首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of the study was to jointly analyze temperature-induced changes in low-threshold single motor unit twitch torque and action potential properties. Joint torque, multichannel surface, and intramuscular electromyographic signals were recorded from the tibialis anterior muscle of 12 subjects who were instructed to identify the activity of a target motor unit using intramuscular electromyographic signals as feedback. The target motor unit was activated at the minimum stable discharge rate in seven 3-min-long contractions. The first three contractions (C1-C3) were performed at 33 degrees C skin temperature. After 5 min, the subject performed three contractions at 33 degrees C (T1), 39 degrees C (T2), and 45 degrees C (T3), followed by a contraction at 33 degrees C (C4) skin temperature. Twitch torque and multichannel surface action potential of the target motor unit were obtained by spike-triggered averaging. Discharge rate (mean +/- SE, 7.1 +/- 0.5 pulses/s), interpulse interval variability (35.8 +/- 9.2%), and recruitment threshold (4.5 +/- 0.4% of the maximal voluntary torque) were not different among the seven contractions. None of the investigated variables were different among C1-C3, T1, and C4. Conduction velocity and peak twitch torque increased with temperature (P < 0.05; T1: 3.53 +/- 0.21 m/s and 0.82 +/- 0.23 mN x m, T2: 3.93 +/- 0.24 m/s and 1.17 +/- 0.36 mN x m, T3: 4.35 +/- 0.25 m/s and 1.46 +/- 0.40 mN x m, respectively). Twitch time to peak and surface action potential peak-to-peak amplitude were smaller in T3 (61.8 +/- 2.0 ms and 27.4 +/- 5.1 microV, respectively) than in T1 (71.9 +/- 4.1 ms and 35.0 +/- 6.5 microV, respectively) (P < 0.05). The relative increase in conduction velocity between T1 and T3 was positively correlated (P < 0.05) with the increase in twitch peak amplitude (r2 = 0.48), with the decrease in twitch time to peak (r2 = 0.43), and with the decrease in action potential amplitude (r2 = 0.50). In conclusion, temperature-induced modifications in fiber membrane conduction properties may have a direct effect on contractile motor unit properties.  相似文献   

2.
The purpose of the study was to examine age-related differences in electromyographic (EMG) responses to transcranial magnetic stimulation (TMS) during functional isometric contractions in left and right hands. EMG responses were recorded from the first dorsal interosseus muscle following TMS in 10 young (26.6 +/- 1.3 yr) and 10 old (67.6 +/- 2.3 yr) right-handed subjects. Muscle evoked potentials (MEPs) and silent-period durations were obtained in the left and right hands during index finger abduction, a precision grip, a power grip, and a scissor grip, while EMG was held constant at 5% of maximum. For all tasks, MEP area was 30% (P < 0.001) lower in the left hand of old compared with young subjects, whereas there was no age difference in the right hand. The duration of the EMG silent period was 14% (P < 0.001) shorter in old (150.3 +/- 2.9 ms) compared with young (173.9 +/- 3.0 ms) subjects, and the age differences were accentuated in the left hand (19% shorter, P < 0.001). For all subjects, the largest MEP area (10-12% larger) and longest EMG silent period (8-19 ms longer) were observed for the scissor grip compared with the other three tasks, and the largest task-dependent change in these variables was observed in the right hand of older adults. These differences in corticospinal control in the left and right hands of older adults may reflect neural adaptations that occur throughout a lifetime of preferential hand use for skilled (dominant) and unskilled (nondominant) motor tasks.  相似文献   

