首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The methylotrophic yeast Pichia pastoris (Komagataella spp.) is a popular microbial host for the production of recombinant proteins. Previous studies have shown that mis‐sorting to the vacuole can be a bottleneck during production of recombinant secretory proteins in yeast, however, no information was available for P. pastoris. In this work the authors have therefore generated vps (vacuolar protein sorting) mutant strains disrupted in genes involved in the CORVET (class C core vacuole/endosome tethering) complex at the early stages of endosomal sorting. Both Δvps8 and Δvps21 strains contained lower extracellular amounts of heterologous carboxylesterase (CES) compared to the control strain, which could be attributed to a high proteolytic activity present in the supernatants of CORVET engineered strains due to rerouting of vacuolar proteases. Serine proteases were identified to be responsible for this proteolytic degradation by liquid chromatography‐mass spectrometry and protease inhibitor assays. Deletion of the major cellular serine protease Prb1 in Δvps8 and Δvps21 strains did not only rescue the extracellular CES levels, but even outperformed the parental CES strain (56 and 80% higher yields, respectively). Further deletion of Ybr139W, another serine protease, did not show a further increase in secretion levels. Higher extracellular CES activity and low proteolytic activity were detected also in fed batch cultivation of Δvps21Δprb1 strains, thus confirming that modifying early steps in the vacuolar pathway has a positive impact on heterologous protein secretion.  相似文献   

2.
The culture liquids of three Xanthomonas campestris pv. campestris strains were found to possess proteolytic activity. The culture liquid of strain B611 with the highest proteolytic activity was fractionated by salting-out with ammonium sulfate, gel filtration, and ion-exchange chromatography. The electrophoretic analysis of active fractions showed the presence of two proteases in the culture liquid of strain B611, the major of which was serine protease. The treatment of cabbage seedlings with the proteases augmented the activity of peroxidase in the cabbage roots by 28%.  相似文献   

3.
Microbial proteolytic enzyme is one of the most important industrial enzymes that hydrolyze proteins. The applications of proteases under harsh industrial conditions like alkalinity, salinity, and temperature make them inactive and unstable. This suggests need for search for novel microbial sources for protease production having diverse properties. For this purpose, 54 bacterial strains were isolated from different salt mines of Karak, Pakistan and were investigated for their proteolytic activity on skim milk agar plates. The strain which showed maximum protease activity was characterized by 16S rRNA gene sequence analysis. Furthermore, growth and protease production was optimized for the characterized bacteria under different physical factors, i.e., pH, temperature and salinity. The isolate BLK-1.5 exhibited strong protease production and was identified as Bacillus subtilis based on biochemical characteristics and 16S rRNA gene sequence analysis. Maximum production of protease was recorded at pH 10, 37 °C and 7 % (w/v) NaCl. Molecular weight of proteases was estimated 38 kDa and its optimum activity was observed at pH 10, 50 °C and 2 % (w/v) NaCl. In conclusion, the protease produced by halo-tolerant Bacillus subtilis strain BLK-1.5 has diverse characteristics and could be useful in various industrial applications.  相似文献   

4.
Summary The caldo-active strain YT-P was found to produce a variety of extracellular enzymes, including an amylase and a protease, which were further examined. With azo-casein as a substrate, optimum conditions with respect to enzyme and substrate concentration were determined for the protease. The optimum temperature was found to be 70°C, with a sharp decline to both lower and higher temperatures. The enzyme was found to be extremely heat-stabile, with unaltered activity after 8 hours at 80°C.Optimum conditions for the amylase were also examined. This enzyme was shown to be less heat-stabile, though the temperature optimum was again at 70°C. The activity or stability was not influenced by absence or presence of Ca-ions. The main activity of the amylase was found in the 20–40% ammonium sulfate fraction, which also contained the bulk of the proteolytic enzyme.This strain growth optimally on a variety of carbon sources at 72°C. Typical submicroscopical features are the double-layered cell wall, and a cytoplasmic membrane with a varying number of small dots and dot-free patches.Furthermore the nutritional requirements and submicroscopical features of two other strains, YT-G and YT-F, are described and compared to strain YT-P.Based on the fatty acid composition of the three spore forming caldo-active strains we suggest that they belong to the genus Bacillus, and propose the names B. caldolyticus for strain YT-P, B. caldovelox for strain YT-F, and B. caldotenax for strain YT-G.  相似文献   

