首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Elevated cytosolic Ca2+ activates phospholipase D in human platelets   总被引:3,自引:0,他引:3  
We have examined the activation of phospholipase D in human platelets treated with alpha-thrombin. When incubated with 1-O-[9,10-3H2]hexadecyl-2-lysophosphatidylcholine (PtdCho) and 1-alkyl-[32P]lysoPtdCho for 2 h, platelets formed 3H/32P-labeled PtdCho in a ratio of 11:1. After incubation of such labeled platelets with alpha-thrombin for 5 min, increased accumulation of 3H/32P-labeled phosphatidic acid (PtdOH) was detected in the same ratio, indicating the action of phospholipase D. The Ca2+ ionophore A23187 and alpha-thrombin each stimulated the formation of labeled PtdOH as above in a time- and concentration-dependent manner, with only minor changes in labeled diglyceride. A23187 was able to cause increases in labeled PtdOH comparable to those observed with alpha-thrombin. beta-Phorbol 12,13-dibutyrate, an activator of protein kinase C, only slightly stimulated the accumulation of labeled PtOH. The protein kinase C inhibitor, staurosporine, totally blocked these changes but only slightly inhibited the increases in labeled PtdOH promoted by alpha-thrombin. These results suggest that an increase in intracellular Ca2+, rather than protein kinase C activity, is a major factor regulating phospholipase D in platelets exposed to alpha-thrombin. We have also examined the relative contributions of phospholipase D and diglyceride kinase (following phospholipase C action) to PtdOH accumulation in [32P]Pi-labeled platelets by comparing the 32P-specific radioactivities of PtdOH, PtdCho, and metabolic gamma-ATP in control and alpha-thrombin-exposed platelets. Based on these determinations, we conclude that 13 and 87% of incremental PtdOH in human platelets exposed to alpha-thrombin arises via phospholipase D acting on PtdCho and phospholipase C/diglyceride kinase, respectively.  相似文献   

2.
A human hepatocellular carcinoma-derived cell line, PLC/PRF/5, was examined for its ability to respond to epidermal growth factor (EGF) exposure with increased phosphatidylinositol 4,5-bisphosphate hydrolysis. Upon addition of EGF (25 ng/ml), a rapid (10-15 s) but transient increase in Ins(1,4,5)P3 levels and large, prolonged (2 min) increases in Ins(1,3,4,5)P4 and Ins(1,3,4)P3 levels were detected. Increases in cytosolic Ca2+ were observed after a 10 to 20 s lag, reaching peak value at 1 min, and remaining elevated for 10 min. The initial burst of cytosolic Ca2+ occurred in the absence of extracellular Ca2+ and probably reflects mobilization of intracellular Ca2+ stores. In cells pretreated with EGTA, the sustained component of the Ca2+ response was not observed. Comparison of the inositol phosphate and Ca2+ responses of PLC/PRF/5 cells to responses reported in other cell types indicates that this cell line is a good model for EGF action in liver.  相似文献   

3.
It has been reported that the cooperative binding of calcium ions indicated a local conformational change of the human cytosolic phospholipase A2 (cPLA2) C2 domain (Nalefski et al., (1997) Biochemistry 36, 12011-12018). However its structural evidence is less known (Malmberg et al., (2003) Biochemistry 42, 13227-13240). In this letter, life-time decay and fluorescence quenching techniques were employed to compare the calcium-induced conformational changes. The life-time decay parameters and fluorescence quenching constant changes were small between the apo- and holo-C2 domains when tryptophan residue was excited at 295 nm. In contrast, the quenching constant change was large, from 0.52 M(-1) for the apo-C2 to 8.8 M(-1) for the holo-C2 domain, when tyrosine residues were excited at 284 nm. Our results provide new information on amino acid side chain orientation change at calcium binding loop 3, which is necessary for Ca2+ binding regulated membrane targeting of human cytosolic phospholipase A2.  相似文献   

