首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To elucidate the regulation of kinetochore microtubules (kMTs) by kinetochore proteins in Saccharomyces cerevisiae, we need tools to characterize and compare stochastic kMT dynamics. Here we show that autoregressive moving average (ARMA) models, combined with a statistical framework for testing the significance of differences between ARMA model parameters, provide a sensitive method for identifying the subtle changes in kMT dynamics associated with kinetochore protein mutations. Applying ARMA analysis to G1 kMT dynamics, we found that 1), kMT dynamics in the kinetochore protein mutants okp1-5 and kip3Delta are different from those in wild-type, demonstrating the regulation of kMTs by kinetochore proteins; 2), the kinase Ipl1p regulates kMT dynamics also in G1; and 3), the mutant dam1-1 exhibits three different phenotypes, indicating the central role of Dam1p in maintaining the attachment of kMTs and regulating their dynamics. We also confirmed that kMT dynamics vary with temperature, and are most likely differentially regulated at 37 degrees C. Therefore, when elucidating the role of a protein in kMT regulation using a temperature-sensitive mutant, dynamics in the mutant at its nonpermissive temperature must be compared to those in wild-type at the same temperature, not to those in the mutant at its permissive temperature.  相似文献   

2.
We have probed single kinetochore microtubule (k-MT) dynamics in budding yeast in the G1 phase of the cell cycle by automated tracking of a green fluorescent protein tag placed proximal to the centromere on chromosome IV and of a green fluorescent protein tag fused to the spindle pole body protein Spc42p. Our method reliably distinguishes between different dynamics in wild-type and mutant strains and under different experimental conditions. Using our methods we established that in budding yeast, unlike in metazoans, chromosomes make dynamic attachments to microtubules in G1. This makes it possible to interpret measurements of centromere tag dynamics as reflecting k-MT dynamics. We have examined the sensitivity of our assay by studying the effect of temperature, exposure to benomyl, and a tubulin mutation on k-MT dynamics. We have found that lowering the temperature and exposing cells to benomyl attenuate k-MT dynamics in a similar manner. We further observe that, in contrast to previous reports, the mutant tub2-150 forms k-MTs that depolymerize faster than wild type. Based on these findings, we propose high-resolution light microscopy of centromere dynamics in G1 yeast cells as a sensitive assay for the regulation of single k-MT dynamics.  相似文献   

3.
Phenotypic analysis of temperature-sensitive yeast actin mutants   总被引:128,自引:0,他引:128  
P Novick  D Botstein 《Cell》1985,40(2):405-416
The consequences of two different mutations in the single essential actin structural gene of yeast (Saccharomyces cerevisiae) were studied. Both conditional-lethal actin mutants exhibit six phenotypes at the restrictive temperature: disruption of the asymmetric staining pattern of actin assembly; delocalized deposition of chitin on the cell surface; partial inhibition of secretion of the periplasmic protein, invertase; an intracellular accumulation of secretory vesicles; death of cells in the budded portion of the cell cycle upon prolonged incubation at the restrictive condition; and osmotic sensitivity. These results implicate actin in the organization and polarized growth of the yeast cell surface.  相似文献   

4.
One of the most intriguing aspects of mitosis is the ability of kinetochores to hold onto plus ends of microtubules that are actively gaining or losing tubulin subunits. Here, we show that CLASP1, a microtubule-associated protein, localizes preferentially near the plus ends of growing spindle microtubules and is also a component of a kinetochore region that we term the outer corona. A truncated form of CLASP1 lacking the kinetochore binding domain behaves as a dominant negative, leading to the formation of radial arrays of microtubule bundles that are highly resistant to depolymerization. Microinjection of CLASP1-specific antibodies suppresses microtubule dynamics at kinetochores and throughout the spindle, resulting in the formation of monopolar asters with chromosomes buried in the interior. Incubation with microtubule-stabilizing drugs rescues the kinetochore association with microtubule plus ends at the periphery of the asters. Our data suggest that CLASP1 is required at kinetochores for attached microtubules to exhibit normal dynamic behavior.  相似文献   