5.
The relevance of oxidative stress in the production of aflatoxin and its precursors was examined in different mutants of Aspergillus parasiticus, which produce aflatoxin or its precursor intermediates, and compared with results obtained from a non-toxigenic strain. In comparison to the non-toxigenic strain (SRRC 255), an aflatoxin producing strain (NRRL 2999) or mutants that accumulate aflatoxin precursors such as norsolorinic acid (by SRRC 162) or versicolorin (by NRRL 6196) or O-methyl sterigmatocystin (by SRRC 2043) had greater oxygen requirements and higher contents of reactive oxygen species. These changes were in the graded order of NRRL 2999 > SRRC 2043 > NRRL 6196 > SRRC 162 > SRRC 255, indicating incremental accumulation of reactive oxygen species, being least in the non-toxigenic strain and increasing progressively during the ternary steps of aflatoxin formation. Oxidative stress in these strains was evident by increased activities of xanthine oxidase and free radical scavenging enzymes (superoxide dismutase and glutathione peroxidase) as compared to the non-toxigenic strain (SRRC 255). Culturing the toxigenic strain in presence of 0.1–10 μM H2O2 in the medium resulted in enhanced aflatoxin production, which could be related to dose-dependent increase in [14C]-acetate incorporation into aflatoxin B1 and increased acetyl CoA carboxylase activity. The combined results suggest that formation of secondary metabolites such as aflatoxin and its precursors by A. parasiticus may occur as a compensatory response to reactive oxygen species accumulation.  相似文献   

6.
Abstract

Bacillus thuringiensis is a Gram positive bacterium that produces an insecticidal crystalline protein making it one of the most important biocontrol agents for pest management. Bioinsecticides based on B. thuringiensis were produced by fermentation processes in liquid media. Cultural conditions controlling proteolytic activities in different culture media were investigated to study the possible correlations between B. thuringiensis production of proteases and delta-endotoxins in a low-cost complex medium. Aeration appeared to play an important role in delta-endotoxin production. The correlation between proteolytic activity and aeration does not seem to be reliable. A negative correlation (correlation coefficient =? 0.774) was established between protease activity and delta-endotoxin production. In order to prove this correlation, protease hypo-producing and overproducing mutants were isolated through random mutagenesis of two wild strains, BUPM13 and BUPM5, by using nitrous acid. Interestingly, delta-endotoxin production of BUPM13-1, BUPM13-2 and BUPM13-3 was markedly improved when compared to the wild strain BUPM 13, reaching 2.1-fold, 3.69-fold and 8.13-fold, respectively. Maximal protease activity (540-2468 UI) obtained by BUPM5-1 and BUPM5-2 was 2.34-fold and 10.7-fold, respectively, more than that obtained by the wild strain BUPM5 with a drastic decrease of their delta-endotoxin production. Study of delta-endotoxin production by the selected mutants confirmed that insecticidal crystal protein stability in the culture strongly depends on the level of endogenous protease activity. This was also confirmed by bioassays measuring the LC50 using larvae of Ephestia kuehniella. Determining protease activity in fermentation culture could be useful in indirectly predicting the potency of B. thuringiensis strains with high insecticidal activities. This would allow low-cost selection of overproducing wild isolates or mutants in the screening programmes for the reduction of production cost, which is important from a practical point of view.  相似文献   

