首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In higher plants, peroxisomes have been believed to play a pivotal role in three metabolic pathways, which are lipid breakdown, photorespiration and H2O2-detoxificaton. Recently, significant progress in the study of plant peroxisomes was established by forward-/reverse-genetics and post-genomic approaches using Arabidopsis thaliana, the first higher plant to have its entire genome sequenced. These studies illustrated that plant peroxisomes have more diverse functions than we previously thought. Research using Arabidopsis thaliana is improving our understanding of the function of plant peroxisomes.  相似文献   

2.
Leaf-type peroxisomes are not present in the primitive unicellular Prasinophycean line of algae but are present in the multicellular algae Mougeotia, Chara, and Nitella, which are in the one evolutionary line, Charophyceae, that led to higher plants. Processes related to glycolate metabolism that may have been modified or induced with the appearance of peroxisomes have been examined. The algal dissolved inorganic carbon-concentrating mechanism and alkalization of the medium during photosynthesis were not lost when peroxisomes appeared in the members of the Charophycean line of algae. Therefore, it is unlikely that lowering of the CO2 concentration in the environment was a major factor in the evolutionary appearance of peroxisomes. Multicellular Mougeotia, early members of the Charophycean line of algae, have peroxisomes, but they excrete excess glycolate into the medium. The cytosolic pyruvate reductase for D-lactate synthesis and the glycolate dehydrogenase activity almost disappeared when peroxisomal glycolate oxidase, which also oxidizes L-lactate, appeared. These biochemical changes do not indicate what caused the induction of leaf-type peroxisomes in this evolutionary line of algae. The oxygenase activity of ribulose-1,5-bisphosphate carboxylase/oxygenase and glycolate oxidase require about 200 to 400 [mu]M O2 for 0.5 Vmax. These high-O2-requiring steps in glycolate metabolism would have functioned faster with increasing atmospheric O2, which might have been the causative factor in the induction of peroxisomes.  相似文献   

3.
In plants, peroxisomes are the organelles involved in various metabolic processes and physiological functions including β-oxidation, mobilization of seed storage lipids, photorespiration, and hormone biosynthesis. We have recently shown that, in fungi and plants, peroxisomes play a vital role in biosynthesis of biotin, an essential cofactor required for various carboxylation and decarboxylation reactions. In fungi, the mutants defective in peroxisomal protein import exhibit biotin auxotrophy. The fungal BioF protein, a 7-keto-8-aminopelargonic acid (KAPA) synthase catalyzing the conversion of pimeloyl-CoA to KAPA in biotin biosynthesis, contains the peroxisomal targeting sequence 1 (PTS1), and its peroxisomal targeting is required for biotin biosynthesis. In plants, biotin biosynthesis is essential for embryo development. We have shown that the peroxisomal targeting sequences of the BioF proteins are conserved throughout the plant kingdom, and the Arabidopsis thaliana BioF protein is indeed localized in peroxisomes. Our findings suggest that peroxisomal localization of the BioF protein is evolutionarily conserved among eukaryotes, and required for biotin biosynthesis and plant growth and development.  相似文献   

4.
Peroxisomes were visualized in living cells of various tissues in transgenic Arabidopsis by green fluorescent protein (GFP) through the addition of the peroxisomal targeting signal 1 (PTS1) or PTS2. The observation using confocal laser scanning microscopy revealed that the GFP fluorescence signals were detected as spherical spots in all cells of two kinds of transgenic plants. Immunoelectron microscopic analysis using antibodies against the peroxisomal marker protein, catalase, showed the presence of GFP in peroxisomes, confirming that GFP was correctly transported into peroxisomes by PTS1 or PTS2 pathways. It has been also revealed that peroxisomes are motile organelles whose movement might be caused by cytoplasmic flow. The movement of peroxisomes was more prominent in root cells than that in leaves, and divided into two categories: a relatively slow, random, vibrational movement and a rapid movement. Treatment with anti-actin and anti-tubulin drugs revealed that actin filaments involve in the rapid movement of peroxisomes. Moreover, abnormal large peroxisomes are present as clusters at the onset of germination, and these clusters disappear in a few days. Interestingly, tubular peroxisomes were also observed in the hypocotyl. These findings indicate that the shape, size, number and movement of peroxisomes in living cells are dynamic and changeable rather than uniform.  相似文献   