5.
A panel of seven SR1 tobacco mutants (ATER1 to ATER7) derived via T‐DNA activation tagging and screening for resistance to a microtubule assembly inhibitor, ethyl phenyl carbamate, were used to study the role of microtubules during infection and spread of tobacco mosaic virus (TMV). In one of these lines, ATER2, α‐tubulin is shifted from the tyrosinylated into the detyrosinated form, and the microtubule plus‐end marker GFP–EB1 moves significantly slower when expressed in the background of the ATER2 mutant as compared with the SR1 wild type. The efficiency of cell‐to‐cell movement of TMV encoding GFP‐tagged movement protein (MP‐GFP) is reduced in ATER2 accompanied by a reduced association of MP‐GFP with plasmodesmata. This mutant is also more tolerant to viral infection as compared with the SR1 wild type, implying that reduced microtubule dynamics confer a comparative advantage in face of TMV infection.  相似文献   

6.
We have previously identified the opium alkaloid noscapine as a microtubule interacting agent that binds stoichiometrically to tubulin and alters its conformation. Here we show that, unlike many other microtubule inhibitors, noscapine does not significantly promote or inhibit microtubule polymerization. Instead, it alters the steady-state dynamics of microtubule assembly, primarily by increasing the amount of time that the microtubules spend in an attenuated (pause) state. Further studies reveal that even at high concentrations, noscapine does not alter the tubulin polymer/monomer ratio in HeLa cells. Cells treated with noscapine arrest at mitosis with nearly normal bipolar spindles. Strikingly, although most of the chromosomes in these cells are aligned at the metaphase plate, the rest remain near the spindle poles, both of which exhibit loss of tension across kinetochore pairs. Furthermore, levels of the spindle checkpoint proteins Mad2, Bub1, and BubR1 decrease by 138-, 3.7-, and 3.9-fold, respectively, at the kinetochore region upon chromosome alignment. Our results thus suggest that an exquisite control of microtubule dynamics is required for kinetochore tension generation and chromosome alignment during mitosis. Our data also support the idea that Mad2 and Bub1/BubR1 respond to kinetochore-microtubule attachment and/or tension to different degrees.  相似文献   

7.
Rathinasamy K  Panda D 《The FEBS journal》2006,273(17):4114-4128
We found that benomyl, a benzimidazole fungicide, strongly suppressed the reassembly of cold-depolymerized spindle microtubules in HeLa cells. Benomyl perturbed microtubule-kinetochore attachment and chromosome alignment at the metaphase plate. Benomyl also significantly decreased the distance between the sister kinetochore pairs in metaphase cells and increased the level of the checkpoint protein BubR1 at the kinetochore region, indicating that benomyl caused loss of tension across the kinetochores. In addition, benomyl decreased the intercentrosomal distance in mitotic HeLa cells and blocked the cells at mitosis. Further, we analyzed the effects of benomyl on the signal transduction pathways in relation to mitotic block, bcl2 phosphorylation and induction of apoptosis. The results suggest that benomyl causes loss of tension across the kinetochores, blocks the cell cycle progression at mitosis and subsequently, induces apoptosis through the bcl2-bax pathway in a manner qualitatively similar to the powerful microtubule targeted anticancer drugs like the vinca alkaloids and paclitaxel. Considering the very high toxicity of the potent anticancer drugs and the low toxicity of benomyl in humans, we suggest that benomyl could be useful as an adjuvant in combination with the powerful anticancer drugs in cancer therapy.  相似文献   

8.
We have studied the capture of microtubules by isolated metaphase chromosomes, using microtubules stabilized with taxol and marked with biotin tubulin to distinguish their plus and minus ends. The capture reaction is reversible at both the plus and minus ends. The on rate of capture is the same for both polarities but the dissociation rate from the kinetochore is seven times slower with microtubules captured at their plus ends than those captured at their minus ends. At steady state this disparity in off rates leads to the gradual replacement of microtubules captured at their minus ends with those captured at their plus ends. These results suggest that the kinetochore makes a lateral attachment near the end of the microtubule in the initial capture reaction and shows a structural specificity that may be important in proper bipolar attachment of the chromosome to the spindle.  相似文献   

