dopaminergic system involved in the alpha-MSH/ACTH-induced behaviors.  相似文献   

4.
Salient but aversive stimuli inhibit the majority of dopamine (DA) neurons in the ventral tegmental area (VTA) and cause conditioned place aversion (CPA). The cellular mechanism underlying DA neuron inhibition has not been investigated and the causal link to behavior remains elusive. Here, we show that GABA neurons of the VTA inhibit DA neurons through neurotransmission at GABA(A) receptors. We also observe that GABA neurons increase their firing in response to a footshock and provide evidence that driving GABA neurons with optogenetic effectors is sufficient to affect behavior. Taken together, our data demonstrate that synaptic inhibition of DA neurons drives place aversion.  相似文献   

5.
Rats that consume a diet 50% rich in protein exhibit hyperactivity and hyperresponsiveness to nociceptive stimuli, in which facilitation of dopaminergic activity has been implicated. We studied the regional changes in the concentrations of dopamine (DA) and its metabolites, dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in the brains of rats that were maintained on high-protein (HP, 50% casein), normal-protein (NP, 20% casein), and low-protein (LP, 8% casein) diets for 36 weeks. Brain nuclei that represented different DAergic systems were punchdissected and analyzed using HPLC. In the substantia nigra, the striatum, and the dentate gyrus, DA concentrations decreased and increased, respectively, with a decrease and increase in dietary protein (p<0.05 compared to the NP diet). Similar trends in the effect of the HP diet were observed in the ventral tegmental area, amygdala, frontal cortex, subiculum, centromedial nucleus (CM) of the thalamus, and inferior colliculi (IC), although the differences in DA concentrations were not statistically significant. These brain areas also showed a pattern of decreased DA concentration in association with the LP diet, and the differences were statistically significant (p<0.05) in the CM and IC. DA concentrations in most regions of the midbrain and brainstem were not different between the diet groups, nor were consistent trends observed in those regions. Also, there were no consistent relationships between DOPAC/DA and HVA/DA ratios and dietary protein level. These data suggest that only discrete dopaminergic neuronal circuits in the rat forebrain were sensitive to changes in dietary protein level.  相似文献   

6.
Dopamine (DA) and cholecystokinin octapeptide carboxy-terminal (CCK-8) have been found to coexist in some mesolimbic neurons. The present investigation was undertaken in order to study the biochemical and behavioral interactions between CCK-8 and some central monoaminergic pathways. The action of the sulfated form of CCK-8 (10 micrograms/10 microliter intracerebroventricularly) on DA turnover in nucleus accumbens, olfactory tubercles and corpus striatum of the rat was determined after DA synthesis inhibition with alpha-methyl-p-tyrosine (250 mg/kg i.p.). Also, CCK-8 action (1-30 micrograms intracisternally) on DA synthesis was assessed by measuring accumulation of dihydroxyphenylalanine (DOPA) after DOPA-decarboxylase inhibition with NSD-1015 (m-hydroxybenzylhydrazine, 100 mg/kg i.p.). The contents of DA and its main metabolites, dihydroxyphenylacetic acid and homovanillic acid, together with serotonin and its main metabolite, 5-hydroxyindoleacetic acid (5-HIAA), were measured in different brain areas after direct injection of CCK-8 into the ventral tegmental area (A10) or nucleus accumbens. Further, the effect of CCK-8 on amphetamine-induced locomotion and apomorphine-induced stereotypies was studied along with changes in spontaneous locomotion and rearing after CCK-8 injection into the ventral tegmental area and nucleus accumbens. No consistent statistically significant effects of CCK-8 on biochemical or behavioral assessments on measures of DA function were observed. However, injection of high doses of CCK-8 into the ventral tegmental area significantly decreased levels of 5-HIAA in the nucleus accumbens, olfactory tubercles and striatum.  相似文献   

7.
Fibroblast growth factor 2 (FGF-2) is a neurotrophic factor participating in regulation of proliferation, differentiation, apoptosis and neuroprotection in the central nervous system. With regard to dopaminergic (DA) neurons of substantia nigra pars compacta (SNpc), which degenerate in Parkinson's disease, FGF-2 improves survival of mature DA neurons in vivo and regulates expansion of DA progenitors in vitro. To address the physiological role of FGF-2 in SNpc development, embryonic (E14.5), newborn (P0) and juvenile (P28) FGF-2-deficient mice were investigated. Stereological quantification of DA neurons identified normal numbers in the ventral tegmental area, whereas the SNpc of FGF-2-deficient mice displayed a 35% increase of DA neurons at P0 and P28, but not at earlier stage E14.5. Examination of DA marker gene expression by quantitative RT-PCR and in situ hybridization revealed a normal patterning of embryonic ventral mesencephalon. However, an increase of proliferating Lmx1a DA progenitors in the subventricular zone of the ventral mesencephalon of FGF-2-deficient embryos indicated altered cell cycle progression of neuronal progenitors. Increased levels of nuclear FgfR1 in E14.5 FGF-2-deficient mice suggest alterations of integrative nuclear FgfR1 signaling (INFS). In summary, FGF-2 restricts SNpc DA neurogenesis in vivo during late stages of embryonic development.  相似文献   

