首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
We found that single-stranded DNA oligomers containing a 7, 8-dihydro-8-oxoguanine (8-oxo-G) residue have high reactivity toward KMnO4; the oxidation of 8-oxo-G induces damage to the neighboring nucleotide residues. This paper describes the novel reaction in detail, including experiments that demonstrate the mechanism involved in the induction of DNA damage. The results using DNAs of various base compositions indicated that damaged G, T and C (but not A) sites caused strand scissions after hot piperidine treatment and that the damage around the 8-oxo-G occurred at G sites in both single and double strands with high frequency. The latter substrates were less sensitive to damage. Further, kinetic studies of the KMnO4reaction of single-stranded oligomers suggested that thereactivity of the DNA bases at the site 5'-adjacent to the 8-oxo-G was in the order G >A >T, C. This preference correlates with the electron donating abilities of the bases. In addition, we found that the DNA damage at the G site, which was connected with the 8-oxo-G by a long abasic chain, was inhibited in the above order by the addition of dG, dA or dC. On the other hand, the damage reactions proceeded even after the addition of scavengers for active oxygen species. This study suggests the involvement of a redox process in the unique DNA damage initiated by the oxidation of the 8-oxo-G.  相似文献   

2.
Adenine residues in DNA are oxidized under the action of ionizing radiation at the C-8 position to give 7,8-dihydro-8-oxoadenine. The formation of this lesion can be considered a cause of mutations and carcinogenesis. Oligodeoxyribonucleotides 39 and 47 bases long containing a single 7,8-dihydro-8-oxoadenine (8-hydroxyadenine) residue were synthesized by using nucleoside phosphoramidites. They were used as templates to study the copies obtained in vitro by the Klenow fragment and the thermostable Taq DNA polymerase. 7,8-Dihydro-8-oxoadenine does not block the replication and thymine is incorporated opposite the damage. The modifications of the DNA duplex conformation provoked by 7,8-dihydro-8-oxoadenine are minor. 1H-NMR spectroscopy shows that the duplex is in a B form, the sugar in a normal position in the helix and the modified base in the anti position. NMR confirms that 7,8-dihydro-8-oxoadenine exists predominantly in the keto form.  相似文献   

3.
Tobacco smoke, recognized as a major etiological factor for cancers of the upper aerodigestive tract, represents an abundant source of reactive oxygen species (ROS), which are believed to play a significant role in mutagenesis and carcinogenesis. An additional source of ROS in tissues exposed to tobacco smoke may be metabolic oxidation of polycyclic aromatic hydrocarbons (PAH). To investigate the relationships between oxidative DNA lesions and aromatic DNA adducts, six modified DNA bases 5-hydroxyuracil, 5-hydroxycytosine, 7,8-dihydro-8-oxoguanine, 7,8-dihydro-8-oxoadenine, 2,6-diamino-4-hydroxy-5-formamidopyrimidine and 4,6-diamino-5-formamidopyrimidine and the total level of PAH-related DNA adducts were measured in cancerous and the surrounding normal larynx tissues (68 subjects), using gas chromatography/isotope-dilution mass spectroscopy with selected ion monitoring and the 32 P-postlabeling-HPLC assay, respectively. The levels of oxidative DNA lesions in cancerous and adjacent tissue were comparable; the differences between the two types of tissue were significant only for 5-hydroxypyrimidines (slightly higher levels were observed in the adjacent tissue). Comparable levels of DNA lesions in cancerous and the surrounding normal tissues observed in the larynx tumors support a field cancerization theory. The surrounding tissues may still be recognized as normal by histological criteria. However, molecular alterations resulting from the chronic tobacco smoke exposure, which equally affects larynx epithelia, may lead to multiple premalignant lesions. Thus, a demonstration of similar levels of DNA damage in cancerous and the adjacent tissue could explain a frequent formation of secondary tumors in the larynx and the frequent recurrence in this type of cancer. A weak, but distinct effect of tumor grading and metastatic status was observed in both kinds of tissue in the case of 5-hydroxyuracil, 5-hydroxycytosine, 7,8-dihydro-8-oxoguanine, 7,8-dihydro-8-oxoadenine. This effect was displayed as a gradual shift in the data distribution toward high values from G1 through G2-G3 and from non-metastatic to metastatic tumors. Since the levels of oxidative DNA base modifications tended to increase with the tumor aggressiveness, we postulate that the oxidative DNA lesions increase genetic instability and thus contribute to tumor progression in laryngeal cancer. No associations between aromatic adduct levels and oxidative DNA lesions were present, suggesting that the metabolism of PAH does not contribute significantly to the oxidative stress in larynx tissues, remaining the tobacco smoke ROS as a major source of oxidative DNA damage in the exposed tissue.  相似文献   