3.
Steroids determination in saliva offers several advantages. The collection of saliva is a noninvasive, less stressful technique than blood withdrawal and reflects the circulating unbound fractions. The suitability of saliva for 17-hydroxyprogesterone and cortisol determinations has been documented in healthy subjects as well as in diseases like Congenital Adrenal Hyperplasia and Cushing syndrome. The aim of the study was to compare the influence of different collection methods on the results of 17-hydroxyprogesterone measurement in saliva collected by different ways, using commercially available RIAs developed for plasma. 17-hydroxyprogesterone was determined in 64 healthy adult volunteers (30 males, 34 females) in serum (Group SE) and in saliva collected before meals at 8-10 p.m. by directly spitting into a plastic tube (Group SP), using a cotton swab (Group SA) and using a polyester swab Salivette (Group SB). We used a commercially available direct radioimmunoassay without separation technique. The 17-hydroxyprogesterone mean values (ng/ml) were 1.16+/-1.3 (Group SE), 0.056+/-0.046 (Group SP), 0.089+/-0.048 (Group SA) and 0.058+/-0.049 (Group SB). The detection limit was 0.010 ng/ml. The correlations between the values in serum (Group SE) and in saliva were: r=0.77, p<0.05 (Group SP); r=0.62, p<0.05 (Group SA); r=0.70, p<0.05 (Group SB). The saliva values corresponding to the serum cut-off point of 3 ng/ml upper limit of normal values were in ng/ml 0.13 (Group SP), 0.16 (Group SA) and 0.11 (Group SB). In conclusion, 17-hydroxyprogesterone determinations in saliva using commercially available RIAs primarily developed for serum, is a reliable and easy to perform procedure. The three different methods of saliva collection showed 17-hydroxyprogesterone concentrations to have good agreement.  相似文献   

4.
Prolonged reductions in muscle activity results in alterations in neuromuscular properties; however, the time course of adaptations is not fully understood, and many of the specific adaptations have not been identified. This study evaluated the temporal evolution of adaptations in neuromuscular properties during and following 3 wk of immobilization. We utilized a combination of techniques involving nerve stimulation and transcranial magnetic stimulation to assess changes in central activation of muscle, along with spinal (H reflex) and corticospinal excitability [i.e., motor-evoked potential (MEP) amplitude, silent period (SP)] and contractile properties in 10 healthy humans undergoing 3 wk of forearm immobilization and 9 control subjects. Immobilization induced deficits in central activation (85 +/- 3 to 67 +/- 7% ) that returned to baseline levels 1 wk after cast removal. The flexor carpii radialis MEP amplitude increased greater than twofold after the first week of immobilization and remained elevated throughout immobilization and 1 wk after cast removal. Additionally, we observed a prolongation of the SP 1 wk after cast removal compared with baseline (78.5 +/- 7.1 to 98.2 +/- 8.7 ms). The contractile properties were also altered, since the rate of evoked force relaxation was slower following immobilization (-14.5 +/- 1.4 to -11.3 +/- 1.0% peak force/ms), and remained depressed 1 wk after cast removal (-10.5 +/- 0.8% peak force/ms). These observations detail the time course of adaptations in corticospinal and contractile properties associated with disuse and illustrate the profound effect of immobilization on the human neuromuscular system as evidenced by the alterations in corticospinal excitability persisting 1 wk following cast removal.  相似文献   

5.
The effects of acute hypoxia on motor cortex excitability, force production, and voluntary activation were studied using single- and double-pulse transcranial magnetic stimulation techniques in 14 healthy male subjects. Electrical supramaximal stimulations of the right ulnar nerve were performed, and transcranial magnetic stimulations were delivered to the first dorsal interosseus motor cortex area during short-term hypoxic (HX) and normoxic (NX) condition. M waves, voluntary activation, F waves, resting motor threshold (rMT), recruitment curves (100-140% of rMT), and short-interval intracortical inhibition and intracortical facilitation were measured. Moreover, motor-evoked potentials (MEPs) and cortical silent periods were determined during brief isometric maximum right index finger abductions. Hypoxia was induced by breathing a fraction of inspired oxygen of 12% via a face mask. M waves, voluntary activation, and F waves did not differ between NX and HX. The rMT was significantly lower in HX (55.79 +/- 9.40%) than in NX (57.50 +/- 10.48%) (P < 0.01), whereas MEP recruitment curve, short-interval intracortical inhibition, intracortical facilitation, maximum right index finger abduction, and MEPs were unaffected by HX. In contrast, the cortical silent periods in HX (158.21 +/- 33.96 ms) was significantly shortened compared with NX (169.42 +/- 39.69 ms) (P < 0.05). These data demonstrate that acute hypoxia results in increased cortical excitability and suggest that acute hypoxia alters motor cortical ion-channel function and GABAergic transmission.  相似文献   