8.
A monoclonal antibody recently synthesized against dopamine (DA) was tested in rat and mouse brain sections after further treatment by PAP immunocytochemistry at the light and electron microscopic levels. Distribution of DA-immunoreactive cell bodies was examined in the substantia nigra (sn), the ventral tegmental area (vta), and the raphe nuclei. DA-immunoreactive fibers were investigated in two DA projection systems, the striatum and the septum. Many dopaminergic cell bodies were found in the sn and the vta. Some scattered DA neurons were encountered in the pars reticulata of the sn. The dorsal raphe and linearis raphe nuclei displayed sparse immunoreactive neurons and a dense plexus of DA fibers. Immunoreactive fibers were observed in the entire striatum, more dense in the ventral part. In the septum, immunonegative neurons were outlined by thin DA fibers in synaptic contact with their somata or dendrites. According to our observations, this DA monoclonal antibody seems to be a selective and sensitive tool for studying the dopaminergic neuronal circuitry at both histological and ultrastructural level.  相似文献   

9.
The lateral hypothalamic area (LHA) acts in concert with the ventral tegmental area (VTA) and other components of the mesolimbic dopamine (DA) system to control motivation, including the incentive to feed. The anorexigenic hormone leptin modulates the mesolimbic DA system, although the mechanisms underlying this control have remained incompletely understood. We show that leptin directly regulates a population of leptin receptor (LepRb)-expressing inhibitory neurons in the LHA and that leptin action via these LHA LepRb neurons decreases feeding and body weight. Furthermore, these LHA LepRb neurons innervate the VTA, and leptin action on these neurons restores VTA expression of the rate-limiting enzyme in DA production along with mesolimbic DA content in leptin-deficient animals. Thus, these findings reveal that LHA LepRb neurons link anorexic leptin action to the mesolimbic DA system.  相似文献   

10.
Dopamine (DA) is a key transmitter in motor, reward and cogitative pathways, with DA dysfunction implicated in disorders including Parkinson''s disease and addiction. Located in midbrain, DA neurons of the substantia nigra pars compacta project via the medial forebrain bundle to the dorsal striatum (caudate putamen), and DA neurons in the adjacent ventral tegmental area project to the ventral striatum (nucleus accumbens) and prefrontal cortex. In addition to classical vesicular release from axons, midbrain DA neurons exhibit DA release from their cell bodies and dendrites. Somatodendritic DA release leads to activation of D2 DA autoreceptors on DA neurons that inhibit their firing via G-protein-coupled inwardly rectifying K+ channels. This helps determine patterns of DA signalling at distant axonal release sites. Somatodendritically released DA also acts via volume transmission to extrasynaptic receptors that modulate local transmitter release and neuronal activity in the midbrain. Thus, somatodendritic release is a pivotal intrinsic feature of DA neurons that must be well defined in order to fully understand the physiology and pathophysiology of DA pathways. Here, we review recent mechanistic aspects of somatodendritic DA release, with particular emphasis on the Ca2+ dependence of release and the potential role of exocytotic proteins.  相似文献   

11.
12.
Wang DV  Tsien JZ 《PloS one》2011,6(1):e16528
The ventral tegmental area (VTA) plays an essential role in reward and motivation. How the dopamine (DA) and non-DA neurons in the VTA engage in motivation-based locomotor behaviors is not well understood. We recorded activity of putative DA and non-DA neurons simultaneously in the VTA of awake mice engaged in motivated voluntary movements such as wheel running. Our results revealed that VTA non-DA neurons exhibited significant rhythmic activity that was correlated with the animal's running rhythms. Activity of putative DA neurons also correlated with the movement behavior, but to a lesser degree. More importantly, putative DA neurons exhibited significant burst activation at both onset and offset of voluntary movements. These findings suggest that VTA DA and non-DA neurons conjunctively process locomotor-related motivational signals that are associated with movement initiation, maintenance and termination.  相似文献   