7.
【目的】菌糠的营养素含量齐全,但纤维素含量过高是阻碍其饲料化利用的主要因素。故本研究筛选适合于发酵杏鲍菇菌糠的微生物菌株,以改善其饲用品质。【方法】首先,本研究采用纤维素-刚果红、苯胺蓝和MRS-Ca (De Man, Rogosa, Sharpe-Ca)筛选培养基,结合纤维素、木质素酶活力及抑菌活性的测定,从EM (effective microorganisms)原液发酵的杏鲍菇菌糠中分离筛选具有较强纤维素、木质素降解能力及抑菌能力的细菌/真菌。通过细菌16S rRNA和真菌18S rDNA基因序列分析确定菌株所属种属。其次,将筛选出的菌株菌液等体积混合制成复合菌剂用于固态发酵杏鲍菇菌糠。测定不同发酵时长菌糠营养成分含量以确定最佳发酵时间,并与相同工艺条件下EM原液发酵的杏鲍菇菌糠进行饲用品质比较。【结果】筛选并鉴定得到纤维素酶活性较高的特基拉芽孢杆菌(Bacillus tequilensis)菌株P11、发酵毕赤酵母(Pichia fermentans)菌株R8和马克斯克鲁维应变酵母(Kluyveromyces marxianus)菌株MU5;木质素酶活性较高的解淀粉芽孢杆菌(Bacillus amyloliquefaciens subsp.plantarum)菌株MU7;抑菌活性较高的类肠膜魏斯氏菌(Weissella paramesenteroides)菌株R4和乳酸片球菌(Pediococcus acidilactici)菌株R9。使用以上菌株复合发酵杏鲍菇菌糠7 d后,各项指标达到稳定。与EM原液发酵的杏鲍菇菌糠相比,复合菌剂发酵杏鲍菇菌糠的NDF和ADF分别显著降低了19.6%和21.44%(P0.05);CP (crude protein)、CA (crude ash)和EE (ether extract)含量分别显著提高了10.44%、5.26%和123.53%(P0.05)。【结论】本研究筛选得到的芽孢杆菌、酵母菌和乳酸菌优势菌株复合后用于发酵杏鲍菇菌糠可以很好地改善其饲用品质,效果优于生产中常用市售EM原液。  相似文献   

8.
【目的】从大豆根瘤中筛选具ACC(1-氨基环丙烷-1-羧基)脱氨酶活性的内生细菌,对活性菌株的抗盐碱性、系统分类地位以及代表菌株的促生长作用进行研究,为发掘和应用抗逆、促生优良菌种资源提供理论基础。【方法】以ACC作为唯一氮源测定菌株产ACC脱氨酶特性,采用标准曲线法测定α-丁酮酸含量,比色法定量测定ACC脱氨酶活力,固体平板筛选法对活性菌株进行抗性分析,通过菌体形态及生理生化特性测定、16S rRNA基因序列同源性分析鉴定菌株分类地位,采用盆栽试验验证代表菌株的促生作用。【结果】从河南省13个市(地区)36个点采集的大豆根瘤中筛选出8株ACC脱氨酶内生细菌,其中菌株DD132的酶活性最高(15.712 U/mg)。筛选菌株可耐受4%–6%NaCl,其中菌株DD165、DD132可耐受9%NaCl盐浓度。在pH 11时5株(DD14、DD132、DD67、DD141、DD131)生长良好,说明这些菌株有较强耐碱性。8株产ACC脱氨酶菌株分属于4属,即芽孢杆菌属(Bacillus)、肠杆菌属(Enterobacter)、寡养单胞菌属(Stenotrophomonas)和泛菌属(Pantoea)。接种试验表明内生菌DD132对小麦幼苗生长具有明显促生长作用。【结论】大豆根瘤内具ACC脱氨酶高活性菌株有较强耐盐碱性,其中菌株DD132对小麦幼苗生长有明显促生长作用。为发掘和应用抗逆、促生的优良菌种资源提供理论基础。  相似文献   

9.
Two strains of Bacillus, one from a culture collection (B. subtilis ATCC 6633) and a wild type (Bacillus sp. UFLA 817CF) isolated during coffee fermentation in the south of Minas Gerais, Brazil, were evaluated in relation to secretion of alkaline proteases. The strains were grown on nutrient broth, nutrient broth with sodium caseinate and nutrient broth with three different concentrations of cheese whey powder for 72 h. Samples were collected at 24-h intervals to evaluate the proteolytic activity, protein content and cell population. Maximum protease activity was observed after 24-h growth for both the microorganisms, a period that coincided with the end of the exponential phase. The specific activity values were, respectively, 839.8 U/mg for B. subtilis ATCC 6633 and 975.9 U/mg for Bacillus sp. UFLA 817CF. The 60% saturation presented the best results for specific protease activity in all the growth culture media tested with B. sp. UFLA 817CF. Bacillus sp. UFLA 817CF showed highest enzymatic activity at pH 9.0 and 40°C in the three culture media tested. The protease obtained from culture of the wild Bacillus strain presented stability at pH 7.0 and considerable heat stability at 40°C and 50°C, and could be an alternative for the industry to utilize cheese whey to produce proteolytic enzymes.  相似文献   

