共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Summary Replication of plasmid R1162 DNA does not require the product of the dnaA gene. An integrated copy of the plasmid can suppress the temperature-sensitive dnaA46 allele when (1) additional plasmid copies are present in the cytoplasm and (2) an inactive replication origin, generated by deletion, is also present in the chromosome. We propose that the inactive origin sets the rate of initiation of chromosome replication at a level compatible with cell viability, possibly by providing additional binding sites for an R1162-encoded protein that is rate-limiting for plasmid replication. 相似文献
3.
The core of the P1 plasmid replication origin consists of a series of 7-bp repeats and a G+C-rich stretch. Methylation of the GATC sequences in the repeats is essential. Forty different single-base mutations in the region were isolated and assayed for origin function. A single-base change within any 7-bp repeat could block the origin, irrespective of whether GATC bases were affected. The repeats themselves were critical, but the short intervals between them were not. Mutations in the G+C-rich region showed it to be a spacer whose exact length is important but whose sequence can vary considerably. It maintains a precise distance between the 7-bp repeats and binding sites for the P1 RepA initiator protein. It may also serve as a clamp to limit strand separation during initiation. 相似文献
4.
Control of P1 plasmid replication by iterons 总被引:7,自引:2,他引:5
Ann L. Abeles Lucretia D. Reaves Brenda Youngren-Grimes Stuart J. Austin 《Molecular microbiology》1995,18(5):903-912
The incA locus of plasmid P1 controls plasmid copy number by inhibiting the replication origin, oriR . Both loci contain repeat sequences (iterons) that bind the P1 RepA protein. Regulation appears to occur by contact of incA and oriR loci of daughter plasmids mediated by RepA-bound iterons. Synthetic incA iteron arrays were constructed with altered numbers, sequences or spacing of iterons. Using these in in vitro and in vivo assays, we examined two models: (i) that the origin and incA loci form a stable 1:1 complex in which multiple iterons of each locus are paired with those of the other, and (ii) that individual incA iterons act as freely diffusing nucleoprotein units that contact origin iterons in a random and dynamic fashion. The data presented here strongly favour the latter case. The origin, with its five iterons, acts as a target but not as an effector of regulation. We present a model for replication control based on random, dynamic contacts between incA iterons and the origin. This system would display randomness with respect to choice of templates and timing of initiation if multiple replicon copies were present, but would tend to act in a machine-like fashion in concert with the cell cycle if just two copies were present in a dividing cell. 相似文献
5.
Suppression of a thermosensitive dnaA mutation of Escherichia coli by bacteriophage P1 and P7. 总被引:5,自引:0,他引:5
Like other plasmids, the P1 and P7 prophages suppress E. coli dnaA(Ts) mutations by integrating into the host chromosome. This conclusion is supported by three lines of evidence: (1) Alkaline sucrose gradients reveal the absence of plasmid DNA in suppressed lysogens; (2) the prophage is linked to host chromosomal markers in conjugation; and (3) auxotrophs whose defect is linked to the prophage are found among suppressed colonies. No phage or bacterial mutation is required for suppression. Integrative suppression by P1 and P7, unlike suppression by F, does not require the host recA+ function. Among suppressed P7 lysogens are some that do not produce phage; these contain defective prophages. The genetic extent of the deletions contained by these defective prophages delineates the prophage regions which are not necessary for suppression of dnaA(Ts). The possible mechanisms of integration and deletion formation are discussed. 相似文献
6.