4.
We report that Ins(1,3,4,5)P4 releases calcium from intracellular stores of intact Xenopus laevis oocytes, as indicated by two different techniques, Ca2(+)-sensitive microelectrodes and a fura-2 imaging system. Ins(1,3,4,5)P4 releases only 20% as much Ca2+ as the same amount of Ins(1,4,5)P3. This effect is not due to the conversion of the injected Ins(1,3,4,5)P4 to Ins(1,4,5)P3, which is known to release Ca2+, because the amount of [3H]Ins(1,3,4,5)P4 that is converted to Ins(1,4,5)P3 is extremely small, as determined using HPLC. Examination of the different current patterns induced by Ins(1,4,5)P3 and Ins(1,3,4,5)P4, when injected into voltage-clamped oocytes, provided further evidence that the Ins(1,3,4,5)P4 was not being converted back to Ins(1,4,5)P3. We investigated the effects of four compounds, three inositol trisphosphates (Ins(1,4,5)P3, Ins(2,4,5)P3, and Ins(1,3,4)P3), and Ins(1,3,4,5)P4, on Cl- current conductance in order to examine (1) the possible role of Ins(1,3,4,5)P4 in cell activation and (2) the relationships between intracellular Ca2+ and the activation of Cl- currents. Immature stage VI Xenopus laevis oocytes were voltage-clamped and injected with Ins(1,4,5)P3, Ins(2,4,5)P3, and Ins(1,3,4)P3. Ins(1,4,5)P3 and Ins(2,4,5)P3 triggered Ca2(+)-dependent Cl- currents, but Ins(1,3,4)P3 did not trigger currents nor did it release intracellular Ca2+. Ins(2,4,5)P3 was fourfold less effective at inducing the immediate Cl- current pulse than Ins(1,4,5)P3. The Cl- current pattern was quite dependent on the amount of Ins(1,4,5)P3 injected into the oocyte. Low amounts of Ins(1,4,5)P3 triggered only an immediate single Cl- current pulse, whereas large amounts triggered the immediate single pulse, followed by a quiescent period, followed by oscillating Cl- currents. In contrast to the response of Ins(1,4,5)P3, injection of Ins(1,3,4,5)P4 triggered only oscillating Cl- currents whose magnitude, but not pattern, was dependent on the amount injected into the cell. The currents generated by Ins(1,3,4,5)P4 resemble the oscillating Cl- currents triggered by large amounts of Ins(1,4,5)P3 and Ins(2,4,5)P3. Ins(1,3,4,5)P4, unlike Ins(1,4,5)P3 and Ins(2,4,5)P3, rarely caused an immediate Cl- current pulse, but caused an immediate release of calcium. Therefore, we suggest that the oscillating currents are only indirectly dependent on calcium. These [Ca2+]i and conductance measurements suggest that both Ins(1,4,5)P3 and Ins(1,3,4,5)P4 have roles in intracellular Ca2+ regulation.  相似文献   

5.
Luminal Ca2+ controls the sensitivity of the intracellular Ca2+ stores to inositol 1,4,5-trisphosphate (Ins(1,4,5)P3). Ins(1,4,5)P3-induced Ca2+ release is also controlled by cytosolic Ca2+; low concentrations of Ca2+ stimulate the release. The aim of this work was to investigate whether luminal Ca2+ would affect the stimulation of the Ins(1,4,5)P3 receptor by cytosolic Ca2+ in permeabilized A7r5 smooth muscle cells. We also report that the Ins(1,4,5)P3 receptor in A7r5 cells is activated by low concentrations of cytosolic Ca2+. Cytoplasmic Ca2+ increases the Ins(1,4,5)P3 sensitivity without affecting the cooperativity. The increase in Ins(1,4,5)P3 sensitivity becomes relatively more pronounced when the Ca2+ content of the stores decreases. This modulatory effect of luminal Ca2+ on the responsiveness to cytosolic Ca2+ is an intrinsic property of the Ins(1,4,5)P3 receptor.  相似文献   

