首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The primosome is a mobile multiprotein DNA replication-priming apparatus that requires seven Escherichia coli proteins (replication factor Y (protein n'), proteins n and n", and the products of the dnaB, dnaC, dnaT, and dnaG genes) for assembly at a specific site (termed a primosome assembly site) on single-stranded DNA binding protein-coated single-stranded DNA. Two of the protein components of the primosome have intrinsic DNA helicase activity. The DNA B protein acts in the 5'----3' direction, whereas factor Y acts in the 3'----5' direction. The primosome complex has DNA helicase activity when present at a replication fork in conjunction with the DNA polymerase III holoenzyme. In this report, evidence is presented that the multiprotein primosome per se can act as a DNA helicase in the absence of the DNA polymerase III holoenzyme. The primosome DNA helicase activity can be manifested in either direction along the DNA strand. The directionality of the primosome DNA helicase activity is modulated by the concentration and type of nucleoside triphosphate present in the reaction mixture. This DNA helicase activity requires all the preprimosomal proteins (the primosomal proteins minus the dnaG-encoded primase). Preprimosome complexes must assemble at a primosome assembly site in order to be loaded onto the single-stranded DNA and act subsequently as a DNA helicase. The 5'----3' primosome DNA helicase activity requires a 3' single-stranded tail on the fragment to be displaced, while the 3'----5' activity does not require a 5' single-stranded tail on the fragment to be displaced. Multienzyme preprimosomes moving in either direction are capable of associating with the primase to form complete primosomes that can synthesize RNA primers.  相似文献   

2.
A DNA replication system was developed that could generate rolling-circle DNA molecules in vitro in amounts that permitted kinetic analyses of the movement of the replication forks. Two artificial primer-template DNA substrates were used to study DNA synthesis catalyzed by the DNA polymerase III holoenzyme in the presence of either the preprimosomal proteins (the primosomal proteins minus the DNA G primase) and the Escherichia coli single-stranded DNA binding protein or the DNA B helicase alone. Helicase activities have recently been demonstrated to be associated with the primosome, a mobile multiprotein priming apparatus that requires seven E. coli proteins (replication factor Y (protein n'), proteins n and n', and the products of the dnaB, dnaC, dnaG, and dnaT genes) for assembly, and with the DNA B protein. Consistent with a rolling-circle mechanism in which a helicase activity permitted extensive (-) strand DNA synthesis on a (+) single-stranded, circular DNA template, the major DNA products formed were multigenome-length, single-stranded, linear molecules. The replication forks assembled with either the preprimosome or the DNA B helicase moved at the same rate (approximately 730 nucleotides/s) at 30 degrees C and possessed apparent processivities in the range of 50,000-150,000 nucleotides. The single-stranded DNA binding protein was not required to maintain this high rate of movement in the case of leading strand DNA synthesis catalyzed by the DNA polymerase III holoenzyme and the DNA B helicase.  相似文献   

3.
J M Jones  H Nakai 《The EMBO journal》1997,16(22):6886-6895
Initiation of Escherichia coli DNA synthesis primed by homologous recombination is believed to require the phiX174-type primosome, a mobile priming apparatus assembled without the initiator protein DnaA. We show that this primosome plays an essential role in bacteriophage Mu DNA replication by transposition. Upon promoting transfer of Mu ends to target DNA, the Mu transpososome undergoes transition to a pre-replisome that permits initiation of DNA synthesis only in the presence of primosome assembly proteins PriA, DnaT, DnaB and DnaC. These assembly proteins promote the engagement of primase and DNA polymerase III holoenzyme, initiating semi-discontinuous replication preferentially at the Mu left end. The results indicate that these proteins play a crucial role in promoting replisome assembly on a recombination intermediate.  相似文献   