6.
The aim of this human study was to investigate the effect of experimentally induced muscle pain on the modifications of motor unit discharge rate during sustained, constant-force contractions. Intramuscular and multichannel surface electromyographic (EMG) signals were collected from the right and left tibialis anterior muscle of 11 volunteers. The subjects performed two 4-min-long isometric contractions at 25% of the maximal dorsiflexion torque, separated by a 20-min rest. Before the beginning of the second contraction, hypertonic (painful; right leg) or isotonic (nonpainful; left leg) saline was injected into the tibialis anterior. Pain intensity scores did not change significantly in the first 150 s of the painful contraction. Exerted torque and its coefficient of variation were the same for the painful and nonpainful contractions. Motor unit discharge rate was higher in the beginning of the nonpainful contraction than the painful contraction on the right side [means +/- SE, 11.3 +/- 0.2 vs. 10.6 +/- 0.2 pulses/s (pps); P < 0.01] whereas it was the same for the two contractions on the left side (11.6 +/- 0.2 vs. 11.5 +/- 0.2 pps). The decrease in discharge rate in 4 min was smaller for the painful (0.4 +/- 0.1 pps) than for the control contractions (1.3 +/- 0.1 pps). Initial value and decrease in motor unit conduction velocity were not different in the four contractions (right leg, 4.0 +/- 0.1 m/s with decrease of 0.6 +/- 0.1 m/s in 4 min; left leg, 4.1 +/- 0.1 m/s with 0.7 +/- 0.1 m/s decrease). In conclusion, stimulation of nociceptive afferents by injection of hypertonic saline did not alter motor unit conduction velocity but reduced the initial motor unit discharge rates and the difference between initial and final discharge rates during sustained contraction.  相似文献   

7.
The motor unit twitch torque is modified by sustained contraction, but the association to changes in muscle fiber electrophysiological properties is not fully known. Thus twitch torque, muscle fiber conduction velocity, and action potential properties of single motor units were assessed in 11 subjects following an isometric submaximal contraction of the tibialis anterior muscle until endurance. The volunteers activated a target motor unit at the minimum discharge rate in eight 3-min-long contractions, three before and five after an isometric contraction at 40% of the maximal torque, sustained until endurance. Multichannel surface electromyogram signals and joint torque were averaged with the target motor unit potential as trigger. Discharge rate (mean +/- SE, 6.6 +/- 0.2 pulses/s) and interpulse interval variability (33.3 +/- 7.0%) were not different in the eight contractions. Peak twitch torque and recruitment threshold increased significantly (93 +/- 29 and 12 +/- 5%, P <0.05) in the contraction immediately after the endurance task with respect to the preendurance values (0.94 +/- 0.26 mN.m and 3.7 +/- 0.5% of the maximal torque), whereas time to peak of the twitch torque did not change (74.4 +/- 10.1 ms). Muscle fiber conduction velocity decreased and action potential duration increased in the contraction after the endurance (6.3 +/- 1.8 and 9.8 +/- 1.8%, respectively, P <0.05; preendurance values, 3.9 +/- 0.2 m/s and 11.1 +/- 0.8 ms), whereas the surface potential peak-to-peak amplitude did not change (27.1 +/- 3.1 microV). There was no significant correlation between the relative changes in muscle fiber conduction velocity or surface potential duration and in peak twitch torque (R2= 0.04 and 0.10, respectively). In conclusion, modifications in peak twitch torque of low-threshold motor units with sustained contraction are mainly determined by mechanisms not related to changes in action potential shape and in its propagation velocity.  相似文献   

