首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary We studied the mechanism controlling the organization of actin filaments (AFs) inHydrocharis root hair cells, in which reverse fountain streaming occurs. The distribution of AFs and microtubules (MTs) in root hair cells were analyzed by fluorescence microscopy and electron microscopy. AFs and MTs were found running in the longitudinal direction of the cell at the cortical region. AFs were observed in the transvacuolar strand, but not MTs. Ultrastructural studies revealed that AFs and MTs were colocalized and that MTs were closer to the plasma membrane than AFs. To examine if MTs regulate the organization of AFs, we carried out a double inhibitor experiment using cytochalasin B (CB) and propyzamide, which are inhibitors of AFs and MTs, respectively. CB reversibly inhibited cytoplasmic streaming while propyzamide alone had no effect on it. However, after treatment with both CB and propyzamide, removal of CB alone did not lead to recovery of cytoplasmic streaming. In these cells, AFs showed a meshwork structure. When propyzamide was also removed, cytoplasmic streaming and the original organization of AFs were recovered. These results strongly suggest that MTs are responsible for the organization of AFs inHydrocharis root hair cells.  相似文献   

2.
Summary The effects of a protein phosphatase inhibitor, calyculin A (CA), on cytoplasmic streaming and cytoplasmic organization were examined in root hair cells ofLimnobium stoloniferum. CA at concentrations higher than 50 nM inhibited cytoplasmic streaming and also induced remarkable morphological changes in the cytoplasm. The transvacuolar strands, in which actin filament bundles were oriented parallel to the long axis, disappeared and spherical cytoplasmic bodies emerged in the CA-treated cells. In these spherical bodies, actin filaments were present and the spherical bodies were connected to each other by thin strands of actin filaments. Upon CA removal, transvacuolar strands, in which actin filament bundles were aligned, and cytoplasmic streaming reappeared. A nonselective inhibitor for protein kinases, K-252a, delayed the inhibitory effect of CA on cytoplasmic streaming and suppressed the CA-induced formation of the spherical bodies. From these results, it is suggested that phosphatases sensitive to CA regulate cytoplasmic streaming and are involved in the organization of the cytoplasm in root hair cells.Abbreviations APW artificial pond water - CA calyculin A  相似文献   

3.
In many types of plant cell, bundles of actin filaments (AFs) are generally involved in cytoplasmic streaming and the organization of transvacuolar strands. Actin cross-linking proteins are believed to arrange AFs into the bundles. In root hair cells of Hydrocharis dubia (Blume) Baker, a 135-kDa polypeptide cross-reacted with an antiserum against a 135-kDa actin-bundling protein (135-ABP), a villin homologue, isolated from lily pollen tubes. Immunofluorescence microscopy revealed that the 135-kDa polypeptide co-localized with AF bundles in the transvacuolar strand and in the sub-cortical region of the cells. Microinjection of antiserum against 135-ABP into living root hair cells induced the disappearance of the transvacuolar strand. Concomitantly, thick AF bundles in the transvacuolar strand dispersed into thin bundles. In the root hair cells, AFs showed uniform polarity in the bundles, which is consistent with the in-vitro activity of 135-ABP. These results suggest that villin is a factor responsible for bundling AFs in root hair cells as well as in pollen tubes, and that it plays a key role in determining the direction of cytoplasmic streaming in these cells. Received: 16 September 1999 / Accepted: 3 December 1999  相似文献   

4.
Summary In root hair cells ofLimnobium stoloniferum, a protein phosphatase inhibitor, calyculin A (CA), at concentrations higher than 50 nM inhibits cytoplasmic streaming and induces remarkable morphological changes in the cytoplasm: the transvacuolar strands disperse and spherical cytoplasmic bodies emerge. The mechanism of the morphological changes of the cytoplasm induced by CA was studied by pharmacological analyses. The formation of spherical bodies in cells treated with CA was suppressed by the actin-depolymerizing and -fragmenting drugs latrunculin B and cytochalasin D at concentrations higher than 100 nM and 5 M, respectively. In contrast, 100 M propyzamide, a microtubule-depolymerizing drug, did not affect the formation of spherical bodies by CA. Interestingly, 60 mM 2,3-butanedione monoxime, an inhibitor of myosin, also suppressed the CA-induced formation of cytoplasmic spherical bodies. These results indicate that the actin cytoskeleton is intimately involved in the morphological changes of the cytoplasm induced by CA.Abbreviations APW artificial pond water - BDM 2,3-butanedione monoxime - CD cytochalasin D - DMSO dimethylsulfoxide - LB latrunculin B - Pro propyzamide  相似文献   