6.
The Ca(2+)-sensing receptor (CaR) stimulates a number of phospholipase activities, but the specific phospholipases and the mechanisms by which the CaR activates them are not defined. We investigated regulation of phospholipase A(2) (PLA(2)) by the Ca(2+)-sensing receptor (CaR) in human embryonic kidney 293 cells that express either the wild-type receptor or a nonfunctional mutant (R796W) CaR. The PLA(2) activity was attributable to cytosolic PLA(2) (cPLA(2)) based on its inhibition by arachidonyl trifluoromethyl ketone, lack of inhibition by bromoenol lactone, and enhancement of the CaR-stimulated phospholipase activity by coexpression of a cDNA encoding the 85-kDa human cPLA(2). No CaR-stimulated cPLA(2) activity was found in the cells that expressed the mutant CaR. Pertussis toxin treatment had a minimal effect on CaR-stimulated arachidonic acid release and the CaR-stimulated rise in intracellular Ca(2+) (Ca(2+)(i)), whereas inhibition of phospholipase C (PLC) with completely inhibited CaR-stimulated PLC and cPLA(2) activities. CaR-stimulated PLC activity was inhibited by expression of RGS4, an RGS (Regulator of G protein Signaling) protein that inhibits Galpha(q) activity. CaR-stimulated cPLA(2) activity was inhibited 80% by chelation of extracellular Ca(2+) and depletion of intracellular Ca(2+) with EGTA and inhibited 90% by treatment with W7, a calmodulin inhibitor, or with KN-93, an inhibitor of Ca(2+), calmodulin-dependent protein kinases. Chemical inhibitors of the ERK activator, MEK, and a dominant negative MEK, MEK(K97R), had no effect on CaR-stimulated cPLA(2) activity but inhibited CaR-stimulated ERK activity. These results demonstrate that the CaR activates cPLA(2) via a Galpha(q), PLC, Ca(2+)-CaM, and calmodulin-dependent protein kinase-dependent pathway that is independent the ERK pathway.  相似文献   

7.
8.
In our previous work (Krizanová et al. 1989) we have described a protein from rabbit skeletal muscle cytosolic fraction, which is able to bind dihydropyridines and phenothiazines. In the present work conclusive evidence is provided for the ability of the phospholipid-reconstituted cytosolic protein to transport calcium. The calcium transport was stimulated by BAY K 8644 and inhibited in the presence of PN 200-110. Our observations were confirmed also by electrophysiological measurements on planar lipid bilayers. The possibility that the cytosolic fraction was contaminated with membranes could be definitely ruled out. Nevertheless, the nature of the protein under study is still in the frame of guess.  相似文献   

9.
Hydrolysis of polyphosphoinositides by phosphodiesterase has been demonstrated to be involved in the control of cytosolic Ca2+ concentrations. The stimulation of Ca2+ ionophores of the release of inositol phosphates in macrophages, and other cells, together with the Ca2+ requirements for zymosan-induced phospholipase C activation, make unclear the relationship between Ca2+ mobilization and polyphosphoinositide hydrolysis. The results in the present paper strongly suggest that, for zymosan-induced phospholipase C activation, a previous increase in cytosolic Ca2+ is not a required event. These results also show that zymosan-activated release of inositol phosphates may be mediated by a guanine-nucleotide-binding protein.  相似文献   

10.
The effects of changes in pH on the binding of agonists and antagonists to the human platelet thromboxane A2/prostaglandin H2 (TXA2/PGH2) receptor were determined. Competition binding studies were performed with the TXA2/PGH2 mimetic [1S-1 alpha,2 beta (5Z), 3 alpha(1E,3R*),4 alpha)]-7-[3-(3-hydroxy-4'-iodophenoxy)-1-buteny) 7-oxabicyclo-[2.2.1]-heptan-2-yl]-5-heptenoic acid ([125I]BOP). The pH optimum for binding of [125I] BOP to washed human platelets was broad with a range of pH 4-6 in contrast to that of the TXA2/PGH2 receptor antagonist 9,11-dimethyl-methano-11,12-methano-16-(3-iodo-4-hydroxyl)-13-aza-15 alpha,beta-omega-tetranorthromboxane A2 ([125I]PTA-OH) which was 7.4. Scatchard analysis of [125I]BOP binding in washed platelets at pH 7.4, 6.0, and 5.0 revealed an increase in affinity (Kd = 1.16 +/- 0.06, 0.64 +/- 0.09, and 0.48 +/- 0.05 nM, respectively) and an increase in the number of receptors (Bmax = 2807 +/- 415, 5397 +/- 636, and 7265 +/- 753 sites/platelet, respectively). The potency of I-BOP to induce shape change in washed platelets at pH 6.0 was also significantly increased from an EC50 value of 0.34 +/- 0.016 nM at pH 7.4 to 0.174 +/- 0.014 nM at pH 6.0 (n = 6, p less than 0.05). In contrast, the EC50 value for thrombin was unaffected by the change in pH. In competition binding studies with [125I]BOP, the affinity of the agonists U46619 and ONO11113 were increased at pH 6.0 compared to 7.4. In contrast, the affinity of the TXA2/PGH2 receptor antagonists I-PTA-OH, SQ29548, and L657925 were either decreased or unchanged at pH 6.0 compared to 7.4. Diethyl pyrocarbonate and N-bromosuccinimide, reagents used to modify histidine residues, reversed the increase in affinity of [125I]BOP at pH 6.0 to values equivalent to those at pH 7.4. In solubilized platelet membranes, the effects of NBS were blocked by coincubation with the TXA2/PGH2 mimetic U46619. The results suggest that agonist and antagonist binding characteristics are different for the TXA2/PGH2 receptor and that histidine residue(s) may play an important role in the binding of TXA2/PGH2 ligands to the receptor.  相似文献   