8.
The maximal rate of rise in muscle force [rate of force development (RFD)] has important functional consequences as it determines the force that can be generated in the early phase of muscle contraction (0-200 ms). The present study examined the effect of resistance training on contractile RFD and efferent motor outflow ("neural drive") during maximal muscle contraction. Contractile RFD (slope of force-time curve), impulse (time-integrated force), electromyography (EMG) signal amplitude (mean average voltage), and rate of EMG rise (slope of EMG-time curve) were determined (1-kHz sampling rate) during maximal isometric muscle contraction (quadriceps femoris) in 15 male subjects before and after 14 wk of heavy-resistance strength training (38 sessions). Maximal isometric muscle strength [maximal voluntary contraction (MVC)] increased from 291.1 +/- 9.8 to 339.0 +/- 10.2 N. m after training. Contractile RFD determined within time intervals of 30, 50, 100, and 200 ms relative to onset of contraction increased from 1,601 +/- 117 to 2,020 +/- 119 (P < 0.05), 1,802 +/- 121 to 2,201 +/- 106 (P < 0.01), 1,543 +/- 83 to 1,806 +/- 69 (P < 0.01), and 1,141 +/- 45 to 1,363 +/- 44 N. m. s(-1) (P < 0.01), respectively. Corresponding increases were observed in contractile impulse (P < 0.01-0.05). When normalized relative to MVC, contractile RFD increased 15% after training (at zero to one-sixth MVC; P < 0.05). Furthermore, muscle EMG increased (P < 0.01-0.05) 22-143% (mean average voltage) and 41-106% (rate of EMG rise) in the early contraction phase (0-200 ms). In conclusion, increases in explosive muscle strength (contractile RFD and impulse) were observed after heavy-resistance strength training. These findings could be explained by an enhanced neural drive, as evidenced by marked increases in EMG signal amplitude and rate of EMG rise in the early phase of muscle contraction.  相似文献   

9.
The purpose of this study was to investigate the effect of weighted jump squat training with and without eccentric braking. Twenty male subjects were divided into two groups (n = 10 per group), Non-Braking Group and Braking Group. The subjects were physically active, but not highly trained. The program for Non-Braking Group consisted of 6 sets of 6 repetitions of weighted jump squats without reduction of eccentric load for 8 weeks. The training program for the Braking Group consisted of the same sets and repetitions, but eccentric load was reduced by using an electromagnetic braking mechanism. Jump and reach, countermovement jump, static jump, drop jump, one repetition maximum half squat, weighted jump squat, and isometric/isokinetic knee extension/flexion at several different positions/angular velocities were tested pre- and posttraining intervention. The Non-Braking Group exhibited greater improvement in peak torque during isokinetic concentric knee flexion at 300 degrees/s [Non-Braking Group: (mean +/- SD) 124.0 +/- 22.6 Nm at pre- and 134.1 +/- 18.4 Nm at posttraining, and Braking Group: 118.5 +/- 32.7 Nm at pre- and 113.2 +/- 26.7 Nm at posttraining]. Braking Group exhibited superior adaptations in peak power relative to body mass during weighted jump squat [Non-Braking Group: (mean +/- SD) 49.1 +/- 8.6 W/kg at pre- and 50.9 +/- 6.2 W/kg at posttraining, and Braking Group: 47.9 +/- 6.9 W/kg at pre- and 53.7 +/- 7.3 W/kg at posttraining]. It appears that power output in relatively slow movement (weighted jump squat) was improved more in the Braking Group, however strength in high velocity movements (isokinetic knee flexion at 300 degrees/s) was improved more in Non-Braking Group. This study supports load and velocity specific effects of weighted jump squat training.  相似文献   

10.
The aim of the present study was to determine how the intra-muscular segments of three shoulder muscles were coordinated to produce isometric force impulses around the shoulder joint and how muscle segment coordination was influenced by changes in movement direction, mechanical line of action and moment arm (ma). Twenty male subjects (mean age 22 years; range 18-30 years) with no known history of shoulder pathologies, volunteered to participate in this experiment. Utilising an electromyographic technique, the timing and intensity of contraction within 19 muscle segments of three superficial shoulder muscles (Pectoralis Major, Deltoid and Latissimus Dorsi) were studied and compared during the production of rapid (e.g. approximately 400ms time to peak) isometric force impulses in four different movement directions of the shoulder joint (flexion, extension, abduction and adduction). The results of this investigation have suggested that the timing and intensity of each muscle segment's activation was coordinated across muscles and influenced by the muscle segment's moment arm and its mechanical line of action in relation to the intended direction of shoulder movement (e.g. flexion, extension, abduction or adduction). There was also evidence that motor unit task groups were formed for individual motor tasks which comprise motor units from both adjacent and distant muscles. It was also confirmed that for any particular motor task, individual muscle segments can be functionally classified as prime mover, synergist or antagonist - classifications which are flexible from one movement to the next.  相似文献   