4.
Kim JE  Choi S  Yoo JA  Chung MH 《FEBS letters》2004,556(1-3):104-110
7,8-Dihydro-8-oxoguanine (8-oxoguanine; 8-oxo-G), one of the major oxidative DNA adducts, is highly susceptible to further oxidation by radicals. We confirmed the higher reactivity of 8-oxo-G toward reactive oxygen (singlet oxygen and hydroxyl radical) or nitrogen (peroxynitrite) species as compared to unmodified base. In this study, we raised the question about the effect of this high reactivity toward radicals on intramolecular and intermolecular DNA damage. We found that the amount of intact nucleoside in oligodeoxynucleotide containing 8-oxo-G decreased more by various radicals at higher levels of 8-oxo-G incorporation, and that the oligodeoxynucleotide damage and plasmid cleavage by hydroxyl radical were inhibited in the presence of 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxo-dG). We conclude that 8-oxo-G within DNA induces intramolecular DNA base damage, but that free 8-oxo-G protects intermolecular DNA from oxidative stress. These results suggest that 8-oxo-G within DNA must be rapidly released to protect DNA from overall oxidative damage.  相似文献   

5.
Tobacco smoke, recognized as a major etiological factor for cancers of the upper aerodigestive tract, represents an abundant source of reactive oxygen species (ROS), which are believed to play a significant role in mutagenesis and carcinogenesis. An additional source of ROS in tissues exposed to tobacco smoke may be metabolic oxidation of polycyclic aromatic hydrocarbons (PAH). To investigate the relationships between oxidative DNA lesions and aromatic DNA adducts, six modified DNA bases 5-hydroxyuracil, 5-hydroxycytosine, 7,8-dihydro-8-oxoguanine, 7,8-dihydro-8-oxoadenine, 2,6-diamino-4-hydroxy-5-formamidopyrimidine and 4,6-diamino-5-formamidopyrimidine and the total level of PAH-related DNA adducts were measured in cancerous and the surrounding normal larynx tissues (68 subjects), using gas chromatography/isotope-dilution mass spectroscopy with selected ion monitoring and the 32 P-postlabeling-HPLC assay, respectively. The levels of oxidative DNA lesions in cancerous and adjacent tissue were comparable; the differences between the two types of tissue were significant only for 5-hydroxypyrimidines (slightly higher levels were observed in the adjacent tissue). Comparable levels of DNA lesions in cancerous and the surrounding normal tissues observed in the larynx tumors support a field cancerization theory. The surrounding tissues may still be recognized as normal by histological criteria. However, molecular alterations resulting from the chronic tobacco smoke exposure, which equally affects larynx epithelia, may lead to multiple premalignant lesions. Thus, a demonstration of similar levels of DNA damage in cancerous and the adjacent tissue could explain a frequent formation of secondary tumors in the larynx and the frequent recurrence in this type of cancer. A weak, but distinct effect of tumor grading and metastatic status was observed in both kinds of tissue in the case of 5-hydroxyuracil, 5-hydroxycytosine, 7,8-dihydro-8-oxoguanine, 7,8-dihydro-8-oxoadenine. This effect was displayed as a gradual shift in the data distribution toward high values from G1 through G2-G3 and from non-metastatic to metastatic tumors. Since the levels of oxidative DNA base modifications tended to increase with the tumor aggressiveness, we postulate that the oxidative DNA lesions increase genetic instability and thus contribute to tumor progression in laryngeal cancer. No associations between aromatic adduct levels and oxidative DNA lesions were present, suggesting that the metabolism of PAH does not contribute significantly to the oxidative stress in larynx tissues, remaining the tobacco smoke ROS as a major source of oxidative DNA damage in the exposed tissue.  相似文献   