4.
Many of the proteins that operate at the replication fork in Escherichia coli have been defined genetically. These include some of the subunits of the DNA polymerase III holoenzyme, the DnaB replication fork helicase, and the DnaG primase. The multiprotein primosome (which includes the DnaB and DnaG proteins), defined biochemically on the basis of its requirement during bacteriophage phi X174 complementary-strand synthesis, could serve as the helicase-primase replication machine on the lagging-strand template. In order to determine if this is the case, we have begun an investigation of the phenotypes of mutants with mutations priA, priB, and priC, which encode the primosomal proteins factor Y (protein n'), n, and n", respectively. Inactivation of priA by insertional mutagenesis resulted in the induction of the SOS response, as evinced by induction of a resident lambda prophage, extreme filamentation, and derepression of an indicator operon in which beta-galactosidase production was controlled by the dinD1 promoter. In addition, the copy numbers of resident pBR322 plasmids were reduced four- to fivefold in these strains, and production of phi X174 phage was delayed considerably. These results are discussed in the context of existing models for SOS induction and possible roles for the PriA protein at the replication fork in vivo.  相似文献   

5.
A priming mechanism requiring dnaA, dnaB, and dnaC proteins operates on a single-stranded DNA coated with single-stranded DNA-binding protein. This novel priming, referred to as "ABC-priming," requires a specific hairpin structure whose stem carries a dnaA protein recognition sequence (dnaA box). In conjunction with primase and DNA polymerase III holoenzyme, ABC-priming can efficiently convert single-stranded DNA into the duplex replicative form. dnaA protein specifically recognizes and binds the single-stranded hairpin and permits the loading of dnaB protein to form a prepriming protein complex containing dnaA and dnaB proteins which can be physically isolated. ABC-priming can replace phi X174 type priming on the lagging strand template of pBR322 in vitro, suggesting a possible function of ABC-priming for the lagging strand synthesis and duplex unwinding. Similar to the phi X174 type priming, a mobile nature of ABC-priming was indicated by helicase activity in the presence of ATP of a prepriming protein complex formed at the hairpin. The implications of this novel priming in initiation of replication at the chromosomal origin, oriC, and in its contribution to the replication fork are discussed.  相似文献   

6.
The multi-functional PriA protein of Escherichia coli (formerly replication factor Y or protein n') serves to guide the ordered assembly of the primosome, a mobile multiprotein replication priming/helicase complex. Primosome assembly is essential for bacteriophage OX174 complementary DNA strand synthesis and ColE1-type plasmid replication reconstituted in vitro with purified proteins. The biochemical activities of the primosome suggest that it can fulfill the primase/helicase requirement on the lagging-strand DNA template during cellular DNA replication. However, reconstruction in vitro of DNA replication of small plasmids containing the E. coli origin of DNA replication (oriC) does not require the complete complement of primosomal proteins. Thus, the extent to which PriA-catalysed primosome assembly participates in chromosomal replication has remained unclear. The recent isolation of the genes encoding PriA, PriB (protein n), PriC (protein n"), and DnaT (protein i) has provided the necessary tools for addressing this issue. The phenotype of mutations in these genes, and other results described in this review, suggest that assembly of the primosome catalysed by PriA does in fact contribute at some stage to normal cellular DNA replication. A model for primososme-catalysed reactivation of a dysfunctional replication fork is discussed.  相似文献   

7.
An M13 phage deletion mutant, M13 delta E101, developed as a vector for selecting DNA sequences that direct DNA strand initiation on a single-stranded template, has been used for cloning restriction enzyme digests of phi X174 replicative-form DNA. Initiation determinants, detected on the basis of clear-plaque formation by the chimeric phage, were found only in restriction fragments containing the unique effector site in phi X174 DNA for the Escherichia coli protein n' dATPase (ATPase). Furthermore, these sequences were functional only when cloned in the orientation in which the phi X174 viral strand was joined to the M13 viral strand. A 181-nucleotide viral strand fragment containing this initiation determinant confers a phi X174-type complementary-strand replication mechanism on M13 chimeras. The chimeric phage is converted to the parental replicative form in vivo by a mechanism resistant to rifampin, a specific inhibitor of the normal RNA polymerase-dependent mechanism of M13. In vitro, the chimeric single-stranded DNA promotes the assembly of a functional multiprotein priming complex, or primosome, identical to that utilized by intact phi X174 viral strand DNA. Chimeric phage containing the sequence complementary to the 181-nucleotide viral strand sequence shows no initiation capability, either in vivo or in vitro.  相似文献   