11.
The aim of this study was to analyze the effect of ischemia on low-threshold motor unit conduction velocity. Nine subjects were trained to isolate the activity of a single motor unit (target motor unit) in the abductor pollicis brevis muscle with feedback on surface EMG signals recorded with a 16-electrode linear array. After training, the subjects activated the target motor unit at approximately 8 pulses per second (pps) for five 3-min-long contractions. During the third and fourth contractions, a cuff inflated at 180 mmHg around the forearm induced ischemia of the hand. The exerted force (mean +/- SE, 4.6 +/- 2.1% of the maximal voluntary contraction force), discharge rate (8.6 +/- 0.4 pps), interpulse interval variability (34.8 +/- 2.5%), and peak-to-peak amplitude of the target motor unit action potentials (176.6 +/- 18.2 microV) were not different among the five contractions. Conduction velocity, mean power spectral frequency, and action potential duration were the same in the beginning of the five contractions (2.8 +/- 0.2 m/s, 195.2 +/- 10.5 Hz, and 5.4 +/- 0.3 ms, respectively) and changed over the 3 min of sustained activation only during the fourth contraction. Conduction velocity and mean power spectral frequency decreased (10.05 +/- 1.8% and 8.50 +/- 2.18% during the 3 min, respectively) and action potential duration increased (8.2 +/- 4.6% in the 3 min) during the fourth contraction. In conclusion, 1) subjects were able to isolate the activity of a single motor unit with surface EMG visual feedback in ischemic conditions maintained for 16 min, and 2) the activation-induced decrease in single motor unit conduction velocity was significantly larger with ischemia than with normal circulation, probably due to the alteration of mechanisms of ion exchange across the fiber membrane.  相似文献   

12.
Melatonin was administered intravaginally in Silastic tubing to adult and prepubertal ewes. In Exp. 1, ewe lambs (born early March) were given intravaginal melatonin implants at a mean age (+/- s.e.m.) of 7.5 +/- 0.1 weeks (Group E, N = 10) or 19.4 +/- 0.2 weeks (Group L, N = 10). The third group (Group C, N = 10) received empty implants. In Exp. 2 mature ewes were given implants on 13 May (Group E, N = 10) or 18 July (Group L, N = 10) or received empty implants (Group C, N = 10) on one of these two dates. Blood samples were taken twice weekly for progesterone assay. In Exp. 1 the mean age (+/- s.e.m.) at puberty (progesterone greater than 2 nmol/l for two consecutive samples) was 35.4 +/- 0.8 weeks. Puberty was advanced by 5.2 weeks in Group L lambs, occurring at a mean age of 30.2 +/- 0.7 weeks (P less than 0.001). In Group E lambs the timing of puberty was unaltered, occurring at a mean age of 34.8 +/- 0.6 weeks. Mature ewes in Group L (Exp. 2) showed increased incidence of ovarian activity (9/10 ewes cycling by 26 September) compared with the control ewes (1/10) (P less than 0.001), but there was no effect in Group E ewes (3/10). The results demonstrate that continuous melatonin administration to adult and prepubertal ewes can mimic the effect of short days in terms of the reproductive response, and that the present and previous exposure to melatonin is critical in determining the response.  相似文献   