5.
Maize actin-depolymerizing factor (ADF) binds both monomeric and filamentous actin and increases actin dynamics in vitro. To test its effects in vivo, recombinant pollen ADF1 was expressed in bacteria and microinjected into Tradescantia stamen hair cells. Initially, all cytoplasmic streaming ceased and the central, longitudinal transvacuolar strands were disrupted. After 20–45 min, streaming resumed but in the form of conspicuous transverse pathways of movement in the cortex. Staining the actin filaments by a second injection of fluorescein-conjugated phalloidin showed that the longitudinal actin cables seen in controls had been replaced by a thickening of the transverse cortical arrays, whose orientation matched the new pattern of streaming. Microinjection of rhodamine–tubulin confirmed that the microtubules also formed a transverse cortical array and it is suggested that the spatial cues for re-modelling the actin after ADF1 injection may be provided by the microtubular system.  相似文献   

6.
Yokota E  Izeki T  Shimmen T 《Protoplasma》2003,221(3-4):217-226
Summary.  In root hair cells of Limnobium stoloniferum, transvacuolar strands disperse and cytoplasmic spherical bodies (CSBs) emerge upon treatment with a protein phosphatase inhibitor, calyculin A (CA), whose effects were previously shown to be canceled by simultaneous treatment of the cells with a nonselective protein kinase inhibitor, K-252a. CSB formation is also suppressed by latrunculin B (LB) or cytochalasin D, actin filament depolymerization drugs, or 2,3-butanedione monoxime, an inhibitor of myosin activity. To confirm the involvement of myosin activity in CSB formation induced by CA, we examined the effect of an inhibitor of energy metabolism, NaN3, on CSB formation in root hair cells pretreated simultaneously with CA and LB. In the presence of CA-LB, CSB formation was suppressed due to the depolymerization of actin filaments. When these drugs were removed, the actin filaments recovered and CSBs emerged even in the presence of K-252a. These results indicated that the phosphorylation level in the cells is elevated during the CA-LB treatment and that a phosphorylation level sufficient for the CSB formation was sustained even after CA removal. On the other hand, CSB formation after simultaneous treatment with CA and LB was significantly suppressed in the presence of NaN3. In such cells, actin filament bundles recovered, although their organization was random. The present and previous results suggested that myosin activity is necessary for CSB formation induced by CA, and that myosin regulated by phosphorylation-dephosphorylation is implicated in the organization of the actin cytoskeleton in root hair cells. Received June 26, 2002; accepted October 18, 2002; published online April 2, 2003 RID="*" ID="*" Correspondence and reprints: Department of Life Science, Graduate School of Science, Himeji Institute of Technology, Harima Science Park City, Hyogo 678-1297, Japan.  相似文献   

7.
The major manifestations of amoeboid locomotion in Naegleria—cytoplasmic streaming, pseudopod production, cell polarity and focal contact production—require that the actin-based cytoskeleton be extremely dynamic. Whether these features are causally linked is unclear. In an attempt to answer this question we have used the fungal product cytochalasin B (cyt B) to dissect the motility process. This drug can perturb the organisation of actin filaments both in vivo and in vitro. Essentially cyt B acts as a molecule which can cap the barbed ends of actin filaments. Not surprisingly therefore cyt B has an effect on rates of actin polymerization and the dynamic state of actin in the cytoplasm. We have found that cyt B has a profound effect on focal contact production and breakdown. Within minutes of addition of cyt B focal contact production ceases, existing focal contacts are stabilised but cytoplasmic streaming and pseudopod production are not blocked. In conclusion it is now clear that the state of actin required for focal contact production is different from that required for pseudopod extension and cytoplasmic streaming.  相似文献   