8.
Protein i, one of seven Escherichia coli proteins essential for primosome initiation of DNA chains in the in vitro conversion of single-stranded phi X174 DNA to duplex replicative form, has been purified approximately 15,000-fold to more than 98% purity. The protein is an oligomer of 22,000-dalton subunits migrating as a single electrophoretic band on native, as well as on denaturing polyacrylamide gels. Estimates of a Stokes radius of 41 A, a sedimentation coefficient of 3.5 S, a Mr = 61,000, and a frictional coefficient of 1.57 suggest that native protein i is a highly asymmetric oligomer composed of three identical subunits. About 50 such molecules are present/cell. Cross-linking the protein with dimethylsuberimidate or dimethyladipimidate produced three major bands corresponding to the monomer, dimer, and trimer, as well as two minor bands corresponding to the tetramer and pentamer. Incorporation of 3H-labeled "trimeric" protein i into the prepriming replication intermediate (primosome) occurs at a stage requiring participation of dnaB and dnaC proteins, and follows the actions of proteins n, n', and n". After extension of primers by DNA polymerase III holoenzyme, protein i is not retained in the isolated primosome complex. Thus, protein i is essential in the assembly of a functional primosome, but its precise physiologic role and genetic locus are still unknown.  相似文献   

9.
10.
Studies with a rolling-circle DNA replication system reconstituted in vitro with a tailed form II DNA template, the DNA polymerase III holoenzyme (Pol III HE), the Escherichia coli single-stranded DNA binding protein, and the primosome, showed that within the context of a replication fork, the oligoribonucleotide primers that were formed were limited to a length in the range of 9 to 14 nucleotides, regardless of whether they were subsequently elongated by the lagging-strand DNA polymerase. This is in contrast to the 8-60-nucleotide-long primers synthesized by the primosome in the absence of DNA replication on a bacteriophage phi X174 DNA template, although when primer synthesis and DNA replication were catalyzed concurrently in this system, the extent of RNA polymerization decreased. As described in this report, we therefore examined the effect of the DNA Pol III HE on the length of primers synthesized by primase in vitro in the absence of DNA replication. When primer synthesis was catalyzed either: i) by the primosome on a phi X174 DNA template, ii) by primase on naked DNA with the aid of the DnaB protein (general priming), or iii) by primase alone at the bacteriophage G4 origin, the presence of the DNA Pol III HE in the reaction mixtures resulted in a universal reduction in the length of the heterogeneous RNA products to a uniform size of approximately 10 nucleotides. dNTPs were not required, and the addition of dGMP, an inhibitor of the 3'----5' exonuclease of the DNA Pol III HE, did not alter the effect; therefore, neither the 5'----3' DNA polymerase activity nor the 3'----5' exonuclease activity of the DNA Pol III HE was involved. E. coli DNA polymerase I, and the DNA polymerases of bacteriophages T4 and T7 could not substitute for the DNA Pol III HE. The Pol III core plays a crucial role in mediating this effect, although other subunits of the DNA Pol III HE are also required. These observations suggest that the association of primase with the DNA Pol III HE during primer synthesis regulates its catalytic activity and that this regulatory interaction occurs independently of, and prior to, formation of a preinitiation complex of the DNA Pol III HE on the primer terminus.  相似文献   

11.
Cloning of the phi X174 viral origin of replication into phage M13mp8 produced an M13-phi X174 chimera, the DNA of which directed efficient replicative-form----single-strand rolling-circle replication in vitro. This replication assay was performed with purified phi X174-encoded gene A protein, Escherichia coli rep helicase, single-stranded DNA-binding protein, and DNA polymerase III holoenzyme. The nicking of replicative-form I (RFI) DNA by gene A protein was essentially unaffected by the presence of UV lesions in the DNA. However, unwinding of UV-irradiated DNA by the rep helicase was inhibited twofold as compared with unwinding of the unirradiated substrate. UV irradiation of the substrate DNA caused a strong inhibition in its ability to direct DNA synthesis. However, even DNA preparations that contained as many as 10 photodimers per molecule still supported the synthesis of progeny full-length single-stranded DNA. The appearance of full-length radiolabeled products implied at least two full rounds of replication, since the first round released the unlabeled plus viral strand of the duplex DNA. Pretreatment of the UV-irradiated DNA substrate with purified pyrimidine dimer endonuclease from Micrococcus luteus, which converted photodimer-containing supercoiled RFI DNA into relaxed, nicked RFII DNA and thus prevented its replication, reduced DNA synthesis by 70%. Analysis of radiolabeled replication products by agarose gel electrophoresis followed by autoradiography revealed that this decrease was due to a reduction in the synthesis of progeny full-length single-stranded DNA. This implies that 70 to 80% of the full-length DNA products produced in this system were synthesized on molecules that carried photodimers. Thus, similarly to its activity on UV-irradiated single-stranded DNA, DNA polymerase III holenzyme can bypass pyrimidine photodimers in the more complex replicative form --->single-strand replication, which involves, in addition to the polymerizing activity, the unwinding of the duplex by the rep helicase and the participation of a more complex multiprotein replisome.  相似文献   