11.
To test thehypothesis that intracellular Ca2+activation of large-conductanceCa2+-activatedK+ (BK) channels involves thecytosolic form of phospholipase A2 (cPLA2), we first inhibited theexpression of cPLA2 by treating GH3 cells with antisenseoligonucleotides directed at the two possible translation start siteson cPLA2. Western blot analysis and a biochemical assay of cPLA2activity showed marked inhibition of the expression ofcPLA2 in antisense-treated cells.We then examined the effects of intracellularCa2+ concentration([Ca2+]i)on single BK channels from these cells. Open channel probability (Po) for thecells exposed to cPLA2 antisenseoligonucleotides in 0.1 µM intracellularCa2+ was significantly lower thanin untreated or sense oligonucleotide-treated cells, but the voltagesensitivity did not change (measured as the slope of thePo-voltagerelationship). In fact, a 1,000-fold increase in[Ca2+]ifrom 0.1 to 100 µM did not significantly increasePoin these cells, whereas BK channels from cells in the other treatmentgroups showed a normalPo-[Ca2+]iresponse. Finally, we examined the effect of exogenous arachidonic acidon thePoof BK channels from antisense-treated cells. Although arachidonic aciddid significantly increasePo,it did so without restoring the[Ca2+]isensitivity observed in untreated cells. We conclude that although [Ca2+]idoes impart some basal activity to BK channels inGH3 cells, the steepPo-[Ca2+]irelationship that is characteristic of these channels involves cPLA2.

  相似文献   

12.
We have developed a simple fluorescent assay for detection of phospholipase A2 (PLA2) activity in zebrafish embryos that utilizes a fluorescent phosphatidylcholine substrate. By using this assay in conjunction with selective PLA2 inhibitors and Western blot analysis, we identified the principal activity in zebrafish embryogenesis as characteristic of the Ca2+-dependent cytosolic PLA2 (cPLA2) subtype. Embryonic cPLA2 activity remained constant from the 1-cell stage until the onset of somitogenesis, at which time it increased sharply. This increase was preceded by the expression of a previously identified zebrafish cPLA2 homologue (Nalefski, E., Sultzman, L., Martin, D., Kriz, R., Towler, P., Knopf, J., and Clark, J. (1994) J. Biol. Chem. 269, 18239-18249). By using a quenched BODIPY-labeled phosphatidylcholine that fluoresces only upon cleavage by PLA2, lipase activity was visualized in the cells of living embryos where it localized to perinuclear membranes.  相似文献   

13.
In rat pancreatic acini, we previously demonstrated that depending on the agonist used, activation of cholecystokinin type A (CCKA) receptor (CCK-AR) results in the differential involvement of the cytosolic phospholipase A2 (cPLA2), phospholipase Cbeta1 (PLCbeta1) and Src/protein tyrosine kinase (PTK) pathways. The high-affinity CCK-AR appears to be coupled to the Gbeta/cPLA2/arachidonic acid (AA) cascade in mediating Ca2+ oscillations. The low-affinity CCK-AR is coupled to both the Galphaq/11/PLCbeta1/inositol 1,4,5-trisphosphate (IP3) to evoke intracellular Ca2+ release and the Src/PTK pathway to mediate extracellular Ca2+ influx. The objectives of this study were to provide evidence that cPLA2 is present in pancreatic acini and to evaluate the possibility that its activation results in Ca2+ oscillations and amylase secretion. Furthermore, we investigated the mechanism of Ca2+ oscillations mediated by the high-affinity CCK-AR. In rat pancreatic acini, immunoprecipitation studies using an anti-cPLA2 monoclonal antibody, demonstrated a cPLA2 band at the location of 110 kDa. A selective inhibitor of cPLA2, AACOCF3 (100 microM), inhibited production of AA metabolites, Ca2+ oscillations and amylase secretion elicited by the high-affinity CCK-AR agonist, CCK-OPE (10-1000 nM). In addition, through the repetitive release of intracellular Ca2+, CCK-OPE enhanced phosphotransferase activities of Ca2+/calmodulin-dependent protein kinase type IV (CaMK IV), which were inhibited by AACOCF3. The CaMK inhibitor, K252-a (1-3 microM), also abolished basal and CCK-OPE-stimulated CaMK IV activities. The CaM inhibitor, W-7 (100 microM), and K252-a inhibited Ca2+ oscillations and amylase secretion evoked by CCK-OPE without affecting the AA formation. Therefore, it appears that Ca2+ oscillations elicited by the high-affinity CCK-AR/Gbeta/cPLA2/AA pathway activate CaMK IV. Activated CaMK, in turn, regulates Ca2+ oscillations through a positive feedback mechanism to mediate pancreatic exocytosis.  相似文献   