8.
Root hairs develop from bulges on root epidermal cells and elongate by tip growth, in which Golgi vesicles are targeted, released and inserted into the plasma membrane on one side of the cell. We studied the role of actin in vesicle delivery and retention by comparing the actin filament configuration during bulge formation, root hair initiation, sustained tip growth, growth termination, and in full-grown hairs. Lipochito-oligosaccharides (LCOs) were used to interfere with growth ( De Ruijter et al . 1998 , Plant J. 13, 341–350), and cytochalasin D (CD) was used to interfere with actin function. Actin filament bundles lie net-axially in cytoplasmic strands in the root hair tube. In the subapex of growing hairs, these bundles flare out into fine bundles. The apex is devoid of actin filament bundles. This subapical actin filament configuration is not present in full-grown hairs; instead, actin filament bundles loop through the tip. After LCO application, the tips of hairs that are terminating growth swell, and a new outgrowth appears from a site in the swelling. At the start of this outgrowth, net-axial fine bundles of actin filaments reappear, and the tip region of the outgrowth is devoid of actin filament bundles. CD at 1.0 μ m , which does not affect cytoplasmic streaming, does not inhibit bulge formation and LCO-induced swelling, but inhibits initiation of polar growth from bulges, elongation of root hairs and LCO-induced outgrowth from swellings. We conclude that elongating net-axial fine bundles of actin filaments, which we call FB-actin, function in polar growth by targeting and releasing Golgi vesicles to the vesicle-rich region, while actin filament bundles looping through the tip impede vesicle retention.  相似文献   

9.
ATFIM1 is a widely expressed gene in Arabidopsis thaliana that encodes a putative actin filament-crosslinking protein, AtFim1, belonging to the fimbrin/plastin class of actin-binding proteins. In this report we have used bacterially expressed AtFim1 and actin isolated from Zea mays pollen to demonstrate that AtFim1 functions as an actin filament-crosslinking protein. AtFim1 binds pollen actin filaments (F-actin) in a calcium-independent manner, with an average dissociation constant (Kd) of 0.55+/-0.21 microM and with a stoichiometry at saturation of 1:4 (mol AtFim1 : mol actin monomer). AtFim1 also crosslinks pollen F-actin by a calcium-independent mechanism, in contrast to crosslinking of plant actin by human T-plastin, a known calcium-sensitive actin-crosslinking protein. When micro-injected at high concentration into living Tradescantia virginiana stamen hair cells, AtFim1 caused cessation of both cytoplasmic streaming and transvacuolar strand dynamics within 2-4 min. Using the 'nuclear displacement assay' as a measure of the integrity of the actin cytoskeleton in living stamen hair cells, we demonstrated that AtFim1 protects actin filaments in these cells from Z. mays profilin (ZmPRO5)-induced depolymerization, in a dose-dependent manner. The apparent ability of AtFim1 to protect actin filaments in vivo from profilin-mediated depolymerization was confirmed by in vitro sedimentation assays. Our results indicate that AtFim1 is a calcium-independent, actin filament-crosslinking protein that interacts with the actin cytoskeleton in living plant cells.  相似文献   

10.
Summary In the characean algaNitella, depolymerization of microtubules potentiates the inhibitory effects of cytochalasins on cytoplasmic streaming. Microtubule depolymerization lowers the cytochalasin B and D concentrations required to inhibit streaming, accelerates inhibition and delays streaming recovery. Because microtubule depolymerization does not significantly alter3H-cytochalasin B uptake and release, elevated intracellular cytochalasin concentrations are not the basis for potentiation. Instead, microtubule depolymerization causes actin to become more sensitive to cytochalasin. This increased sensitivity of actin is unlikely to be due to direct stabilization of actin by microtubules, however, because very few microtubules colocalize with the subcortical actin bundles that generate streaming. Furthermore, microtubule reassembly, but not recovery of former transverse alignment, is sufficient for restoring the normal cellular responses to cytochalasin D. We hypothesize that either tubulin or microtubule-associated proteins, released when microtubules depolymerize, interact with the actin cytoskeleton and sensitize it to cytochalasin.Abbreviations APW artificial pond water - Cac cytoplasraic free calcium concentration - DMSO dimethyl sulfoxide - MT microtubule-minus - MT+ microtubule-plus.  相似文献   