13.
正常中国人中枢运动系统传导时间的测定   总被引:2,自引:0,他引:2  
倪月秋  滕国玺 《生理学报》1991,43(4):322-329
本文应用高电压、低输出阻抗刺激器,经皮给予大脑皮层和脊髓电刺激(BSPES),同时在上肢鱼际(Thenar)和下肢胫骨前肌(Muscle tibialis anterior)上记录诱发肌肉动作电位,测定了64名正常健康中国人(男:46;女:18)的中枢运动系统传导时间。受试者年龄为20—67岁,身高为156—185cm。刺激大脑皮层出现反应的潜伏期与刺激脊髓出现反应的潜伏期之差为中枢运动传导时间(CMCT)。实验测得鱼际的 CMCT 为6.69±1.48ms;胫骨前肌的 CMCT 为12.90±1.59ms。经统计学处理证明,CMCT 与左右侧肢体、性别、年龄及身高无关。说明 CMCT 是无损伤测定与评价中枢运动系统功能的较精确的一种客观指标。本文根据所测数据,计算出脊髓内运动传导速度为71.34±10.89 m/s,与文献报道的锥体束传导速度50—70 m/s 相近。因此,CMCT 反映了锥体束的传导时间。  相似文献   

14.
The purpose of this study was to investigate short-term changes in reactions to sudden unexpected loading of the low back. The study utilized a set-up where a horizontal force of 58 N pointing forward suddenly was applied to the upper part of the subject's trunk. EMG activity from the erector spinae muscles and trunk movement data were recorded during 10 trials for 19 subjects. The analysis included EMG reaction time, mean rectified EMG amplitude during the period 50-250 ms after the sudden loading, and time elapsed until stopping of the forward movement of the trunk (stopping time). Reaction time means ranged from 66 to 97 ms (79+/-9 ms), and no difference was found between the trials. Conversely, the mean stopping time for the first trial (468 ms) was significantly higher than for trials 3-10 (359- 371 ms), and the average EMG amplitude during the period 50-250 ms after the sudden loading was lower for the first trial. This study showed that some subjects adapted to sudden unexpected loadings of the low back through a reduction in stopping time and a progression in EMG response during the first few trials. This possible adaptation to repeated trials have been overlooked in previous studies.  相似文献   

15.
Phrenic nerve conduction times and twitch pressures of the human diaphragm   总被引:8,自引:0,他引:8  
A multilumen catheter was modified to allow simultaneous recording of transdiaphragmatic pressure (Pdi) and the electromyographic (EMG) activity of the diaphragm. The catheter was used in 20 healthy males to measure the conduction time of the phrenic nerves and the twitch pressure of each hemidiaphragm during single supramaximal shocks delivered to the phrenic nerve in the neck. Diaphragmatic EMG was also recorded with surface electrodes at various sites on the chest wall. The mean conduction time to the crural fibers was 6.82 +/- 0.64 ms on the right and 7.93 +/- 0.85 ms on the left, whereas that to the costal fibers adjacent to the midclavicular line was 7.68 +/- 0.56 ms on the right and 7.92 +/- 0.92 ms on the left. Significant correlations were found between the conduction time of each phrenic nerve and the height and the age of the subjects. Conduction times measured at different EMG recording sites varied by as much as 2 ms. This variability, and that of previously reported values for phrenic conduction time, may be largely accounted for by differences in the conduction distances that were measured to each site in three cadavers. The evoked change in Pdi had a mean rise time of 92 ms and an amplitude of approximately 10 cmH2O.  相似文献   

16.
Endothelin-1 secretion and sympathetic activation may play important role in cardiovascular pathophysiology. In vivo interactions between these systems are not defined. We aimed to study the electrophysiological and haemodynamic effects of simultaneous intracoronary endothelin-1 and intravenous isoproterenol infusions. 18 anaesthetised open chest dogs were studied after AV-ablation. Mean arterial blood pressure, coronary blood flow, left ventricular contractility, standard electrocardiograms, right and left ventricular epi- and endocardial monophasic action potential (MAP) signals were recorded. Intracoronary endothelin-1 (30 pmol/min) was given to Group ET (n=6), intravenous isoproterenol (0.2 microg/kg/min) to Group ISO (n=6), both endothelin-1 and isoproterenol to Group ET+ISO (n=6) for 30 min. MAP duration increased in all studied regions of Group ET, decreased in all studied regions of Group ISO and ET+ISO (control vs. maximal changes of left ventricular epicardial MAP 90% duration, Group ET: 296+/-22 vs 369+/-20 ms, p<0.05, Group ISO: 298+/-18 vs 230+/-27 ms, p<0.01, Group ET+ISO: 302+/-18 vs 231+/-10 ms, p<0.01). In Group ET, early after depolarisations (3/6), polymorphic non-sustained ventricular tachycardias (6/6), and ventricular fibrillation (3/6) could be observed. In Group ISO, monomorphic non-sustained ventricular tachycardias (5/6) and atrial fibrillation (3/6) appeared. In Group ET+ISO, mono- and polymorphic non-sustained ventricular tachycardias occurred (5/6), neither ventricular fibrillation nor atrial fibrillation developed. An additive effect of endothelin-1 and isoproterenol on left ventricular contractility was observed. Isoproterenol treatment showed antagonistic effect against endothelin-1 induced MAP duration prolongation, early after depolarisation and ventricular fibrillation formation, while endothelin-1 showed protective effect against the development of isoproterenol induced atrial fibrillation.  相似文献   