12.
Protein n, essential in forming the primosome for the in vitro conversion of phi X174 single-stranded (SS) DNA to the duplex replicative form (RF), has been purified about 5000-fold to near homogeneity from Escherichia coli. Protein n is heat- and acid-resistant and N-ethyl-maleimide-sensitive. It appears to be a dimer of 12,000 (+/- 2000)-dalton polypeptides. About 80 molecules of protein n are present/cell. Protein n binding to phi X SS DNA depends on the presence of single-strand binding protein (SSB). This requirement for SSB reflects a direct interaction of protein n and SSB. About 30 protein n monomers can be bound to an SSB-coated circle. However, in forming the primosome on an SSB-coated phi X circle, an input of only 2-3 protein n monomers is required and 1 monomer bound/circle. Retention of this low level of protein n on SSB-coated phi X SS DNA is dependent upon protein n', a DNA-dependent ATPase (dATPase) that guides primosome assembly. This single protein n monomer is retained in the assembled primosome, which is conserved on the completed parental RF and participates in the next stage of the replicative cycle, production of progeny RF.  相似文献   

13.
The Escherichia coli DNA replication proteins n and n" function in vitro in the assembly of the primosome, a mobile multiprotein replication priming complex thought to operate on the lagging-strand template at the E. coli DNA replication fork. Both proteins have been purified from E. coli HMS83 cells based on their requirement for the reconstitution of bacteriophage phi X174 complementary strand DNA synthesis in vitro with purified proteins. As a step toward understanding the role of these proteins in vivo, the genes for primosomal proteins n and n", designated priB and priC, respectively, have been cloned molecularly. priB encodes a 104-amino acid 11.4-kDa polypeptide and corresponds to an previously identified open reading frame between rpsF and rps R within a ribosomal protein operon at 95.5 min on the E. coli chromosome. priC encodes a 175-amino acid 20.3-kDa polypeptide. These two gene products were overexpressed at least 1000-fold in E. coli using a bacteriophage T7 transient expression system. Both proteins have been purified to apparent homogeneity from extracts prepared from these overproducing strains.  相似文献   

14.
The protein product of the rep gene of Escherichia coli is required for the replication of certain bacteriophage genomes (phi X174, fd, P2) and for the normal replication of E. coli DNA. We have used a specialized transducing phage, lambda p rep+, which complements the defect of rep mutants, to identify the rep protein. The rep protein has been purified from cells infected with lambda p rep+ phage; it has a molecular weight of about 70 000 and appears similar to the protein found in normal cells. Stimulation of phi X174 replicative form DNA synthesis in vitro was observed when highly purified rep protein was supplied to a cell extract derived from phi X-infected E. coli rep cells and supplemented with replicative form DNA. The purified protein has a single-stranded DNA-dependent ATPase activity and is capable of sensitizing duplex DNA to nucleases specific for single-stranded DNA. For this reason we propose the enzyme be called DNA helicase III. We infer that the rep protein uses the energy of hydrolysis of ATP to separate the strands of duplex DNA; the E. coli DNA binding protein need not be present. The rep3 mutant appeared to make a limited amount of active rep protein.  相似文献   