11.
Summary On the basis of the inhibition of myosin by 2,3-butanedione monoxime (BDM), the protein's involvement in various cell activities is discussed. However, it has not been established whether BDM inhibits plant myosin. In the present study, the effect of BDM on isolated plant myosin was analyzed in vitro. The sliding between myosin from lily (Lilium longiflorum) pollen tubes and actin filaments from skeletal muscle was inhibited to 25% at a concentration of 60 mM, indicating that BDM can be used as a myosin inhibitor for plant materials. Cytoplasmic streaming was completely inhibited by BDM at 30 mM in lily pollen tubes and at 70 mM in short root hair cells, and at 100 mM in long root hair cells ofHydrocharis dubia. However, BDM at high concentrations induced the disorganization of actin filament bundles in lily pollen tubes and short root hair cells. In addition, cortical microtubules were also fragmented in short root hair cells treated with BDM, suggesting a possible side effect of BDM.Abbreviations AF actin filament - BDM 2,3-butanedione monoxime - MT microtubule  相似文献   

12.
Summary The cytoarchitecture and the pattern of cytoplasmic streaming change during the development of root hairs ofMedicago truncatula and after a challenge with nodulation (Nod) factors. We measured the speed and orientation of movement of 1–2 μm long organelles. The speed of organelle movement in cytoplasmic strands in the basal part of growing root hairs is 8–14 μm/s and is of the circulation type like in trichoblasts, bulges before tip-growth initiation, and full-grown hairs. In the subapical area of growing hairs, reverse-fountain streaming occurs discontinuously at a slower net speed. The reason for the slower speed is the fact that organelles often stop and jump. Reverse-fountain streaming is a pattern in which the main direction of organelle transport reverses 180 degrees before the cell tip is reached. Within minutes after their application to roots,Rhizobium leguminosarum-derived Nod factors, cause an increase and divergence in the subapical cytoplasmic strands. This phenomenon can best be observed in the growth-terminating hairs, since in hairs of this developmental stage, subapical cytoplasmic strands are transvacuolar. First, the tips of these hairs swell. The organelle movement in the swelling tip increases up to the level normal for circulation streaming, and the number of strands with moving organelles increases. When a new polar outgrowth emerges, reverse-fountain streaming is set up again, with all its characteristics like those seen in growing hairs. This outgrowth may obtain a new full root hair length, by which these hairs may become twice as long as nonchallenged hairs. Dedicated to Professor Walter Gustav Url on the occasion of his 70th birthday  相似文献   

13.
Jing Y  Yi K  Ren H 《Protoplasma》2003,222(3-4):183-191
Summary. Pollen and skeletal muscle actins were purified and labeled with fluorescent dyes that have different emission wavelengths. Observation by electron microscopy shows that the fluorescent actins are capable to polymerize into filamentous actin in vitro, bind to myosin S-1 fragments, and have a critical concentration similar to unlabeled actin, indicating that they are functionally active. The globular actins from two sources were mixed and polymerized by the addition of ATP and salts. The copolymerization experiment shows that when excited by light of the appropriate wavelength, both red actin filaments (pollen actin) and green actin filaments (muscle actin) can be visualized under the microscope, but no filaments exhibiting both green and red colors are detected. Furthermore, coprecipitations of labeled pollen actin with unlabeled pollen and skeletal muscle actin were performed. Measurements of fluorescent intensity show that the amount of labeled pollen actin precipitating with pollen actin was much higher than that with skeletal muscle actin, indicating that pollen and muscle actin tend not to form heteropolymers. Injection of labeled pollen actin into living stamen hair cells results in the formation of normal actin filaments in transvacuolar strands and the cortical cytoplasm. In contrast, labeled skeletal muscle actin has detrimental effects on the cellular architecture. The results from coinjection of the actin-disrupting reagent cytochalasin D with pollen actin show that overexpression of pollen actin prolongs the displacement of the nucleus and facilitates the recovery of the nuclear position, actin filament architecture, and transvacuolar strands. However, muscle actin perturbs actin filaments when injected into stamen hair cells. Moreover, nuclear displacement occurs more rapidly when cytochalasin D and muscle actin are coinjected into the cell. It is concluded that actins from plant and animal sources behave differently in vitro and in vivo and that they are functionally not interchangeable.  相似文献   