13.
14.
Abstract: This study examined the hypothesis that chronic ethanol consumption results in significant abnormalities in both the dopaminergic and the serotonergic system of aged rats. Levels of dopamine (DA), serotonin [5-hydroxytryptamine (5-HT)], 3,4-dihydroxyphenylacetic acid (DOPAC), and 5-hydroxyindole-3-acetic acid (5-HIAA) were determined in brain areas of both the nigrostriatal and mesocorticolimbic DA systems in 5-, 14-, and 24-month-old male Fischer 344 rats. Aging was associated with a reduced concentration of DA in the striatum (ST), ventral tegmental area (VTA), and ventral pallidum (VP) and an increased concentration of 5-HIAA in the ST, globus pallidus, nucleus accumbens, frontal cortex, and VP. In addition, there was an increase in the 5-HIAA/5-HT ratio in all brain areas analyzed. Six weeks of ethanol consumption was accompanied by significant changes in mesocorticolimbic brain areas. In the VTA of 5-month-old ethanol-fed rats DA content was decreased to the levels found in aged rats, e.g., 24 months of age. Ethanol also significantly lowered 5-HT and 5-HIAA contents in the VTA and reduced DOPAC and 5-HIAA levels in the VP. In addition, ethanol blunted the normal age-related increase in 5-HIAA/5-HT ratio in the VTA, VP, and substantia nigra. It is interesting that although the age-related changes were found in both nigrostriatal and mesocorticolimbic brain areas, the ethanol-associated effects were found only in brain areas of the mesocorticolimbic system. The changes in DA and 5-HT function that accompany aging and ethanol consumption may contribute to the problems in motor function and ethanol abuse found in the aged.  相似文献   

15.
The activity of ventral tegmental area (VTA) dopamine (DA) neurons promotes behavioral responses to rewards and environmental stimuli that predict them. VTA GABA inputs synapse directly onto DA neurons and may regulate DA neuronal activity to alter reward-related behaviors; however, the functional consequences of selective activation of VTA GABA neurons remains unknown. Here, we show that in?vivo optogenetic activation of VTA GABA neurons disrupts reward consummatory behavior but not conditioned anticipatory behavior in response to reward-predictive cues. In addition, direct activation of VTA GABA projections to the nucleus accumbens (NAc) resulted in detectable GABA release but did not alter reward consumption. Furthermore, optogenetic stimulation of VTA GABA neurons directly suppressed the activity and excitability of neighboring DA neurons as well as the release of DA in the NAc, suggesting that the dynamic interplay between VTA DA and GABA neurons can control the initiation and termination of reward-related behaviors.  相似文献   

16.
Leptin acts on leptin receptor (LepRb)-expressing neurons throughout the brain, but the roles for many populations of LepRb neurons in modulating energy balance and behavior remain unclear. We found that the majority of LepRb neurons in the lateral hypothalamic area (LHA) contain neurotensin (Nts). To investigate the physiologic role for leptin action via these LepRb(Nts) neurons, we generated mice null for LepRb specifically in Nts neurons (Nts-LepRbKO mice). Nts-LepRbKO mice demonstrate early-onset obesity, modestly increased feeding, and decreased locomotor activity. Furthermore, consistent with the connection of LepRb(Nts) neurons with local orexin (OX) neurons and the ventral tegmental area (VTA), Nts-LepRbKO mice exhibit altered regulation of OX neurons and the mesolimbic DA system. Thus, LHA LepRb(Nts) neurons mediate physiologic leptin action on OX neurons and the mesolimbic DA system, and contribute importantly to the control of energy balance.  相似文献   

17.
Nicotine, one of the most widespread drugs of abuse, has long been shown to impact areas of the brain involved in addiction and reward. Recent research, however, has begun to explore the positive effects that nicotine may have on learning and memory. The mechanisms by which nicotine interacts with areas of cognitive function are relatively unknown. Therefore, this paper is part of an ongoing study to evaluate regional effects of nicotine enhancement of cognitive function. Nicotine-induced changes in the levels of three neurotransmitters, dopamine (DA), serotonin (5-HT), norepinepherine (NE), their metabolites, homovanillic acid (HVA), dihydroxyphenylacetic acid (DOPAC), 5-hydroxyindoleacetic acid (5-HIAA), and their precursor, L-DOPA, were evaluated in the ventral and dorsal hippocampus (VH and DH), prefrontal and medial temporal cortex (PFC and MTC), and the ventral tegmental area (VTA) using in vivo microdialysis in awake, freely moving, male Sprague-Dawley rats. The animals were treated with acute nicotine (0.5 mg/kg, s.c.) halfway through the 300-min experimental period. The reuptake blockers, desipramine (100 microM) and fluoxetine (30 microM), were given to increase the levels of NE and 5-HT so that they could be detected. Overall, a nicotine-induced DA increase was found in some areas, and this increase was potentiated by desipramine and fluoxetine. The two DA metabolites, HVA and DOPAC, increased in all the areas throughout the experiments, both with and without the inhibitors, indicating a rapid metabolism of the released DA. The increase in these metabolites was greater than the increase in DA. 5-HT was increased in the DH, MTC, and VTA in the presence of fluoxetine; its metabolite, 5-HIAA, was increased in the presence and absence of fluoxetine. Except in the VTA, NE levels increased to a similar extent with desipramine and fluoxetine. Overall, nicotine appeared to increase the release and turnover of these three neurotransmitters, which was indicated by significant increases in their metabolites. Furthermore, DA, and especially HVA and DOPAC, increased for the 150 min following nicotine administration; 5-HT and NE changes were shorter in duration. As gas chromatography experiments showed that nicotine levels in the brain decreased by 75% after 150 min, this may indicate that DA is more susceptible to lower levels of nicotine than 5-HT or NE. In conclusion, acute nicotine administration caused alterations in the levels of DA, 5-HT, and NE, and in the metabolism of DA and 5-HT, in brain areas that are involved in cognitive processes.  相似文献   