17.
The purpose of this study was to determine the impact of a very slow (VS) velocity and a self-selected volitional (VOL) velocity at varying intensities on repetition number, peak force, peak power, and total volume in the squat and shoulder press exercises. On separate testing days, 9 resistance trained men (age: 23.9 +/- 2.5 years; height: 174.8 +/- 6.5 cm; body mass: 80.1 +/- 12.4 kg) performed a squat (SQ) and shoulder press (SP) exercise at 60 or 80% of 1 repetition maximum (1RM) at either VOL or VS (10-second eccentric and 10-second concentric actions) velocity for as many repetitions as possible. Force, power, and volume (repetitions x kg) were also determined. Subjects performed significantly fewer repetitions (p < or = 0.05) in the VS exercises (60% VS SQ 5 +/- 1 vs. VOL SQ 24 +/- 2; 80% VS SQ 2 +/- 0 vs. VOL SQ 12 +/- 1; 60% VS SP 4 +/- 1 vs. VOL SP 14 +/- 2; 80% VS SP 1 +/- 0 vs. VOL SP 6 +/- 1). Peak force and power were significantly higher at the VOL speed (peak force [in newtons]: 60% VS SQ 564.4 +/- 77.3 vs. VOL SQ 1229.0 +/- 134.9 N; 80% VS SQ 457.3 +/- 27.9 vs. VOL SQ 1059.3 +/- 104.7 N; 60% VS SP 321.6 +/- 37.8 vs. VOL SP 940.7 +/- 144.8 N; 80% VS SP 296.5 +/- 24.7 vs. VOL SP 702.5 +/- 57.7 N; and peak power [in watts]: 60% VS SQ 271.2 +/- 40.1 vs. VOL SQ 783.2 +/- 129.1 W; 80% VS SQ 229.3 +/- 49.5 vs. VOL SQ 520.2 +/- 85.8 W; 60% VS SP 91.3 +/- 21.9 vs. VOL SP 706.6 +/- 151.4 W; 80% VS SP 78.1 +/- 19.8 vs. VOL SP 277.6 +/- 46.4 W). VOL speed elicited higher total volume than the VS velocity. The results of this study indicate that a VS velocity may not elicit appropriate levels of force, power, or volume to optimize strength and athletic performance.  相似文献   

18.
In subjects heterozygous for Thr164Ile beta2-adrenoceptor (beta2AR) polymorphism, cardiac responses to beta2AR agonist stimulation are blunted. In this study, we investigated agonist-induced desensitization of Thr164Ile beta2ARs. For this purpose, we assessed in six subjects with heterozygous Thr164Ile beta2ARs and in 10 subjects with homozygous wild-type (WT) beta2ARs the effects of 2-wk oral treatment with 3 x 5 mg/day terbutaline on terbutaline infusion-induced increases in heart rate (HR) and contractility [measured as shortening of HR-corrected duration of electromechanical systole (QS2c)]. Compared with WT beta2AR subjects, Thr164Ile subjects exhibited a blunted terbutaline-induced maximum increase in HR (WT 32 +/- 4 beats/min, Thr164Ile 19 +/- 3 beats/min, P < 0.05) and contractility (WT -54 +/- 2 ms, Thr164Ile -37 +/- 6 ms, P < 0.05). Two-week oral terbutaline treatment desensitized cardiac beta2AR responses to terbutaline infusion (increase in HR: WT 10 +/- 2 beats/min, Thr164Ile 8 +/- 4 beats/min; increase in contractility: WT -22 +/- 5 ms Thr164Ile: -17 +/- 6 ms); however, the extent of desensitization was larger in WT than Thr164Ile beta2AR subjects. Thus, after 2-wk oral terbutaline treatment cardiac, beta2AR responses did not differ anymore between WT and Thr164Ile beta2AR subjects. We conclude that agonist-induced desensitization of cardiac beta2ARs is more pronounced in WT than Thr164Ile subjects. Thus cardiac Thr164Ile subjects appear to be somewhat protected against agonist-induced desensitization.  相似文献   