6.
Abstract

Herein we report the quantification of purine lesions arising from gamma-radiation sourced hydroxyl radicals (HO?) on tertiary dsDNA helical forms of supercoiled (SC), open circular (OC), and linear (L) conformation, along with single-stranded folded and non-folded sequences of guanine-rich DNA in selected G-quadruplex structures. We identify that DNA helical topology and folding plays major, and unexpected, roles in the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG) and 8-oxo-7,8-dihydro-2'-deoxyadenosine (8-oxo-dA), along with tandem-type purine lesions 5′,8-cyclo-2′-deoxyguanosine (5′,8-cdG) and 5′,8-cyclo-2′-deoxyadenosine (5′,8-cdA). SC, OC, and L dsDNA conformers together with folded and non-folded G-quadruplexes d[TGGGGT]4 (TG4T), d[AGGG(TTAGGG)3] (Tel22), and the mutated tel24 d[TTGGG(TTAGGG)3A] (mutTel24) were exposed to HO? radicals and purine lesions were then quantified via stable isotope dilution LC-MS/MS analysis. Purine oxidation in dsDNA follows L?>?OC???SC indicating greater damage towards the extended B-DNA topology. Conversely, G-quadruplex sequences were significantly more resistant toward purine oxidation in their unfolded states as compared with G-tetrad folded topologies; this effect is confirmed upon comparative analysis of Tel22 (~50% solution folded) and mutTel24 (~90% solution folded). In an effort to identify the accessibly of hydroxyl radicals to quadruplex purine nucleobases, G-quadruplex solvent cavities were then modeled at 1.33?Å with evidence suggesting that folded G-tetrads may act as potential oxidant traps to protect against chromosomal DNA damage.  相似文献   

7.
The horseradish-peroxidase(HRP)-catalyzed aerobic oxidation of aldehydes, in particular isobutanal, was used for the oxidative damage of DNA. In isolated calf-thymus DNA, the enzymatic oxidation of isobutanal led to 7,8-dihydro-8-oxoguanine (8-oxoGua) in up to 1.3% yield and appreciable single-strand breaks in supercoiled pBR 322 DNA. For the nucleoside dG, significant amounts of the guanidine-releasing products oxazolone and oxoimidazolidine have been detected, but 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxodG) was not obtained. Only enolizable aldehydes are effective, molecular oxygen is essential, and radical scavengers inhibit efficiently the oxidation. Comparative experiments with 3,3,4,4-tetramethyl-1,2-dioxetane (TMD) revealed that triplet-excited acetone does not play a significant role in this enzymatic DNA oxidation. 2-Hydroperoxy-2-methylpropanal, an intermediate in the HRP-catalyzed aerobic oxidation of isobutanal, does not contribute directly in the observed dG conversion. However, the peroxyl radical derived from the 2-hydroperoxy-2-methylpropanal appears to be active as oxidant because model studies with a structurally related peroxyl radical, produced by HRP-catalyzed one-electron oxidation of 3-hydroperoxy-3-methyl-2-butanone, causes both dG conversion and DNA strand breaks, but to a moderate extent. The active oxidant, as established by control experiments, is the peroxyisobutyric acid, that is efficiently formed through the HRP-catalyzed autoxidation of isobutanal. Still more effective is the acylperoxyl radical, conveniently generated from the peracid by one-electron oxidation by HRP.  相似文献   