Open-complex formation by the host initiator, DnaA, at the origin of P1 plasmid replication. 总被引:11,自引:1,他引:11 下载免费PDF全文
Replication of P1 plasmid requires both the plasmid-specific initiator, RepA, and the host initiator, DnaA. Here we show that DnaA can make the P1 origin reactive to the single-strand specific reagents KMnO4 and mung bean nuclease. Addition of RepA further increased the KMnO4 reactivity of the origin, although RepA alone did not influence the reaction. The increased reactivity implies that the two initiators interact in some way to alter the origin conformation. The KMnO4 reactivity was restricted to one strand of the origin. We suggest that the roles of DnaA in P1 plasmid and bacterial replication are similar: origin opening and loading of the DnaB helicase. The strand-bias in chemical reactivity at the P1 origin most likely indicates that only one of the strands is used for the loading of DnaB, a scenario consistent with the unidirectional replication of the plasmid. 相似文献
7.
The mechanisms by which bacterial plasmids and chromosomes are partitioned are largely obscure, but it has long been assumed that the molecules to be separated are initially paired, as are sister chromatids in mitosis. We offer in vivo evidence that the partition protein ParB encoded by the bacterial plasmid P1 can pair cis-acting partition sites of P1 inserted in a small, multicopy plasmid. ParB was shown previously to be capable of extensive spreading along DNA flanking the partition sites. Experiments in which ParB spreading was constrained by physical roadblocks suggest that extensive spreading is not required for the pairing process. 相似文献
8.
The role of the dna A protein in the replication of plasmid ColE1 and its derivatives was examined. Wild-type and mutant ColE1 plasmids were compared as to their ability to replicate in an in vitro replication system supplemented with ammonium sulfate fractionated extracts from a dnaA-overproducing strain. Synthesis on plasmid templates containing the wild-type origin of replication was stimulated 1.3-fold by addition of the dnaA-overproducing extract. A larger effect was observed after deletion of the primosome assembly site, the n' site, on the leading strand. On the latter template, synthesis was only about one-half that observed with the wild-type templates, but synthesis could be restored to normal levels by addition of the dnaA-overproducing fractions. When the n' site on the lagging strand of pBR322 was deleted, synthesis in the in vitro replication system was reduced to less than 10% of levels seen with intact templates. dnaA-overproducing extract did not restore activity since the dnaA site was also deleted on these plasmids. To verify that the observed stimulation of wild-type and leading strand n' site mutants was due to the dnaA protein, dnaA protein was purified to greater than 50% homogeneity, and antiserum was prepared. The purified protein stimulated synthesis on the plasmid templates to the same extent as the overproducing extracts, and dnaA antiserum blocked stimulation both by extracts and by the purified protein. Thus, dnaA protein, and, by inference, the dnaA recognition site at the ColE1 origin of replication seem to be important for ColE1 replication. The effect of dnaA protein is enhanced when the n'site is defective, suggesting that the dnaA protein plays a role similar to that of the proteins i, n, n', and n' in directing primosome assembly, as proposed by Seufert, W., and Messer, W. ((1987) Cell 48, 73-78). 相似文献
9.
10.
A single DnaA box is sufficient for initiation from the P1 plasmid origin. 总被引:17,自引:9,他引:8 下载免费PDF全文
The P1 plasmid replication origin requires the host DnaA protein for function. Two DnaA-binding boxes lie in tandem within the previously defined minimal origin, constituting its left boundary. Three more boxes lie 200 base pairs to the right of these, in the leader region for the P1 repA gene. We show that either set alone is active for origin function. One of the two origin boxes is relatively inactive. Constructs with just one of the five boxes are active for specific origin function as long as the box conforms exactly to the published consensus. This single consensus box is functional when placed either to the left or right of the core origin sequences. The flexibility shown by this system suggests that the boxes play a role different from those in the host oriC origin, where the number and position of boxes are critical. 相似文献
11.