14.
S. Ogihara  K. Kuroda 《Protoplasma》1979,100(2):167-177
Summary R-HMM (rhodamine-heavy meromyosin) stained the birefringent fibrous structure which appears and disappears cyclically in parallel with the periodic shuttle streaming in the plasmodium ofPhysarum polycephalum. In addition, 0.6 M KI readily made the birefringent fibrils fade away. These results clearly show that the birefringent fibrils are composed of actin filaments and prove the possibility of actin filaments to alter in the aggregation state during the cyclic production of the motive force responsible for the cytoplasmic streaming.  相似文献   

15.
Time-lapse videomicroscopy was used to observe the effects of various cytoskeletal inhibitors on three important fertilization events in Bostrychia moritziana: spermatial mitosis, gamete fusion (formation of a fertilization pore) and nuclear migration along the trichogyne. The microtubule inhibitor oryzalin disrupted spermatial mitosis but had no other effect on fertilization. The actin inhibitors, jasplakinolide, cytochalasin B, latrunculin A and B and mycalolide B inhibited gamete fusion while BDM, a myosin-disrupting drug, inhibited all three major fertilization events. FL-Phallacidin was used to stain actin filaments in spermatia and trichogynes while microtubules were labelled with antibodies at appropriate stages of fertilization. Microtubules were only evident during spermatial nuclear division. Actin filaments were present in both trichogynes and spermatia throughout fertilization; they formed a discrete ring around the fertilization pore and ensheathed male nuclei as the latter migrated into and along the trichogyne. These results suggest that the actin/myosin system plays a role in the events of fertilization.  相似文献   

16.
The influence of cytochalasin B (CB), a potent inhibitor of cytoplasmic streaming, on 86Rb-labelled K+ translocation by detopped Lycopersicon esculentum Mill., Cucumis sativus L. and Zea mays L. plants was examined by measuring the radioactivity in xylem exudate before and after the addition of CB to the medium bathing the roots. CB caused complete cessation of cytoplasmic streaming in root segments within 15 min but was without effect on either total 86Rb uptake or exudation. Thus factors other than cytoplasmic streaming limit the movement of K+ across the symplast of the root of higher plants.  相似文献   

17.
The major manifestations of amoeboid locomotion in Naegleria-cytoplasmic streaming, pseudopod production, cell polarity and focal contact production-require that the actin-based cytoskeleton be extremely dynamic. Whether these features are causally linked is unclear. In an attempt to answer this question we have used the fungal product cytochalasin B (cyt B) to dissect the motility process. This drug can perturb the organisation of actin filaments both in vivo and in vitro. Essentially cyt B acts as a molecule which can cap the barbed ends of actin filaments. Not surprisingly, therefore cyt B has an effect on rates of actin polymerization and the dynamic state of actin in the cytoplasm. We have found that cyt B has a profound effect on focal contact production and breakdown. Within minutes of addition of cyt B focal contact production ceases, existing focal contacts are stabilised but cytoplasmic streaming and pseudopod production are not blocked. In conclusion it is now clear that the state of actin required for focal contact production is different from that required for pseudopod extension and cytoplasmic streaming.  相似文献   