18.
Mesencephalic dopaminergic (MesDA) neurons play crucial roles in motor and behavioral processes; their loss in Parkinson's disease (PD) results in striatal dopamine (DA) deficiency and hypokinetic movement disorder. The Pitx3 homeobox gene is expressed in the MesDA system. We now show that only a subset of MesDA neurons express Pitx3 and that in Pitx3-deficient aphakia mice, this subset is progressively lost by apoptosis during fetal (substantia nigra, SN) and postnatal (ventral tegmental area) development, resulting in very low striatal DA and akinesia. Similar to human PD, dorsal SN neurons (which are Pitx3 negative) are spared in mutant mice. Thus, Pitx3 defines a pathway for survival of neurons that are implicated in PD and that are required for spontaneous locomotor activity.  相似文献   

19.
20.
1. We wished to further study the behavioral effects of -melanotropin (-MSH), melanin-concentrating hormone (MCH), and neuropeptide glutamine–isoleucine (NEI).2. To this effect we administered -MSH, MCH, and NEI in the ventral tegmental area of the rat, a structure where these neuropeptides are highly concentrated. To further elucidate the biochemical mechanisms of the behavioral effect of these neuropeptides, we determined the degree of grooming behavior and the levels of catecholamines, after neuropeptide administration.3. We preselected those animals responding to the central injection of -MSH with excessive grooming behavior. We administered the neuropeptides at the dose of 1 g/0.5 L, in each side of the ventral tegmental area, bilaterally. We studied grooming behavior, locomotor activity, and total behavior scores, 30 and 65 min after administration of the peptides.4. Three groups of animals were decapitated immediately after the injection of the neuropeptides, and 30 or 65 min after injection. We measured dopamine (DA), noradrenaline (NA), and the dopac/dopamine ratio (DOPAC/DA) to determine steady state levels of catecholamines and an indirect measure of DA release and metabolism, respectively.5. Injections of -MSH produced significant elevations in grooming behavior, locomotor activity, and total behavior scores, both 30 and 65 min after peptide administration. This was correlated with significant decreases in DA content, increases in DOPAC content, and increases in the DOPAC/DA ratio. In the caudate putamen, changes in catecholamines occurred both at 30 and 65 min after injection. In the nucleus accumbens, changes were present at 65 min after injection. Conversely, there were no alterations in NA content, either in the caudate putamen or in the nucleus accumbens, at any time after the injection.6. Injections of NEI resulted in significant elevations in grooming behavior, locomotor activity, and total behavior scores, both 30 and 65 min after peptide administration. This was correlated with increased DOPAC/DA ratio in the nucleus caudatus but not in the nucleus accumbens. Conversely, NEI produced increased NA concentrations in the nucleus accumbens, but not in the nucleus caudatus.7. Injections of MCH did not produce significant changes in behavior or significant changes in nucleus caudatus or nucleus accumbens catecholamines.8. Our results indicate (a) There is a correlation with alterations in behavior as induced for the neuropeptides injected here, and changes in extrapyramidal catecholamines. (b) There is a correlation between alterations in behavior and increases in DOPAC/DA ratio in the nucleus caudatus. (c) There is a correlation between alterations in behavior and alterations in catecholamines in the nucleus accumbens. In the nucleus accumbens, DOPAC/DA ratio is changed after -MSH, and NA ratio is changed after NEI injection. (d) Absence of alterations in extrapyramidal catecholamines, and in particular in catecholamines in the nucleus accumbens, correlates with absence of behavioral alterations after neuropeptide administration to the ventral tegmental area.9. In conclusion, the behavioral effect of exogenous administration of neuropeptides in the ventral tegmental area is peptide-specific, and is probably associated with alterations in catecholamine metabolism and release in the nucleus caudatus and the nucleus accumbens. Both -MSH and NEI seem to stimulate the nigrostriatal DA system. While -MSH appears to stimulate the mesolimbic DA system as well, NEI may exert its actions not through the DA, but through the NA mesolimbic system. The precise contribution of DA and NA, and the relative role of the nucleus caudatus and nucleus accumbens in these behaviors remain to be elucidated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号