Replication of ColE1 plasmid deoxyribonucleic acid in a thermosensitive dnaA mutant of Escherichia coli. 总被引:2,自引:1,他引:2 下载免费PDF全文
M Abe 《Journal of bacteriology》1980,141(3):1024-1030
The replication of ColE1 deoxyribonucleic acid (DNA) took place at the restrictive temperature in a dnaA mutant, dnaA167(Ts). It proceeded at a constant rate at 42 degrees C for at least 3 h. The replication was insensitive to rifampin, which blocked replication at the permissive temperature or in the presence of chloramphenicol, even at the restrictive temperature. A linear DNA strand of ColE1 longer than unit genome size was synthesized. The structure of the replicating molecules observed by electron microscopy was mostly sigma shaped, composed of a circle of a unit genome length with a double-stranded tail. These observations suggest that the replication of ColE1 DNA proceeds via a rolling-circle type of structure in the absence of dnaA function. 相似文献
12.
The P1 plasmid prophage is faithfully partitioned by a high affinity nucleoprotein complex assembled at the centromere-like parS site. This partition complex is composed of P1 ParB and Escherichia coli integration host factor (IHF), bound specifically to parS. We have investigated the assembly of ParB at parS and its stoichiometry of binding. Measured by gel mobility shift assays, ParB and IHF bind tightly to parS and form a specific complex, called I + B1. We observed that as ParB concentration was increased, a second, larger complex (I + B2) formed, followed by the formation of larger complexes, indicating that additional ParB molecules joined the initial complex. Shift Western blotting experiments indicated that the I + B2 complex contained twice as much ParB as the I + B1 complex. Using mixtures of ParB and a larger polyhistidine-tagged version of ParB (His-ParB) in DNA binding assays, we determined that the initial I + B1 complex contains one dimer of ParB. Therefore, one dimer of ParB binds to its recognition sequences that span an IHF-directed bend in parS. Once this complex forms, a second dimer can join the complex, but this assembly requires much higher ParB concentrations. 相似文献
13.
Three mutants of bacteriophage P1 affected in their ability to maintain the lysogenic state stably are described here. These mutants were normal in lytic growth, but lysogenic derivatives segregated nonlysogens at abnormally high rates (1 to 30% per division). Cells harboring these mutant prophages were elongated or filamentous. The mutations responsible for this prophage instability fell into two classes on the bases of their genetic location, their effect on the ability to lysogenize recA bacteria, and their suppressibility by ant mutations eliminating antirepressor activity. The two mutants that were able to form recA lysogens showed the same prophage instability and partial inhibition of cell division in recA as in rec+ lysogens. The fact that plasmid-linked mutations can cause prophage instability suggests that P1 codes for at least some of the functions determining its own autonomy and segregation. 相似文献
14.
P1 plasmid replication: replicon structure 总被引:21,自引:0,他引:21
Bacteriophage P1 lysogenizes Escherichia coli as a unit-copy plasmid. We have undertaken to define the plasmid-encoded elements implicated in P1 plasmid maintenance. We show that a 2081 base-pair fragment of the 90,000 base P1 plasmid confers the capacity for controlled plasmid replication. DNA sequence analysis reveals several open reading frames in this fragment. The largest is shown to encode a 32,000 Mr protein required for plasmid replication. The corresponding gene, repA, has been identified genetically. A set of five 19 base-pair repeats is located upstream from repA; a set of nine similar repeats is located immediately downstream from repA. Each set of repeats, when cloned into pBR322, exerts incompatibility towards a P1 replicon. The upstream set, designated incC, consists of direct repeats that are spaced about two turns of the DNA helix apart; the downstream set, designated incA, consists of nine repeats arranged three in one orientation and six in the other. Spacing between incA repeats were three or four turns of the helix apart. The organization of the plasmid maintenance regions of P1 and the unit-copy sex factor plasmid, F, is strikingly similar. Although the DNA sequences of this region in the two plasmids exhibit little homology, a 9 base-pair sequence that appears four times in the origin region of members of the Enterobacteriaceae also occurs twice as direct repeats in similar positions in P1 and F. This sequence, where it occurs in E. coli, has been postulated to be the binding site for the essential replication protein determined by dnaA. The dnaA protein appears not to be essential for the replication of either plasmid; therefore, the function of the sequence in P1 and F may be regulatory. 相似文献
15.