15.
Masai H  Deneke J  Furui Y  Tanaka T  Arai KI 《Biochimie》1999,81(8-9):847-857
The E. coli PriA protein, a DEXH-type DNA helicase with unique zinc finger-like motifs interrupting the helicase domains, is an essential component of the phiX174-type primosome and plays critical roles in RecA-dependent inducible and constitutive stable DNA replication (iSDR and cSDR, respectively) as well as in recombination-dependent repair of double-stranded DNA breaks. B. subtilis PriA (BsPriA) protein contains the conserved helicase domains as well as zinc finger-like motifs with 34% overall identity with the E. coli counterpart. We overexpressed and purified BsPriA and examined its biochemical properties. BsPriA binds specifically to both n'-pas (primosome assembly site) and D-loop and hydrolyzes ATP in the presence of n'-pas albeit with a specific activity about 30% of that of E. coli PriA. However, it is not capable of supporting n'-pas-dependent replication in vitro, nor is it able to support ColE1-type plasmid replication in vivo which requires the function of the phiX174-type primosome. We also show that a zinc finger mutant is not able to support recombination-dependent DNA replication, as measured by the level of iSDR after a period of thymine starvation, nor wild-type level of growth, cell morphology and UV resistance. Unexpectedly, we discovered that an ATPase-deficient mutant (K230D) is not able to support iSDR to a full extent, although it can restore normal growth rate and UV resistance as well as non-filamentous morphology in priA1::kan mutant. K230D was previously reported to be fully functional in assembly of the phiX174-type primosome at a single-stranded n'-pas. Our results indicate that ATP hydrolysis/ helicase activity of PriA may be specifically required for DNA replication from recombination intermediates in vivo.  相似文献   

16.
Conversion of phi X174 viral, single-stranded circular DNA to the duplex replicative form (RF), previously observed with partially purified enzymes, has now been demonstrated with the participation of 12 nearly pure Escherichia coli proteins containing approximately 30 polypeptides. To complete the synthesis of a full length complementary strand, E. coli DNA polymerase I was needed to fill the short gap left by DNA polymerase III holoenzyme, and to remove the primer and replace it with DNA. Production of supercoiled RF required the further actions of E. coli DNA ligase and gyrase. Net synthesis of viral circles was obtained by coupling the formation of RF supercoils to the actions of the phi X174-encoded gene A protein and E. coli rep protein. Viral DNA circles produced from enzymatically synthesized supercoiled RF, serving as template-substrate, were indistinguishable from those produced from RF isolated from infected cells; synthetic RF and the viral circles generated from it by replication were as biologically active in transfection of spheroplasts as the forms obtained from infected cells and virions. The conversion of single-stranded circular DNA to RF is suggested here as a model for discontinuous synthesis of the lagging strand of the E. coli chromosome. The primosome, a complex of some of the replication proteins responsible for initiations of DNA chains, will be described elsewhere. Multiplication of RF supercoils, described in the succeeding paper, proceeds by a rolling-circle mechanism in which the synthesis of viral strands may have analogies to the continuous synthesis of the leading strand of the E. coli chromosome.  相似文献   

17.
Primosome assembly site in Bacillus subtilis.   总被引:4,自引:0,他引:4       下载免费PDF全文
C Bruand  S D Ehrlich    L Jannière 《The EMBO journal》1995,14(11):2642-2650
A single-strand initiation site was detected on the Enterococcus faecalis plasmid pAM beta 1 by its ability to prevent accumulation of single stranded DNA of a rolling circle plasmid, both in Bacillus subtilis and Staphylococcus aureus. This site, designated ssiA, is located on the lagging strand template, approximately 150 bp downstream from the replication origin. ssiA priming activity requires the DnaE primase, the DnaC replication fork helicase, as well as the products of the dnaB, dnaD and dnaI genes of B.subtilis, but not the RNA polymerase. The primase and the replication fork helicase requirements indicate that ssiA is a primosome assembly site. Interestingly, the pAM beta 1 lagging strand synthesis is inefficient when any of the proteins involved in ssiA activity is mutated, but occurs efficiently in the absence of ssiA. This suggests that normal plasmid replication requires primosome assembly and that the primosome can assemble not only at ssiA but also elsewhere on the plasmid. This work for the first time describes a primosome in a Gram-positive bacterium. Involvement of the B.subtilis proteins DnaB, DnaD and DnaI, which do not have any known analogue in Escherichia coli, raises the possibility that primosome assembly and/or function in B.subtilis differs from that in E.coli.  相似文献   