9.
Jin Y  Uzawa S  Cande WZ 《Genetics》2002,160(3):861-876
In meiotic prophase of many eukaryotic organisms, telomeres attach to the nuclear envelope and form a polarized configuration called the bouquet. Bouquet formation is hypothesized to facilitate homologous chromosome pairing. In fission yeast, bouquet formation and telomere clustering occurs in karyogamy and persists throughout the horsetail stage. Here we report the isolation and characterization of six mutants from our screen for meiotic mutants. These mutants show defective telomere clustering as demonstrated by mislocalization of Swi6::GFP, a heterochromatin-binding protein, and Taz1p::GFP, a telomere-specific protein. These mutants define four complementation groups and are named dot1 to dot4-defective organization of telomeres. dot3 and dot4 are allelic to mat1-Mm and mei4, respectively. Immunolocalization of Sad1, a protein associated with the spindle pole body (SPB), in dot mutants showed an elevated frequency of multiple Sad1-nuclei signals relative to wild type. Many of these Sad1 foci were colocalized with Taz1::GFP. Impaired SPB structure and function were further demonstrated by failure of spore wall formation in dot1, by multiple Pcp1::GFP signals (an SPB component) in dot2, and by abnormal microtubule organizations during meiosis in dot mutants. The coincidence of impaired SPB functions with defective telomere clustering suggests a link between the SPB and the telomere cluster.  相似文献   

10.
During metaphase in budding yeast mitosis, sister kinetochores are tethered to opposite poles and separated, stretching their intervening chromatin, by singly attached kinetochore microtubules (kMTs). Kinetochore movements are coupled to single microtubule plus-end polymerization/depolymerization at kinetochore attachment sites. Here, we use computer modeling to test possible mechanisms controlling chromosome alignment during yeast metaphase by simulating experiments that determine the 1) mean positions of kinetochore Cse4-GFP, 2) extent of oscillation of kinetochores during metaphase as measured by fluorescence recovery after photobleaching (FRAP) of kinetochore Cse4-GFP, 3) dynamics of kMTs as measured by FRAP of GFP-tubulin, and 4) mean positions of unreplicated chromosome kinetochores that lack pulling forces from a sister kinetochore. We rule out a number of possible models and find the best fit between theory and experiment when it is assumed that kinetochores sense both a spatial gradient that suppresses kMT catastrophe near the poles and attachment site tension that promotes kMT rescue at higher amounts of chromatin stretch.  相似文献   

11.
The correct positioning of the nucleus is often important in defining the spatial organization of the cell, for example, in determining the cell division plane. In interphase Schizosaccharomyces pombe cells, the nucleus is positioned in the middle of the cylindrical cell in an active microtubule (MT)-dependent process. Here, we used green fluorescent protein markers to examine the dynamics of MTs, spindle pole body, and the nuclear envelope in living cells. We find that interphase MTs are organized in three to four antiparallel MT bundles arranged along the long axis of the cell, with MT plus ends facing both the cell tips and minus ends near the middle of the cell. The MT bundles are organized from medial MT-organizing centers that may function as nuclear attachment sites. When MTs grow to the cell tips, they exert transient forces produced by plus end MT polymerization that push the nucleus. After an average of 1.5 min of growth at the cell tip, MT plus ends exhibit catastrophe and shrink back to the nuclear region before growing back to the cell tip. Computer modeling suggests that a balance of these pushing MT forces can provide a mechanism to position the nucleus at the middle of the cell.  相似文献   

12.
《The Journal of cell biology》1988,107(6):2243-2251
To investigate the function of calmodulin (CaM) in the mitotic apparatus, the effect of microinjected CaM and chemically modified CaMs on nocodazole-induced depolymerization of spindle microtubules was examined. When metaphase PtK1 cells were microinjected with CaM or a CaM-TRITC conjugate, kinetochore microtubules (kMTs) were protected from the effect of nocodazole. The ability of microinjected CaM to subsequently protect kMTs from the depolymerizing effect of nocodazole was dose dependent, and was effective for approximately 45 min, with protection decreasing if nocodazole treatment was delayed for more than 60 min after injection of CaM. The CaM-TRITC conjugate, similar to native CaM, displayed the ability to activate bovine brain CaM- dependent adenylate cyclase in a Ca++-dependent manner and showed a Ca++-dependent mobility shift when subjected to PAGE. A heat-altered CaM-TRITC conjugate also protected kMTs from the effect of nocodazole. However, this modified CaM was not able to activate adenylate cyclase nor did it display a Ca++-dependent mobility shift when electrophoresed. In a permeabilized cell model system, both CaM analogs were observed to bind to the spindle in a Ca++-independent manner. In contrast, a performic acid-oxidized CaM did not have a protective effect on spindle structure when microinjected into metaphase cells before nocodazole treatment. The oxidized CaM did not activate adenylate cyclase and did not exhibit Ca++-dependent mobility on polyacrylamide gels. These results are interpreted as supporting the hypothesis that CaM binds to the mitotic spindle in a Ca++-independent manner and that CaM may serve in the spindle, at least in part, to stabilize kMTs.  相似文献   