10.
A cDNA encoding a laccase enzyme was isolated from a Trametes versicolor cDNA library. The gene was subcloned into the Pichia pastoris expression vector pPIC3.5 and transformed into the P. pastoris strains KM71 and GS115. Laccase-secreting transformants were selected by their ability to oxidise the substrate ABTS. No difference in laccase activity was observed between culture supernatants from GS115 (proteolytic) and KM71 (nonproteolytic) strains. The presence of at least 200 μM copper was necessary for optimal laccase activity in the culture supernatants. During growth of P. pastoris on minimal medium the pH of the medium was reduced to <3.0. If alanine was added to the medium the pH reduction was not as pronounced and at alanine concentrations >0.6% w/v the pH was kept constant for >7 days. Cultures in which the pH was maintained by alanine metabolism produced higher levels of laccase activity than those grown in the absence of alanine. This study describes the development of a medium that allows convenient pH control of P. pastoris without the need for continuous neutralisation. Journal of Industrial Microbiology & Biotechnology (2002) 29, 55–59 doi:10.1038/sj.jim.7000268 Received 08 August 2001/ Accepted in revised form 18 April 2002  相似文献   

11.
Serido bean (Vigna sinensis (L.) Savi) seeds were sown in water and in NaCl solution of —4.3 bars water potential. Total, insoluble and soluble proteins as well as soluble amino nitrogen and proteolytic activity of cotyledons were studied after 0, 1, 3, 5, 7, and 9 days of germination. Protein breakdown and turnover was delayed by the NaCl treatment as compared to the control. This was not due to the total amount of proteolytic activity, which was unchanged by salinity; even though the specific activity decreased due to the delayed breakdown of proteins under salt stress. The inhibitory effects of salinity on seed protein reserve mobilization may be due more to inhibition of translocation of hydrolysis products than to inhibition of protease activity.  相似文献   

12.
Intracellular proteolytic activity increased during incubation of the sporogenic strain ofBacillus megaterium KM in a sporulation medium together with excretion of an extracellular metalloprotease. The exocellular protease activity in a constant volume of the medium reached a 100-fold value with respeot to the intracellular activity. Maximal values of the activity of both the extracellular and intracellular enzyme were reached after 3 – 5 h of incubation. After 7 h 20 – 50% cells formed refractile spores. The intracellular proteolytic system hydrolyzed denatured proteinsin vitro at a rate up to 150 μg mg-1 h-1 and native proteins at a rate up to 70 μg mg-1 h-1. Degradation of proteinsin vivo proceeded from the beginning of transfer to the sporulation medium at a constant rate of 40 μg mg-1 h-1 and the inactivation of beta-galactosidase at a rate of 70 μg mg-1 h-1. The intracellular proteolytic activity was inhibited to 65 – 88% by EDTA, to 23 – 76% by PMSF. Proteolysis of denatured proteins was inhibited both by EDTA and PMSF more pronouncedly than proteolysis of native proteins; 50 – 65% of the activity were localized in protoplasts. Another strain ofBacillus megaterium (J) characterized by a high (up to 90%) and synchronous sporulation activity was found to behave in a similar way, but the rate of protein turnover in this strain was almost twice as high. The asporogenic strain ofBacillus megaterium KM synthesized the exocellular protease in the sporulation medium, but its protein turnover was found to decrease substantially after 3 – 4 h. The intraeellular proteolytic system of the sporogenic strain J and the asporogenic strain KM were also inhibited by EDTA and PMSF.  相似文献   