18.
The DNA sequence of 30 nucleotides which surrounds the origin of viral strand DNA replication is highly conserved amongst the icosahedral single-stranded DNA bacteriophages. The A gene of these phages encodes a protein which is required for initiation and termination of viral strand DNA synthesis and acts as a nicking-closing activity specifically within this 30-nucleotide sequence. A system of purified Escherichia coli host proteins and phi X174 gene A protein has been developed which specifically replicates in vitro the viral strand of phi X174 from RF (replicative form) I template DNA and yields single-stranded circular DNA products (RF leads to SS(c) DNA replication system). Recombinant plasmids carrying inserts derived from phage phi X174 or G4 DNA which range in length from 49 to 1175 base pairs and contain the 30-nucleotide conserved sequence have been shown to support phi X A protein-dependent DNA synthesis in vitro in this replication system. We report here that insertion of the 30-nucleotide sequence alone into pBR322 allows the resulting recombinant plasmids to support phi X A protein-dependent in vitro DNA synthesis as efficiently as phi X174 template DNA in the RF leads to SS(c) replication system. The 30-nucleotide sequence functions as a fully wild type DNA replication origin as determined by the rate of DNA synthesis and the structure of resulting DNA products. Furthermore, the DNA sequence requirements for nicking of RF I DNA by the phi X A protein and for supporting replication origin function have been partially separated. Homology to positions 1, 29, and 30 of the 30-nucleotide conserved sequence are not required for cleavage of RF I DNA by the A protein; homology to position 1 but not 29 or 30 is required for efficient DNA replication.  相似文献   

19.
The dnaZ protein has been purified to near-homogeneity using an in vitro complementation assay that measures the restoration of activity in a crude enzyme fraction from the dnaZ mutant deficient in the replication of phi X174 DNA. Over 70-fold overproduction of the protein was obtained with a bacteriophage lambda lysogen carrying the dnaZ gene. The purified protein, under reducing and denaturing conditions, has a molecular weight of 52,000 and appears to be a dimer in its native form. The dnaZ protein is judged to be th 52,000-dalton gamma subunit of DNA polymerase III holoenzyme (McHenry, C., and Kornberg, A. (1977) J. Biol. Chem. 252, 6478-6484) for the following reasons: (i) highly purified DNA polymerase III holoenzyme contains a 52,000-dalton polypeptide and has dnaZ-complementing activity; (ii) the 52,000-dalton polypeptide is associated tightly with the DNA polymerase III holoenzyme and can be separated from the DNA polymerase III core only with severe measures; (iii) no other purified replication protein, among 14 tested, contains dnaZ protein activity; and (iv) the abundance of dnaZ protein, estimated at about 10 dimer molecules per Escherichia coli cell, is similar to that of the DNA polymerase III core. Among several circular templates tested in vitro (i.e. single stranded phi X174, G4 and M13 DNAs, and duplex phi X174 DNA), all rely on dnaZ protein for elongation by DNA polymerase III holoenzyme. The protein acts catalytically at a stoichiometry of one dimer per template.  相似文献   

20.
The role of the primosome assembly and protein n' recognition site in replication of pBR322 plasmid was examined. The following evidence indicates that the primosome is involved in lagging-strand synthesis of pBR322 plasmid replication in vitro. Early replicative intermediates with newly synthesized leading strand, approximately 1 kilobase pair long, immediately downstream of the replication origin accumulate in products synthesized in extracts from a dnaT strain that lacks primosomal protein i or in wild-type extracts supplemented with anti-protein i antibody. These intermediates are converted efficiently into full-length DNA by addition of purified protein i. Consistent with the previously proposed role of the primosome (Arai, K. and Kornberg, A. (1981) Proc. Natl. Acad. Sci. U. S. A. 78, 69-73), an n' site on the lagging strand, but not on the leading strand, is required for efficient replication of the plasmid in vitro. Plasmids lacking an n' site on the lagging strand replicate only to a limited extent in vitro and early replicative intermediates carrying nascent leading strands are accumulated, although a portion of the intermediates complete replication to yield full-length DNA. The latter reaction is completely inhibited by addition of anti-protein i antibody. Insertion of the n' site of phage phi X174 into pBR322 plasmids lacking lagging-strand n' sites restores the replicative ability of the mutant plasmid comparable to that of the wild-type plasmid. These results indicate that protein i is essential for lagging-strand synthesis of pBR322 plasmid in vitro and that it may play an important role in the priming events as a part of either an n' site-dependent primosome or an n' site-independent, as yet unidentified, priming complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号