8.
DNA damage blocks DNA polymerase progression and increases miscoding. In this study, we assessed the effects of specific lesions on Taq DNA polymerase fidelity and amplification efficiency. In the presence of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), Taq DNA polymerase inserted dCMP and to a lesser extent dAMP. 8-Oxo-7,8-dihydro-2'-deoxyadenosine (8-oxodA) instructed the incorporation of dTMP and caused a pronounced n-1 deletion not observed in other systems. The presence of an abasic lesion led to dAMP incorporation and n-1 deletions. In addition, we introduce the mean modified efficiency (MME) as a more precise method for determining PCR amplification efficiency of damaged templates. Using this method, we were able to quantify reductions in amplification efficiency of templates containing 8-oxodG (single or multiple), 8-oxodA, or abasic sites. Because the MME method can detect small reductions in amplification efficiency, it may be useful in comparing the extent of damage in environmentally degraded or archival DNA specimens.  相似文献   

9.
Activated human neutrophils secrete myeloperoxidase, which generates HOCl from H2O2 and Cl(-). We have found that various (2'-deoxy)nucleosides react with HOCl to form chlorinated (2'-deoxy)nucleosides, including novel 8-chloro(2'-deoxy)guanosine, 5-chloro(2'-deoxy)cytidine, and 8-chloro(2'-deoxy)adenosine formed in yields of 1.6, 1.6, and 0.2%, respectively, when 0.5 mM nucleoside reacted with 0.5 mM HOCl at pH 7.4. The relative chlorination, oxidation, and nitration activities of HOCl, myeloperoxidase, and activated human neutrophils in the presence and absence of nitrite were studied by analyzing 8-chloro-, 8-oxo-7,8-dihydro-, and 8-nitro-guanosine, respectively, using guanosine as a probe. 8-Chloroguanosine was always more easily formed than 8-oxo-7,8-dihydro- or 8-nitro-guanosine. Using electrospray ionization tandem mass spectrometry, we show that several chlorinated nucleosides including 8-chloro(2'-deoxy)guanosine are formed following exposure of isolated DNA or RNA to HOCl. Micromolar concentrations of tertiary amines such as nicotine and trimethylamine dramatically enhanced chlorination of free (2'-deoxy)nucleosides and nucleosides in RNA by HOCl. As the G-463A polymorphism of the MPO gene, which strongly reduces myeloperoxidase mRNA expression, is associated with a reduced risk of lung cancer, chlorination damage of DNA /RNA and nucleosides by myeloperoxidase and its enhancement by nicotine may be important in the pathophysiology of human diseases associated with tobacco habits.  相似文献   

10.
Yadavilli S  Hegde V  Deutsch WA 《DNA Repair》2007,6(10):1453-1462
Besides its role in translation and ribosome maturation, human ribosomal protein S3 (hS3) is implicated in DNA damage recognition as reflected by its affinity for abasic sites and 7,8-dihydro-8-oxoguanine (8-oxoG) residues in DNA in vitro. Here, we demonstrate that hS3 is capable of carrying out both roles by its ex vivo translocation from the cytoplasm to the nucleus as a consequence of genotoxic stress. The translocation of hS3 is dependent on ERK1/2-mediated phosphorylation of a threonine residue (T42) of hS3. Two different ectopically expressed site-directed mutants of T42 failed to respond to conditions of genotoxic stress, thus providing a link between DNA damage and ERK1/2 dependent phosphorylation of hS3. Lastly, hS3 was traced in exposed cells to its co-localization with 8-oxoG foci, raising the possibility that hS3 is a member of a cellular DNA damage response pathway that results in its interaction with sites of DNA damage.  相似文献   