13.
The objective of this study was to characterize the extracellular proteolytic activity of Streptococcus bovis. Strains KEG, JB1, NCFB 2476, and K11.21.09.6C produced very similar large molecular weight (160–200 kDa) extracellular proteases that were specifically inhibited by PMSF, a serine protease inhibitor. Further experiments with S. bovis KEG indicated that cultures grown with casein as the sole added N source produced the greatest level of proteolytic activity, and the level of proteolytic activity was independent of growth rate. Clarified ruminal fluid (CRF) decreased proteolytic activity by 54% compared with cultures grown with casein alone, and addition of exogenous peptides and carbohydrates (CHO) to the CRF further reduced the level of proteolytic activity by 44% and 52%, respectively. These results suggested that the proteolytic activity of S. bovis KEG was modulated by available N source and that the proteolytic activity was present for reasons other than providing N for growth. The role of S. bovis in ruminal proteolysis requires further definition, but phenotypic similarity among some ruminal strains would suggest a common niche in ruminal proteolysis. The uniformity of proteolytic activities could make S. bovis a prime candidate for manipulation in ruminal proteolysis control strategies. Received: 12 January 1999 / Accepted: 19 May 1999  相似文献   

14.
Eight different strains ofBacillus were isolated from fermented fish (Budu) and their proteolytic enzyme activities were determined after 18 h cultivation at room temperature (35° C). Four isolates possessed high protease activities. Optimum pH for these enzymes was between 7.0 and 8.0 and the optimal temperature was 55° C. The proteases retained 40% of their original activity after 20 min at 55° C but lost all activity at 65° C. Three of the four isolates were identified asBacillus subtilis, the fourth asBacillus licheniformis.  相似文献   

15.
【背景】碱性蛋白酶是工业用酶中占比最大的酶类,广泛应用于清洁、食品、医疗等行业。近期研究发现碱性蛋白酶在生产生物活性肽方面有巨大潜力,这将进一步拓宽其在保健食品领域中的应用。【目的】利用枯草芽孢杆菌异源表达地衣芽孢杆菌来源的碱性蛋白酶SubC。【方法】通过筛选3种枯草芽孢杆菌宿主菌株(Bacillus subtilis 1A751、MA07、MA08)和6种信号肽(AmyE、AprE、NprE、Pel、YddT、YoqM),同时优化诱导剂浓度、发酵培养基和发酵时长,最终得到最优重组菌株MA08-AmyE-subCopt。【结果】重组菌株MA08-AmyE-subCopt的胞外酶活力为3.33×103 AU/mL,胞外蛋白分泌量为胞内可溶蛋白表达量的4倍,与携带野生型信号肽的对照组菌株WT相比,酶活提高了73.4%。【结论】异源碱性蛋白酶SubC在枯草芽孢杆菌中成功表达,为碱性蛋白酶SubC的表达和在保健食品领域的工业化应用提供了理论基础。  相似文献   

16.
The ability of two non-aflatoxigenic Aspergillus flavus Link isolates (CT3 and K49) to reduce aflatoxin contamination of corn was assessed in a 4-year field study (2001–2004). Soil was treated with six wheat inoculant treatments: aflatoxigenic isolate F3W4; two non-aflatoxigenic isolates (CT3 and K49); two mixtures of CT3 or K49 with F3W4; and an autoclaved wheat control, applied at 20 kg ha?1. In 2001, inoculation with the aflatoxigenic isolate increased corn grain aflatoxin levels by 188% compared to the non-inoculated control, while CT3 and K49 inoculation reduced aflatoxin levels in corn grain by 86 and 60%, respectively. In 2002, the non-toxigenic CT3 and K49 reduced aflatoxin levels by 61 and 76% compared to non-inoculated controls, respectively. In 2001, mixtures of aflatoxigenic and non-aflatoxigenic isolates had little effect on aflatoxin levels, but in 2002, inoculation with mixtures of K49 and CT3 reduced aflatoxin levels 68 and 37% compared to non-inoculated controls, respectively. In 2003 and 2004, a low level of natural aflatoxin contamination was observed (8 ng g?1). However, inoculation with mixtures of K49?+?F3W4 and CT3?+?F3W4, reduced levels of aflatoxin 65–94% compared to the aflatoxigenic strain alone. Compared to the non-sclerotia producing CT3, strain K49 produces large sclerotia, has more rapid in vitro radial growth, and a greater ability to colonize corn when artificially inoculated, perhaps indicating greater ecological competence. Results indicate that non-aflatoxigenic, indigenous A. flavus isolates, such as strain K49, have potential use for biocontrol of aflatoxin contamination in southern US corn.  相似文献   