5.
In Chlorophycean algal cells, these organelles are generally called microbodies because they lack the enzymes found in the peroxisomes of higher plants. Microbodies in some algae contain fewer enzymes than the peroxisomes of higher plants, and some unicellular green algae in Chlorophyceae such as Chlamydomonas reinhardtii do not possess catalase, an enzyme commonly found in peroxisomes. Thus, whether microbodies in Chlorophycean algae are similar to the peroxisomes of higher plants, and whether they use a similar transport mechanism for the peroxisomal targeting signal (PTS), remain unclear. To determine whether the PTS is present in the microbodies of Chlorophycean algae, and to visualize the microbodies in Chlamydomonas cells, we examined the sub-cellular localization of green fluorescent proteins (GFP) fused to several PTS-like sequences. We detected GFP compartments that were spherical with a diameter of 0.3-1.0?μm in transgenic Chlamydomonas. Comparative analysis of the character of GFP-compartments observed by fluorescence microscopy and that of microbodies by electron microscopy indicated that the compartments were one and the same. The result also showed that the microbodies in Chlorophycean cells have a similar transport mechanism to that of peroxisomes of higher plants.  相似文献   

6.
Leaf peroxisomes are present in greening cotyledons and contain enzymes of the glycolate pathway that functions in photorespiration. However, only a few leaf peroxisomal proteins, that is hydroxypyruvate reductase (HPR), glycolate oxidase (GO) and alanine:glyoxylate aminotransferase 1 (AGT1), have been characterized, and other functions in leaf peroxisomes have not been solved. To better understand the functions of leaf peroxisomes, we established a method to isolate leaf peroxisomes of greening cotyledons. We analyzed 53 proteins by MALDI-TOF MS and then identified 29 proteins. Among them, five proteins are related to the glycolate pathway, four proteins function in scavenging of hydrogen peroxide and additionally 20 novel leaf peroxisomal proteins were identified. In particular, protein kinases and protein phosphatase were first identified as peroxisomal proteins suggesting that protein phosphorylation is one of the regulatory mechanisms in leaf peroxisomes. Novel leaf peroxisomal proteins contained five PTS1-like proteins that have sequences where one amino acid is substituted with another one in PTS1 sequences. The PTS1 motif was suggested to have novel PTS1 sequences.  相似文献   

7.
Peroxisomes are organelles with main functions in the metabolism of lipids and of reactive oxygen species. Within the testis, they have different functional profiles depending on the cell types. A dysfunction of peroxisomes interferes with regular spermatogenesis and can lead to infertility due to spermatogenic arrest. However, so far only very little is known about the functions of peroxisomes in germ cells. We have therefore analyzed the peroxisomal compartment in germ cells and its alterations during spermatogenesis by fluorescence and electron microscopy as well as by expression profiling of peroxisome-related genes in purified cell populations isolated from mouse testis. We could show that peroxisomes are present in all germ cells of the germinal epithelium. During late spermiogenesis, the peroxisomes form large clusters that are segregated from the spermatozoa into the residual bodies upon release from the germinal epithelium. Germ cells express genes for proteins involved in numerous metabolic pathways of peroxisomes. Based on the expression profile, we conclude that newly identified functions of germ cell peroxisomes are the synthesis of plasmalogens as well as the metabolism of retinoids, polyunsaturated fatty acids and polyamines. Thus, germ cell peroxisomes are involved in the regulation of the homeostasis of signaling molecules regulating spermatogenesis and they contribute to the protection of germ cells against oxidative stress.  相似文献   