11.
It is now well established that oxidation of 2'-deoxyguanosine (dGuo) in DNA by singlet molecular oxygen [O2 (1Delta(g))] produces 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo), whereas the main degradation products of free dGuo in aqueous solution have been identified as the two diastereomers of spiroiminodihydantoin nucleoside. Interestingly, O2 (1Delta(g))-mediated oxidation of free 8-oxodGuo gives rise to a pattern of degradation products that is different from that observed when the nucleoside is inserted into DNA. The reasons for these differences and the mechanisms involved in the oxidation reactions are not yet completely understood for either dGuo or 8-oxodGuo, either free or within DNA. In the present work, we report a study of the reaction of O2 (1Delta(g)) toward a modified nucleoside, 8-methoxy-2'-deoxyguanosine (8-MeOdGuo), either free or incorporated into an oligonucleotide. The reason for the choice of 8-MeOdGuo as a chemical model to study in more detail the oxidation pathways of 8-oxodGuo or, more precisely, of the tautomeric 8-hydroxy-2'-deoxyguanosine was dictated by the fact that only the 7,8-enolic tautomer is present in the molecule. The thermolysis of an endoperoxide of a naphthalene derivative as a clean chemical source of 18O-labeled O2 (1Delta(g)) was used to oxidize 8-MeOdGuo. The main O2 (1Delta(g)) oxidation products that were separated and analyzed by HPLC coupled to tandem mass spectrometry were identified as the 2'-deoxyribonucleoside derivatives of 2,2,4-triamino-5-(2H)oxazolone, 2,5-diamino-4H-imidazol-4-one together with the methyl-substituted derivatives of spiroiminodihydantoin, oxidized iminoallantoin and urea. On the other hand, O2 (1Delta(g)) oxidation of 8-MeOdGuo-containing oligonucleotide generated imidazolone as the predominant degradation product. These results provided new mechanistic insights into the reactions of O2 (1Delta(g)) with purine nucleosides.  相似文献   

12.
8-Oxo-7,8-dihydroguanine (8-hydroxyguanine) is oxidized more easily than normal nucleobases, which can produce spiroiminodihydantoin (Sp) and guanidinohydantoin (Gh). These secondary oxidation products of 8-oxo-7,8-dihydroguanine are highly mutagenic when formed within DNA. To evaluate the mutagenicity of the corresponding oxidation products of 8-oxo-7,8-dihydro-2'-deoxyguanosine 5'-triphosphate (8-hydroxy-2'- deoxyguanosine 5'-triphosphate) in the nucleotide pool, Escherichia coli cells deficient in the mutT gene were treated with H(2)O(2), and the induced mutations were analyzed. Moreover, the 2'-deoxyriboside 5'-triphosphate derivatives of Sp and Gh were also introduced into competent E. coli cells. The H(2)O(2) treatment of mutT E. coli cells resulted in increase of G:C → T:A and A:T → T:A mutations. However, the incorporation of exogenous Sp and Gh 2'-deoxyribonucleotides did not significantly increase the mutation frequency. These results suggested that the oxidation product(s) of 8-oxo-7,8-dihydro-2'-deoxyguanosine 5'-triphosphate induces G:C → T:A and A:T → T:A mutations, and that the 2'-deoxyriboside 5'-triphosphate derivatives of Sp and Gh exhibit quite weak mutagenicity, in contrast to the bases in DNA.  相似文献   

13.
Oxidative damage to DNA generates aberrant guanine bases such as 2,6-diamino-4-hydroxy-formamido-pyrimidine (Fapy) and 7,8-dihydro-8-oxoguanine (8-oxoG). Although synthetic oligonucleotides containing a single 8-oxoG have been widely used to study enzymatic processing of this lesion, the synthesis of oligonucleotides containing Fapy as a unique lesion has not been achieved to date. In this study, an oligonucleotide containing a single 2,6-diamino-4-hydroxy-5-(N-methyl)formamido-pyrimidine (me-Fapy, a methylated derivative of Fapy) was prepared by a DNA polymerase reaction and the subsequent alkali treatment. The repair activity of Fpg and hOGG1 proteins were compared using oligonucleotide substrates containing me-Fapy and 8-oxoG.  相似文献   