13.
Microtubule assembly in Saccharomyces cerevisiae is initiated from sites within spindle pole bodies (SPBs) in the nuclear envelope. Microtubule plus ends are thought to be organized distal to the SPBs, while minus ends are proximal. Several hypotheses for the function of microtubule motor proteins in force generation and regulation of microtubule assembly propose that assembly and disassembly occur at minus ends as well as at plus ends. Here we analyse microtubule assembly relative to the SPBs in haploid yeast cells expressing green fluorescent protein fused to alpha-tubulin, a microtubule subunit. Throughout the cell cycle, analysis of fluorescent speckle marks on cytoplasmic astral microtubules reveals that there is no detectable assembly or disassembly at minus ends. After laser-photobleaching, metaphase spindles recover about 63% of the bleached fluorescence, with a half-life of about 1 minute. After anaphase onset, photobleached marks in the interpolar spindle are persistent and do not move relative to the SPBs. In late anaphase, the elongated spindles disassemble at the microtubule plus ends. These results show for astral and anaphase interpolar spindle microtubules, and possibly for metaphase spindle microtubules, that microtubule assembly and disassembly occur at plus, and not minus, ends.  相似文献   

14.
The yeast Saccharomyces cerevisiae has two genes for α-tubulin, TUB1 and TUB3, and one β-tubulin gene, TUB2. The gene product of TUB3, Tub3, represents ~10% of α-tubulin in the cell. We determined the effects of the two α-tubulin isotypes on microtubule dynamics in vitro. Tubulin was purified from wild-type and deletion strains lacking either Tub1 or Tub3, and parameters of microtubule dynamics were examined. Microtubules containing Tub3 as the only α-tubulin isotype were less dynamic than wild-type microtubules, as shown by a shrinkage rate and catastrophe frequency that were about one-third of that for wild-type microtubules. Conversely, microtubules containing Tub1 as the only α-tubulin isotype were more dynamic than wild-type microtubules, as shown by a shrinkage rate that was 50% higher and a catastrophe frequency that was 30% higher than those of wild-type microtubules. The results suggest that a role of Tub3 in budding yeast is to control microtubule dynamics.  相似文献   

15.

Background

The dynamic growing and shortening behaviors of microtubules are central to the fundamental roles played by microtubules in essentially all eukaryotic cells. Traditionally, microtubule behavior is quantified by manually tracking individual microtubules in time-lapse images under various experimental conditions. Manual analysis is laborious, approximate, and often offers limited analytical capability in extracting potentially valuable information from the data.

Results

In this work, we present computer vision and machine-learning based methods for extracting novel dynamics information from time-lapse images. Using actual microtubule data, we estimate statistical models of microtubule behavior that are highly effective in identifying common and distinct characteristics of microtubule dynamic behavior.

Conclusion

Computational methods provide powerful analytical capabilities in addition to traditional analysis methods for studying microtubule dynamic behavior. Novel capabilities, such as building and querying microtubule image databases, are introduced to quantify and analyze microtubule dynamic behavior.
  相似文献   

16.
Molecular analysis of kinetochore architecture in fission yeast   总被引:16,自引:0,他引:16       下载免费PDF全文
Liu X  McLeod I  Anderson S  Yates JR  He X 《The EMBO journal》2005,24(16):2919-2930
Kinetochore composition and structure are critical for understanding how kinetochores of different types perform similar functions in chromosome segregation. We used affinity purification to investigate the kinetochore composition and assembly in Schizosaccharomyces pombe. We identified a conserved DASH complex that functions to ensure precise chromosome segregation. Unlike DASH in budding yeast that is localized onto kinetochores throughout the cell cycle, SpDASH is localized onto kinetochores only in mitosis. We also identified two independent groups of kinetochore components, one of which, the Sim4 complex, contains several novel Fta proteins in addition to known kinetochore components. DASH is likely to be associated with the Sim4 complex via Dad1 protein. The other group, Ndc80-MIND-Spc7 complex, contains the conserved Ndc80 and MIND complexes and Spc7 protein. We propose that fission yeast kinetochore is comprised of at least two major structural motifs that are biochemically separable. Our results suggest a high degree of conservation between the kinetochores of budding yeast and fission yeast even though many individual protein subunits do not have a high degree of sequence similarity.  相似文献   