8.
9.
Peroxisomes play key roles in energy metabolism, cell signaling, and plant development. A better understanding of these important functions will be achieved with a more complete definition of the peroxisome proteome. The isolation of peroxisomes and their separation from mitochondria and other major membrane systems have been significant challenges in the Arabidopsis (Arabidopsis thaliana) model system. In this study, we present new data on the Arabidopsis peroxisome proteome obtained using two new technical advances that have not previously been applied to studies of plant peroxisomes. First, we followed density gradient centrifugation with free-flow electrophoresis to improve the separation of peroxisomes from mitochondria. Second, we used quantitative proteomics to identify proteins enriched in the peroxisome fractions relative to mitochondrial fractions. We provide evidence for peroxisomal localization of 89 proteins, 36 of which have not previously been identified in other analyses of Arabidopsis peroxisomes. Chimeric green fluorescent protein constructs of 35 proteins have been used to confirm their localization in peroxisomes or to identify endoplasmic reticulum contaminants. The distribution of many of these peroxisomal proteins between soluble, membrane-associated, and integral membrane locations has also been determined. This core peroxisomal proteome from nonphotosynthetic cultured cells contains a proportion of proteins that cannot be predicted to be peroxisomal due to the lack of recognizable peroxisomal targeting sequence 1 (PTS1) or PTS2 signals. Proteins identified are likely to be components in peroxisome biogenesis, beta-oxidation for fatty acid degradation and hormone biosynthesis, photorespiration, and metabolite transport. A considerable number of the proteins found in peroxisomes have no known function, and potential roles of these proteins in peroxisomal metabolism are discussed. This is aided by a metabolic network analysis that reveals a tight integration of functions and highlights specific metabolite nodes that most probably represent entry and exit metabolites that could require transport across the peroxisomal membrane.  相似文献   

10.
Peroxisomes were long believed to play only a minor role in cellular metabolism but it is now clear that they catalyze a number of important functions. The importance of peroxisomes in humans is stressed by the existence of a group of genetic diseases in man in which one or more peroxisomal functions are impaired. Most of the functions known to take place in peroxisomes have to do with lipids. Indeed, peroxisomes are capable of 1, fatty acid β-oxidation 2, fatty acid α-oxidation 3, synthesis of cholesterol and other isoprenoids 4, ether-phospholipid synthesis and 5, biosynthesis of polyunsaturated fatty acids. In Chapter 2–6 we will discuss the functional organization and enzymology of these pathways in detail. Furthermore, attentin is paid to the permeability properties of peroxisomes with special emphasis on recent studies which suggest that peroxisomes are closed structures containing specific membrane proteins for trransport of metabolites. Finally, the disorders of peroxisomal lipid metabolism will be discussed.  相似文献   

11.
In higher plants, peroxisomes accomplish a variety of physiological functions such as lipid catabolism, photorespiration and hormone biosynthesis. Recently, many factors regulating peroxisomal biogenesis, so-called PEX genes, have been identified not only in plants but also in yeasts and mammals. In the Arabidopsis genome, the presence of at least 22 PEX genes has been proposed. Here, we clarify the physiological functions of 18 PEX genes for peroxisomal biogenesis by analyzing transgenic Arabidopsis plants that suppressed the PEX gene expression using RNA interference. The results indicated that the function of these PEX genes could be divided into two groups. One group involves PEX1, PEX2, PEX4, PEX6, PEX10, PEX12 and PEX13 together with previously characterized PEX5, PEX7 and PEX14. Defects in these genes caused loss of peroxisomal function due to misdistribution of peroxisomal matrix proteins in the cytosol. Of these, the pex10 mutant showed pleiotropic phenotypes that were not observed in any other pex mutants. In contrast, reduced peroxisomal function of the second group, including PEX3, PEX11, PEX16 and PEX19, was induced by morphological changes of the peroxisomes. Cells of the pex16 mutant in particular possessed reduced numbers of large peroxisome(s) that contained unknown vesicles. These results provide experimental evidence indicating that all of these PEX genes play pivotal roles in regulating peroxisomal biogenesis. We conclude that PEX genes belonging to the former group are involved in regulating peroxisomal protein import, whereas those of the latter group are important in maintaining the structure of peroxisome.  相似文献   