19.
Balancing exercises on instable bases (sensorimotor training [SMT]) are often used in the rehabilitation process of an injured athlete to restore joint function. Recently it was shown that SMT was able to enhance rate of force development (RFD) in a maximal voluntary muscle contraction. The purpose of this study was to compare adaptations on strength capacity following ballistic strength training (BST) with those following an SMT during a training period of 1 microcycle (4 weeks). Maximum voluntary isometric strength (MVC), maximum RFD (RFDmax) and the corresponding neural activation of M. soleus (SOL), M. gastrocnemius (GAS), and M. tibialis anterior (TIB) were measured during plantar flexion in 33 healthy subjects. The subjects were randomly assigned to a SMT, BST, or control group. RFDmax increased significantly stronger following BST (48 +/- 16%; p < 0.01) compared to SMT (14 +/- 5%; p < 0.05), whereas MVC remained unchanged in both groups. Median frequencies of the electromyographic power spectrum during the first 200 ms of contraction for GAS increased following both BST (45 +/- 21%; p < 0.05) and SMT (45 +/- 22%; p < 0.05), but median frequencies for SOL increased only after SMT (13 +/- 4%; p < 0.05). Additionally, mean amplitude voltage increased following BST for SOL (38 +/- 12%; p < 0.01) and for GAS (73 +/- 23%; p < 0.01) during the first 100 ms, whereas it remained unchanged after SMT. It is concluded that BST and SMT may induce different neural adaptations that specifically affect recruitment and discharge rates of motor units at the beginning of voluntary contraction. Specific neural adaptations indicate that SMT might be used complementarily to BST, especially in sports that require contractile explosive properties in situations with high postural demands, e.g., during jumps in ball sports.  相似文献   

20.
Serum angiotensin-converting enzyme (ACE) activity varies directly with thyroid hormone levels in states of altered thyroid function. Because T3 levels decrease during fasting, ACE activity was examined to ascertain if it was reduced in this low T3 condition. Eighteen obese euthyroid subjects were hospitalized and placed on a weight-maintaining diet for 4 days. Nine subjects (Group 1) underwent a fast (50 kcal/day) for 8 days. Nine (Group 2) subjects received T3 (5 micrograms q 3 h) during an identical fast. Weight loss was identical in both groups (-4.4 kg). Serum T3 fell in Group 1 from 104 +/- 8 to 50 +/- 4 ng/d/(p less than .05) but was unchanged in Group 2 (114 +/- 11 ng/dl fed vs. 120 +/- 14 ng/dl fasted). Blood pressures fell significantly in Group 1 (mean systolic: 112----104 mmHg; diastolic: 71----65 mmHg, p less than 0.05), but not in Group 2 subjects. ACE activity fell progressively in Group 1 subjects during fasting (14.4 +/- 1.6 U/ml fed vs. 12.8 +/- 1.4 U/ml fasted p less than 0.05). ACE activity was not decreased significantly early in the fast in patients given T3, but by late fast (days 6-8) was reduced to the same degree as in Group 1 subjects. Glucose and insulin levels fell similarly in both groups. Conclusions: (1) ACE activity is reduced during starvation. This effect is not mediated by T3. (2) Blood pressure reduction during fasting may result from the low T3 levels, but not from decreased ACE activity. Interpretation of serum ACE activity must be viewed in the context of a patient's diet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号