18.
H. Hashimoto 《Protoplasma》1992,167(1-2):88-96
Summary Studies have been made of whether actin filaments and microtubules are involved in the chloroplast division ofClosterium ehrenbergii (Conjugatae). Fluorostaining with rhodamine-phalloidin showed 5 types of localization of F-actin: (1) cables of actin filaments running in the cortical cytoplasm along the cell's long axis, (2) condensed actin filaments at the septum, (3) perinuclear distribution of actin filaments, (4) F-actins in a marking pin-like configuration adjacent to the nucleus of semicells just before completion of chloroplast kinesis, and (5) actin filaments girdling the isthmus of the constricted and dividing chloroplasts. Cytochalasin D (CD) at a concentration of 6 to 25 M caused significant disruption of actin filaments and the arrest of chloroplast kinesis, nuclear division, septum formation and cytoplasmic streaming within 3 to 6h. Chloroplast kinesis and cytoplasmic streaming recovered when cells were transferred to the medium without CD after CD treatment, or were subjected to prolonged contact with CD for more than 9h. In these cells there was a coincidental reappearance of actin filaments. A tubulin inhibitor, amiprophos-methyl at 330 M, did not inhibit chloroplast kinesis but did inhibit division and positioning of the nucleus. These results suggest that actin filaments do play a role in the mechanism of chloroplast kinesis but that microtubules do not appear to be involved in the process.Abbreviations APM amiprophos-methyl - CD cytochalasin D - DAPI 4,6-diamidino-2-phenylindole - DIC Nomarski differential interference contrast - DMSO dimethyl sulfoxide - Rh-Ph rhodamine-phalloidin  相似文献   

19.
Summary Cytoplasmic structure and rates of cyclosis in trichomes from chilling-sensitive watermelon (Citrullus vulgaris L.), tomato (Lycopersicon esculentum Mill.) andEpiscia reptans plants and from chilling-resistant foxglove (Digitalis purpurea) andVeronica persica were examined with differential interference contrast optics (DIC) as the temperature of the microscope stage was lowered. Below the chilling threshold, the rate of streaming in chilling-sensitive species fell markedly. At chilling temperatures the complex network of transvacuolar strands in the cytoplasm disappeared and the cytoplasm became vesiculated. During rewarming of the chilled cells, the vesicles fused into pleiomorphic blebs, which gradually stretched out into fully functional strands. These events were not seen during the chilling and rewarming of chilling-resistant plant cells.Similar inhibition of cyclosis and changes in cytoplasmic structure were observed in cells from all species studied when they were treated with the actin inhibitor, cytochalasin B, or with uncoupling agents. Phalloidin had no detectable effect. Cyclosis in colchicine-, nocodazole-, trifluralin- and IPC-treated cells was not affected for many hours and did not cause the structural changes seen with chilling. The possible role of actin in these low-temperature effects on cytoplasmic structure and function is discussed.  相似文献   

20.
Summary Since photo-induced orientation movement of a single, ribbon-shaped chloroplast in each cell of the filamentous green algaMougeotia is inhibited in the presence of cytochalasin B, actin is thought to be involved in the process of chloroplast movements. However, this possibility remains to be proved. A specific class of cytoplasmic filaments, which emerge from the advancing front of the moving chloroplast, can be seen by differential interference contrast (DIC) microscopy. However, no one has yet succeeded in defining the nature of these filaments. We have been able to stain the actin filaments (AFs) associated with the moving chloroplast with fluorescein-conjugated phalloidin (FP) after pre-treatment withm-maleimidobenzoyl N-hydroxysuccinimide ester (MBS). No filamentous structures were observed in cells that had been pre-irradiated with low-fluence rate red light. However, transversely oriented fluorescent filaments appeared at the front edge of the moving chloroplast when it began to rotate under irradiation with high-fluence rate white light. These filaments disappeared after completion of the orientation movement, suggesting the simultaneous appearance of AFs and the orientation movement of the chloroplast. Thick cytoplasmic strands connecting the edge of the chloroplast with the parietal cytoplasm were often seen by DIC microscopy before and after completion of the high-fluence rate orientation movement. These thick cytoplasmic strands could not be stained by FP, but were often stained by 3,3-dihexyloxacarbocyanine iodide (DiOC6(3)), suggesting that they are transvacuolar strands that include endoplasmic reticulum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号