17.
Totally 191 different marine actinomycetes were isolated from 256 different marine samples collected from the Bay of Bengal and its associated Pulicat lake and Pichavaram mangrove, India. Among them, 157 produced caseinase, 113 produced gelatinase and 108 produced both the protease enzymes. An isolate coded as MML1614 was selected for further study as it exhibited high proteolytic activity. The MML1614 was identified as Streptomyces fungicidicus based on polyphasic taxonomical approach including 16S rRNA sequence analysis. The culture conditions were standardized for the growth and protease production in S. fungicidicus MML1614. The protease was isolated from a 6-day-old culture filtrate of S. fungicidicus MML1614 and partially purified up to 4.5-fold. The protease was optimally active at pH 9 and 40 °C and it was stable up to pH 11 and 60 °C. PMSF and NaCl inhibited the enzyme activity up to 22 and 11%, respectively. The partially purified protease removed the blood stain more effectively when combined with different detergents than the detergents alone.  相似文献   

18.
An extremely halophilic Chromohalobacter sp. TVSP101 was isolated from solar salterns and screened for the production of extracellular halothermophilic protease. Identification of the bacterium was done based upon biochemical tests and the 16S rRNA sequence. The partially purified enzyme displayed maximum activity at pH 8 and required 4.5 M of NaCl for optimum proteolytic activity. In addition, this enzyme was thermophilic and active in broad range of temperature 60–80°C with 80°C as optimum. The Chromohalobacter sp. required 4 M NaCl for its optimum growth and protease secretion and no growth was observed below 1 M of NaCl. The initial pH of the medium for growth and enzyme production was in the range 7.0–8.0 with optimum at pH 7.2. Various cations at 1 mM concentration in the growth medium had no significant effect in enhancing the growth and enzyme production but 0.5 M MgCl2 concentration enhanced enzyme production. Casein or skim milk powder 1% (w/v) along with 1% peptone proved to be the best nitrogen sources for maximum biomass and enzyme production. The carbon sources glucose and glycerol repressed the protease secretion. Immobilization of whole cells in absence of NaCl proved to be useful for continuous production of halophilic protease.  相似文献   

19.
The production of a protease was investigated under conditions of high salinity by the moderately halophilic bacterium Halobacillus karajensis strain MA-2 in a basal medium containing peptone, beef extract, maltose and NaCl when the culture reached the stationary growth phase. Effect of various temperatures, initial pH, salt and different nutrient sources on protease production revealed that the maximum secretion occurred at 34°C, pH 8.0–8.5, and in the presence of gelatin. Replacement of NaCl by various concentrations of sodium nitrate in the basal medium also increased the protease production. The secreted protease was purified 24-fold with 68% recovery by a simple approach including a combination of acetone precipitation and Q-Sepharose ion exchange chromatography. The enzyme revealed a monomeric structure with a relative molecular mass of 36 kDa by running on SDS-PAGE. Maximum caseinolytic activity of the enzyme was observed at 50°C, pH 9.0 and 0.5 M NaCl, although at higher salinities (up to 3 M) activity still remained. The maximum enzyme activity was obtained at a broad pH range of 8.0–10.0, with 55 and 50% activity remaining at pH 6 and 11, respectively. Moreover, the enzyme activity was strongly inhibited by phenylmethylsulfonyl fluoride (PMSF), Pefabloc SC and EDTA; indicating that it probably belongs to the subclass of serine metalloproteases. These findings suggest that the protease secreted by Halobacillus karajensis has a potential for biotechnological applications from its haloalkaline properties point of view.  相似文献   

20.
Whole cells of the phytopathogenic Erwinia chrysanthemi strains were immobilized in k-carrageenan and grown in high-calcium Xanthomonas campestris medium containing sodium polypectate as carbon source. All the strains used survived immobilization into k-carrageenan beads. Immobilized E. chrysanthemi strains displayed higher pectolytic and proteolytic enzyme activities than free cells in liquid suspension. Carrageenan immobilization techniques could provide a system to mimic the conditions of E. chrysanthemi cells in the infected plant tissue. This could prompt a thorough study of the factors governing the biosynthesis of virulence factors by this bacterium. Journal of Industrial Microbiology & Biotechnology (2001) 27, 215–219. Received 04 April 2001/ Accepted in revised form 12 June 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号