12.
Protein ubiquitination regulates diverse cellular processes in eukaryotic organisms,from growth and development to stress response.Proteins subjected to ubiquitination can be found in virtually all subcellular locations and organelles,including peroxisomes,singlemembrane and highly dynamic organelles ubiquitous in eukaryotes.Peroxisomes contain metabolic functions essential to plants and animals such as lipid catabolism,detoxification of reactive oxygen species(ROS),biosynthesis of vital hormone...  相似文献   

13.
Cadmium induces senescence symptoms in leaf peroxisomes of pea plants   总被引:11,自引:1,他引:11  
The effect of growing pea (Pisum sativum L.) plants with a toxic CdCl2 concentration (50 µm ) on the metabolism and proteolytic activity of leaf peroxisomes was studied. In peroxisomes purified from plants treated with cadmium, an increase in the total protein concentration and in the activity and protein level of the photorespiratory enzyme glycolate oxidase was found. The glyoxylate cycle enzymes, malate synthase and isocitrate lyase, whose activity is normally very low in leaf peroxisomes, were enhanced by Cd treatment. The activity of the endogenous proteases of leaf peroxisomes was determined. Two leucine‐aminopeptidase isozymes (AP1‐AP2) were detected, and their activity was slightly higher in Cd‐treated plants. Five endopeptidases (EP1‐EP5) were present in pea leaf peroxisomes, and in plants grown with Cd the activity of isozymes EP1‐EP4 was increased. The ultrastructural analysis of pea leaves showed that Cd produced a disorganization of the chloroplast structure, with an increase in the number of plastoglobuli, and the formation of vesicles in the vacuoles. Taken together, these results indicate that Cd induces senescence symptoms in leaf peroxisomes, and probably a metabolic transition of leaf peroxisomes into glyoxysomes, and suggest that the peroxisomal proteases could participate in the metabolic changes produced by Cd.  相似文献   

14.
The subcellular localization of superoxide dismutase (SOD; EC. 1.15.1.1) was studied in leaves of two ureide-producing leguminous plants ( Phaseolus vulgaris L. cv. Contender and Vigna unguiculata [L.] Walp). In leaves of Vigna and Phaseolus , three superoxide dismutases were found, an Mn-SOD and two Cu, Zn-containing SODs (I and II). Chloroplasts, mitochondria, and peroxisomes were purified by differential and density-gradient centrifugation using either Percoll or sucrose gradients. The yields obtained in intact chloroplasts and peroxisomes from Vigna were considerably higher than those achieved for Phaseolus . Purified chloroplasts only contained the Cu, Zn-SOD II isozyme, but in mitochondria both Mn-SOD and Cu, Zn-SOD I isozymes were present. In purified peroxisomes no SOD activity was detected. The absence of SOD activity in leaf peroxisomes from Vigna contrasts with results reported for the amide-metabolizing legume Pisum sativum L. where the occurrence of Mn-SOD was demonstrated in leaf peroxisomes (del Río et al. 1983. Planta 158: 216–224; Sandalio et al. 1987. Plant Sci. 51: 1–8). This suggests that in leaf peroxisomes from Vigna plants the generation of O2- radicals under normal conditions probably does not take place.  相似文献   