14.
Carcinogenic urethane (ethyl carbamate) forms DNA adduct via epoxide, whereas carcinogenic methyl carbamate can not. To clarify a mechanism independent of DNA adduct formation, we examined DNA damage induced by N-hydroxyurethane, a urethane metabolite, using 32P-5'-end-labeled DNA fragments. N-hydroxyurethane induced Cu(II)-mediated DNA damage especially at thymine and cytosine residues. DNA damage was inhibited by both catalase and bathocuproine, suggesting a role for H(2)O(2) and Cu(I) in DNA damage. Free (*) OH scavengers did not inhibit the DNA damage, although methional did inhibit it. These results suggest that reactive species, such as the Cu(I)-hydroperoxo complex, cause DNA damage. Formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) was increased by N-hydroxyurethane in the presence of Cu(II). When treated with esterase, N-hydroxyurethane induced 8-oxodG formation to a similar extent as that induced by hydroxylamine. Enhancement of DNA cleavages by endonuclease IV suggests that hydroxylamine induced depurination. Furthermore, hydroxylamine induced a significant increase in 8-oxodG formation in HL-60 cells but not in its H(2)O(2)-resistant clone HP 100 cells. o-Phenanthroline significantly inhibited the 8-oxodG formation in HL-60 cells, confirming the involvement of metal ions in the 8-oxodG formation by hydroxylamine. Electron spin resonance spectroscopy, utilizing Fe[N-(dithiocarboxy)sarcosine](3), demonstrated that nitric oxide (NO) was generated from hydroxylamine and esterase-treated N-hydroxyurethane. It is concluded that urethane may induce carcinogenesis through oxidation and, to a lesser extent, depurination of DNA by its metabolites.  相似文献   

15.
16.
Carcinogenic benzo[a]pyrene (BP) is generally considered to show genotoxicity by forming DNA adducts of its metabolite, BP-7,8-diol-9,10-epoxide. We investigated oxidative DNA damage and its sequence specificity induced by BP-7,8-dione, another metabolite of BP, using (32)P-5'-end-labeled DNA. Formamidopyrimidine-DNA glycosylase treatment induced cleavage sites mainly at G residues of 5'-TG-3' sequence and at poly(C) sequences, in DNA incubated with BP-7,8-dione in the presence of NADH and Cu(II), whereas piperidine treatment induced cleavage sites at T mainly of 5'-TG-3'. BP-7,8-dione strongly damaged the G and C of the ACG sequence complementary to codon 273 of the p53 gene. Catalase and a Cu(I)-specific chelator attenuated the DNA damage, indicating the involvement of H(2)O(2) and Cu(I). BP-7,8-dione with NADH and Cu(II) also increased 8-oxo-7,8-dihydro-2'-deoxyguanosine formation. We conclude that oxidative DNA damage, especially double base lesions, may participate in the expression of carcinogenicity of BP in addition to DNA adduct formation.  相似文献   

17.
Mechanism of oxidative DNA damage repair and relevance to human pathology   总被引:1,自引:0,他引:1  
Since DNA is prone to oxidative attack cells have evolved multiple protective strategies to prevent the deleterious effects of DNA oxidation. Base excision repair is the major mechanism for repair of DNA base damage by reactive oxygen species but recent evidence indicate that nucleotide excision repair proteins, that are mutated in human syndromes, are involved too. The mechanisms of repair dealing with the direct oxidation of DNA will be reviewed taking as prototype the oxidized base 7,8-dihydro-8-hydroxyguanine. The function of the individual repair components as inferred from model mice indicate that the ablation of two gene functions is mostly required to lead to accumulation of oxidative DNA damage, mutagenesis and cancer development. The recent identification of human diseases associated with mutations in oxidative damage repair show that defects in this pathway may lead to increased cancer but their major causative role seems to be in neurological diseases.  相似文献   