16.
The DnaA protein is essential for initiation of DNA replication in a wide variety of bacterial and plasmid replicons. The replication origin in these replicons invariably contains specific binding sites for the protein, called DnaA boxes. Plasmid P1 contains a set of DnaA boxes at each end of its origin but can function with either one of the sets. Here we report that the location of origin-opening, initiation site of replication forks and directionality of replication do not change whether the boxes are present at both or at one of the ends of the origin. Replication was bidirectional in all cases. These results imply that DnaA functions similarly from the two ends of the origin. However, origins with DnaA boxes proximal to the origin-opening location opened more efficiently and maintained plasmids at higher copy numbers. Origins with the distal set were inactive unless the adjacent P1 DNA sequences beyond the boxes were included. At either end, phasing of the boxes with respect to the remainder of the origin influenced the copy number. Thus, although the boxes can be at either end, their precise context is critical for efficient origin function. 相似文献
17.
18.
The partition operon of P1 plasmid encodes two proteins, ParA and ParB, required for the faithful segregation of plasmid copies to daughter cells. The operon is followed by a centromere analog, parS, at which ParB binds. ParA, a weak ATPase, represses the par promoter most effectively in its ADP-bound form. ParB can recruit ParA to parS, stimulate its ATPase, and significantly stimulate the repression. We report here that parS also participates in the regulation of expression of the par genes. A single chromosomal parS was shown to augment repression of several copies of the par promoter by severalfold. The repression increase was sensitive to the levels of ParA and ParB and to their ratio. The increase may be attributable to a conformational change in ParA mediated by the parS-ParB complex, possibly acting catalytically. We also observed an in cis effect of parS which enhanced expression of parB, presumably due to a selective modulation of the mRNA level. Although ParB had been earlier found to spread into and silence genes flanking parS, silencing of the par operon by ParB spreading was not significant. Based upon analogies between partitioning and septum placement, we speculate that the regulatory switch controlled by the parS-ParB complex might be essential for partitioning itself. 相似文献
19.
Heat shock proteins DnaJ, DnaK, and GrpE stimulate P1 plasmid replication by promoting initiator binding to the origin. 总被引:7,自引:2,他引:7 下载免费PDF全文
Binding of the P1-encoded protein RepA to the origin of P1 plasmid replication is essential for initiation of DNA replication and for autoregulatory repression of the repA promoter. Previous studies have shown defects in both initiation and repression in hosts lacking heat shock proteins DnaJ, DnaK, and GrpE and have suggested that these proteins play a role in the RepA-DNA binding required for initiation and repression. In this study, using in vivo dimethyl sulfate footprinting, we have confirmed the roles of the three heat shock proteins in promoting RepA binding to the origin. The defects in both activities could be suppressed by increasing the concentration of wild-type RepA over the physiological level. We also isolated RepA mutants that were effective initiators and repressors without requiring the heat shock proteins. These data suggest that the heat shock proteins facilitate both repression and initiation by promoting only the DNA-binding activity of RepA. In a similar plasmid, F, initiator mutants that confer heat shock protein independence for replication were also found, but they were defective for repression. We propose that the initiator binding involved in repression and the initiator binding involved in initiation are similar in P1 but different in F. 相似文献
20.
With the increasing utilization of plasmid DNA as a biopharmaceutical drug, there is a rapidly growing need for high quality plasmid DNA for drug applications. Although there are several different kinds of replication origins, ColE1-like replication origin is the most extensively used origin in biotechnology. This review addresses problems in upstream and downstream processing of plasmid DNA with ColE1-like origin as drug applications. In upstream processing of plasmid DNA, regulation of replication of ColE1-like origin was discussed. In downstream processing of plasmid DNA, we analyzed simple, robust, and scalable methods, which can be used in the efficient production of pharmaceutical-grade plasmid DNA. 相似文献