15.
Multigene families encoding class XI myosins are conserved in higher plants, however, little information is available on specific functions of these ubiquitous molecular motors. We isolated gene knockout mutants for all 13 class XI myosins present in Arabidopsis (Arabidopsis thaliana) genome. Inactivation of 11 myosin genes resulted in no discernible phenotypes under the normal growth conditions. In contrast, the knockouts of the remaining two myosin genes, XI-2 (formerly MYA2) and XI-K, exhibited similar defects in root hair elongation suggesting that the myosin-driven motility plays a significant role in a polar tip growth. Strikingly, inactivation of each of these myosins also reduced trafficking of Golgi stacks, peroxisomes, and mitochondria in root hairs and in leaf epidermal cells. These results indicate that myosins XI-K and XI-2 play major and overlapping roles in the cell dynamics in Arabidopsis and highlight the redundant nature of myosin function in plants.  相似文献   

16.
Peroxisomes are subcellular organelles with an essentially oxidative type of metabolism. The presence in these organelles of superoxide dismutases and the generation of superoxide radicals (O2??) was first demonstrated in plant tissues and in recent years different experimental evidence has suggested the existence of cellular functions related to activated oxygen species. Some of these functions are analyzed in this work. In purified intact peroxisomes from pea (Pisum sativum L.) leaves, xanthine oxidase and urate oxidase were found to be present. The occurrence and the level of the metabolites xanthine, hypoxanthine, uric acid, and allantoin were studied in extracts of pea leaf peroxisomes by HPLC. Xanthine, uric acid, and allantoin were detected in peroxisomes. These results suggest a cellular role for leaf peroxisomes in the catabolism of purines. In peroxisomal membranes, 3 polypeptides (PMPs) with molecular masses of 18, 29 and 32 kDa, respectively, have been shown to generate superoxide radicals. These PMPs were purified from pea leaf peroxisomal membranes and characterized. While the 18- and 32-kDa PMPs use NADH as electron donor for O2?? production, the 29-kDa PMP was clearly dependent on NADPH. Very recently, the occurrence in pea leaf peroxisomes of all the enzymes of the ascorbate-glutathione cycle has been demonstrated. NADPH is required for the glutathione reductase activity of the cycle and this implies the reduction of NADP+ to NADPH. This recycling function could be carried out by the NADP-dependent glucose-6-phosphate dehydrogenase (G6PDH), 6-phosphogluconate dehydrogenase (6PGDH), and isocitrate dehydrogenase (ICDH). These 3 dehydrogenases have been demonstrated to be present in the matrix of pea leaf peroxisomes. The catabolism of purines, the superoxide-generating PMPs, the ascorbate-glutathione cycle, and the dehydrogenase-mediated recycling of NADPH, are activated oxygen roles of leaf peroxisomes that add to other functions previously known for peroxisomes from eukaryotic cells.  相似文献   

17.
Peroxisomes are single membrane bound organelles present in almost all eukaryotic cells, and to date have been shown to contain approximately 60 identified enzymes involved in various metabolic pathways, including the oxidation of a variety of lipids. These lipids include very long-chain fatty acids, methyl branched fatty acids, prostaglandins, bile-acid precursors and xenobiotics that are either β-oxidized or α-oxidized in peroxisomes. The recent identification of several acyl-CoA thioesterases and acyltransferases in peroxisomes has revealed their various functions in acting as auxiliary enzymes in α- and β-oxidation in this organelle. To date, 9 functional acyl-CoA thioesterases and acyltransferases have been identified in mouse and 4 functional acyl-CoA thioesterases and acyltransferases in human, thus these enzymes make up a substantial portion of peroxisomal proteins. This review will therefore focus on new and emerging roles for these enzymes in assisting with the oxidation of various lipids, amidation of lipids for excretion from peroxisomes, and in controlling coenzyme A levels in peroxisomes.  相似文献   