18.
Hegde V  Wang M  Deutsch WA 《DNA Repair》2004,3(2):121-126
The human ribosomal protein S3 (hS3) possesses multifunctional activities that are involved in both protein translation, as well as the ability of cleaving apurinic/apyrimidinic (AP) DNA via a beta-elimination reaction. We recently showed that hS3 also has a surprising binding affinity for an 7,8-dihydro-8-oxoguanine (8-oxoG) residue embedded in a 5' end labeled 37mer DNA oligonucleotide. To understand the interaction of hS3 and DNA templates containing 8-oxoG, we carried out real-time analysis using surface plasmon resonance (SPR). Notably, hS3 was found to have an apparent three orders of magnitude higher binding affinity (KD) for 8-oxoG than the human N-glycosylase/AP lyase base excision repair (BER) enzyme OGG1. An even more dramatic five orders of magnitude higher binding affinity for AP DNA was found for hS3 as opposed to hOGG1. These results suggest that ribosomal protein hS3 may have a multifunctional role that may also affect functions associated with DNA base excision repair transactions.  相似文献   

19.
《Free radical research》2013,47(5):369-380
Reaction of nitric oxide with superoxide anion produces the highly reactive species peroxynitrite (ONOO?). This compound has been shown to be a strong oxidant of lipids and proteins. However, no data are available on its effect on DNA, with the exception of the induction of strand breaks. We report the result of studies on the reactions of peroxynitrite with the adenine and guanine moieties of nucleosides and isolated DNA. The samples were analyzed for 8-oxo-7,8-dihydro-2′-deoxyguano-sine (8-oxo-dGuo), 2,2-diamino-4–[(2-deoxy-β-D-erythro-pentofuranosyl)amino]-5–(2H)-oxazolone (oxazolone) and 8-oxo-7,8-dihydro-2′-deoxyadenosine (8-oxo-dAdo). The effects of peroxynitrite treatment were compared with those of ionizing radiation in aerated aqueous solution, chosen as a source of hydroxyl radicals. At the nucleoside level, both oxidizing conditions led to the formation of oxazolone and 8-oxo-dAdo. In addition, evidence was provided for the formation of the 4R* and 4S* diastereoisomers of 4-hydroxy-8-oxo-4,8-dihydro-2′-deoxyguanosine. The latter dGuo oxidation products were chosen as markers of the release of singlet oxygen (1O2) upon reaction of peroxynitrous acid with hydrogen peroxide. Oxidation of purine bases was then studied within isolated DNA. A significant increase in the level of 8-oxp-dGuo, oxazolone and 8-oxo-dAdo was observed within double stranded DNA upon exposure to γ-radiation. Oxazolone and 8-oxo-dAdo were formed upon peroxynitrite treatment but no significant increase in the amount of 8-oxo-dGuo was detected. These results showed that peroxynitrite exhibits oxidizing properties toward purine moieties both in nucleosides and isolated DNA. However, the significant differences in the oxidative damage distribution within DNA observed after exposure to γ radiation by comparison with peroxynitrite treatment questions the involvement of hydroxyl radicals as the main oxidizing species released by decomposition of peroxynitrous acid.  相似文献   

20.
5-Aminolevulinic acid (ALA) is a heme precursor that accumulates in lead poisoning and inborn porphyrias. It has been shown to produce reactive oxygen species upon metal-catalyzed aerobic oxidation and to cause oxidative damage to proteins, liposomes, DNA, and subcellular structures. Studies have also shown that ALA may condense to yield the cyclic product 3,6-dihydropyrazine-2,5-dipropanoic acid (DHPY). Here we propose that DHPY could be involved in DNA damage in the presence of high concentrations of ALA. Exposure of plasmid pUC19 DNA to low concentrations of DHPY (2-10 microM) in the presence of 0.1 mM Cu2+ ions causes DNA strand breaks, as demonstrated by agarose gel electrophoresis. It was also shown that in the presence of Cu2+ ions DHPY is able to increase the oxidation of monomeric 2'-deoxyguanosine to form 8-oxo-7,8-dihydro-2'-deoxyguanosine as inferred from high performance liquid chromatography measurements using electrochemical detection. Addition of a metal chelator (bathocuproine, 0.5 mM), the DNA compacting polyamines spermidine (1 mM) and spermine (1 mM) or antioxidant enzymes such as superoxide dismutase (10 microg/ml) and catalase (20 pg/ml) protect the DNA against these damages. The data presented here are discussed with respect to the increased frequency of liver cancer in patients with acute intermittent porphyria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号