17.
Stoyan T  Carbon J 《Eukaryotic cell》2004,3(5):1154-1163
The human pathogenic yeast Candida glabrata is the second most common Candida pathogen after Candida albicans, causing both bloodstream and mucosal infections. The centromere (CEN) DNA of C. glabrata (CgCEN), although structurally very similar to that of Saccharomyces cerevisiae, is not functional in S. cerevisiae. To further examine the structure of the C. glabrata inner kinetochore, we isolated several C. glabrata homologs of S. cerevisiae inner kinetochore protein genes, namely, genes for components of the CBF3 complex (Ndc10p, Cep3p, and Ctf13p) and genes for the proteins Mif2p and Cse4p. The amino acid sequence identities of these proteins were 32 to 49% relative to S. cerevisiae. CgNDC10, CgCEP3, and CgCTF13 are required for growth in C. glabrata and are specifically found at CgCEN, as demonstrated by chromatin immunoprecipitation experiments. Cross-complementation experiments revealed that the isolated genes, with the exception of CgCSE4, are species specific and cannot functionally substitute for the corresponding genes in S. cerevisiae deletion strains. Likewise, the S. cerevisiae CBF3 genes NDC10, CEP3, and CTF13 cannot functionally replace their homologs in C. glabrata CBF3 deletion strains. Two-hybrid analysis revealed several interactions between these proteins, all of which were previously reported for the inner kinetochore proteins of S. cerevisiae. Our findings indicate that although many of the inner kinetochore components have evolved considerably between the two closely related species, the organization of the C. glabrata inner kinetochore is similar to that in S. cerevisiae.  相似文献   

18.
19.
The effect of podophyllotoxin on microtubule dynamics   总被引:2,自引:0,他引:2  
We have investigated the effects of podophyllotoxin on the dynamic properties of microtubules assembled from pure tubulin dimer. Excess podophyllotoxin causes the complete disassembly of microtubules, through formation of a tubulin-GTP-podophyllotoxin ternary complex with a dissociation rate constant of 160 s-1 at 37 degrees C, similar to that found upon extensive isothermal dilution in this buffer system. Addition of substoichiometric concentrations of podophyllotoxin causes partial disassembly of microtubules through production of an equivalent amount of the ternary complex. Microtubule length measurements and incorporation of [3H]GTP-tubulin dimer show that podophyllotoxin can suppress the dynamic instability of tubulin dimer microtubules and that it acts substoichiometrically in so doing. We interpret the action of substoichiometric podophyllotoxin on microtubule ends in terms of effects on interconversion of growing and shrinking microtubules in a dynamic system in which tubulin-GTP-podophyllotoxin is kinetically analogous to tubulin-GTP in addition and to tubulin-GDP in dissociation. The ability to suppress dynamic instability may be one way in which drugs such as podophyllotoxin, acting at relatively low concentrations, are able to arrest cell growth and development in a selective way, without necessarily affecting the integrity of the major part of the cytoskeletal microtubule network.  相似文献   

20.
Organization of kinetochore fiber microtubules (MTs) throughout mitosis in the endosperm of Haemanthus katherinae Bak. has been analysed using serial section reconstruction from electron micrographs. Accurate and complete studies have required careful analysis of individual MTs in precisely oriented serial sections through many (45) preselected cells. Kinetochore MTs (kMTs) and non-kinetochore MTs (nkMTs) intermingle within the fiber throughout division, undergoing characteristic, time- dependent, organizational changes. The number of kMTs increases progressively throughout the kinetochore during prometaphase-metaphase. Prometaphase chromosomes which were probably moving toward the pole at the time of fixation have unequally developed kinetochores associated with many nkMTs. The greatest numbers of kMTs (74-109/kinetochore), kinetochore cross-sectional area, and kMT central density all occur at metaphase. Throughout anaphase and telophase there is a decrease in the number of kMTs and, in the kinetochore cross-sectional area, an increased obliquity of kMTs and increased numbers of short MTs near the kinetochore. Delayed kinetochores possess more kMTs than do kinetochores near the poles, but fewer kMTs than chromosomes which have moved equivalent distances in other cells. The frequency of C-shaped proximal MT terminations within kinetochores is highest at early prometaphase and midtelophase, falling to zero at midanaphase. Therefore, in Haemanthus, MTs are probably lost from the periphery of the kinetochore during anaphase in a manner which is related to both time and position of the chromosome along the spindle axis. The complex, time-dependent organization of MTs in the kinetochore region strongly suggests that chromosome movement is accompanied by continual MT rearrangement and/or assembly/disassembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号