18.
We have developed a positive selection system for the isolation of Saccharomyces cerevisiae mutants with disturbed peroxisomal functions. The selection is based on the lethality of hydrogen peroxide (H2O2) that is produced in wild type cells during the peroxisomal beta-oxidation of fatty acids. In total, 17 mutants having a general impairment of peroxisome biogenesis were isolated, as revealed by their inability to grow on oleic acid as the sole carbon source and their aberrant cell fractionation pattern of peroxisomal enzymes. The mutants were shown to have monogenetic defects and to fall into 12 complementation groups. Representative members of each complementation group were morphologically examined by immunocytochemistry using EM. In one mutant the induction and morphology of peroxisomes is normal but import of thiolase is abrogated, while in another the morphology differs from the wild type: stacked peroxisomal membranes are present that are able to import thiolase but not catalase. These mutants suggest the existence of multiple components involved in peroxisomal protein import. Some mutants show the phenotype characteristic of glucose-repressed cells, an indication for the interruption of a signal transduction pathway resulting in organelle proliferation. In the remaining mutants morphologically detectable peroxisomes are absent: this phenotype is also known from fibroblasts of patients suffering from Zellweger syndrome, a disorder resulting from impairment of peroxisomes.  相似文献   

19.
Light regulates alternative splicing of hydroxypyruvate reductase in pumpkin   总被引:16,自引:0,他引:16  
Hydroxypyruvate reductase (HPR) is a leaf peroxisomal enzyme that functions in the glycolate pathway of photorespiration in plants. We have obtained two highly similar cDNAs for pumpkin HPR (HPR1 and HPR2). It has been revealed that two HPR mRNAs might be produced by alternative splicing from a single type of pre-mRNA. The HPR1 protein, but not the HPR2 protein, was found to have a targeting sequence into leaf peroxisomes at the C-terminus, suggesting that alternative splicing controls the subcellular localization of the two HPR proteins. Immunoblot analysis and subcellular fractionation experiments showed that HPR1 and HPR2 proteins are localized in leaf peroxisomes and the cytosol, respectively. Moreover, indirect fluorescence microscopy and analyses of transgenic tobacco cultured cells and Arabidopsis thaliana expressing fusion proteins with green fluorescent protein (GFP) revealed the different subcellular localizations of the two HPR proteins. Both mRNAs were induced developmentally and by light, but with quantitative differences. Almost equal amounts of the mRNAs were detected in pumpkin cotyledons grown in darkness, but treatment with light greatly enhanced the production of HPR2 mRNA. These findings indicate that light regulates alternative splicing of HPR mRNA, suggesting the presence of a novel mechanism of mRNA maturation, namely light-regulated alternative splicing, in higher plants.  相似文献   

20.
Aung K  Hu J 《The Plant cell》2011,23(12):4446-4461
Peroxisomes and mitochondria are multifunctional eukaryotic organelles that are not only interconnected metabolically but also share proteins in division. Two evolutionarily conserved division factors, dynamin-related protein (DRP) and its organelle anchor FISSION1 (FIS1), mediate the fission of both peroxisomes and mitochondria. Here, we identified and characterized a plant-specific protein shared by these two types of organelles. The Arabidopsis thaliana PEROXISOMAL and MITOCHONDRIAL DIVISION FACTOR1 (PMD1) is a coiled-coil protein tethered to the membranes of peroxisomes and mitochondria by its C terminus. Null mutants of PMD1 contain enlarged peroxisomes and elongated mitochondria, and plants overexpressing PMD1 have an increased number of these organelles that are smaller in size and often aggregated. PMD1 lacks physical interaction with the known division proteins DRP3 and FIS1; it is also not required for DRP3's organelle targeting. Affinity purifications pulled down PMD1's homolog, PMD2, which exclusively targets to mitochondria and plays a specific role in mitochondrial morphogenesis. PMD1 and PMD2 can form homo- and heterocomplexes. Organelle targeting signals reside in the C termini of these proteins. Our results suggest that PMD1 facilitates peroxisomal and mitochondrial proliferation in a FIS1/DRP3-independent manner and that the homologous proteins PMD1 and PMD2 perform nonredundant functions in organelle morphogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号