14.
We previously reported that VLDL could transfer phospholipids (PLs) to activated platelets. To identify the metabolic pathway involved in this process, the transfer of radiolabeled PLs from VLDL (200 microM PL) to platelets (2 x 10(8)/ml) was measured after incubations of 1 h at 37 degrees C, with or without thrombin (0.1 U/ml) or LPL (500 ng/ml), in the presence of various inhibitors, including aspirin, a cyclooxygenase inhibitor (300 microM); esculetin, a 12-lipoxygenase inhibitor (20 microM); methyl-arachidonyl-fluorophosphonate (MAFP), a phospholipase A(2) (PLA(2)) inhibitor (100 microM); 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis (acetoxymethyl) ester (BAPTA-AM), a Ca(2+) chelator (20 microM); bromoenol lactone (BEL), a Ca(2+)- independent phospholipase A(2) (iPLA(2)) inhibitor (100 nM); and 1-[6-[[17beta-3-methoxyestra-1,3,5(10)-trien-17-yl-]amino]hexyl]1H-pyrrole-2,5-dione (U73122), a phospholipase C (PLC) inhibitor (20 microM). Aspirin and esculetin had no effect, showing that PL transfer was not dependent upon cyclooxygenase or lipoxygenase pathways. The transfer of PL was inhibited by MAFP, U73122, and BAPTA-AM. Although MAFP inhibited both cytosolic phospholipase A(2) (cPLA(2)) and iPLA(2), only cPLA(2) is a calcium-dependent enzyme. Because calcium mobilization is favored by PLC and inhibited by BAPTA-AM, the transfer of PL from VLDL to platelets appeared to result from a cPLA(2)-dependent process. The inhibition of iPLA(2) by BEL had no effect on PL transfers.  相似文献   

15.
A recently purified Ca(2+)-dependent intracellular phospholipase A2 from spleen, kidney and macrophage cell lines is activated by Ca2+ at concentrations achieved intracellularly. Using enzyme from the murine cell line J774 we here demonstrate the formation of a ternary complex of phospholipase, 45Ca2+ and phospholipid vesicle, and provide evidence for a single Ca(2+)-binding site on the enzyme involved in its vesicle binding. Although Ca2+ binds to and functions as an activator of the enzyme, this ion does not appear to be involved in its catalytic mechanism, since enzyme brought to the phospholipid vesicle by molar concentrations of NaCl or NH4+ salts exhibited Ca(2+)-independent catalytic activity.  相似文献   

16.
1. Effects of Ca2+ agonist and antagonists on cytosolic free Ca2+ concentration [( Ca2+]i)were studied using quin2. 2. Nicardipine (NIC), diltiazem (DIL) and verapamil (VER) had no effect on the rise in [Ca2+]i evoked by carbachol. Methoxamine-elevated [Ca2+]i was inhibited by VER but not by NIC and DIL. 3. All Ca2+ antagonists tested produced a decline of [Ca2+]i elevated by isoproterenol to the resting level. 4. The addition of 30 mM K+ gradually elevated [Ca2+]i in normal and Ca2+-free media, but it did not increase 45Ca2+ uptake into cells. BAY K 8644 did not increase [Ca2+]i. 5. We suggest that voltage-sensitive Ca2+ channels are lacking and that at least 2 distinct receptor-operated Ca2+ channels exist in rat parotid cells.  相似文献   

17.
The calcium ionophore ionomycin induces apoptosis-like events in the human embryonic kidney cell line at early times. Plasma membrane blebbing, mitochondrial depolarization, externalization of phosphatidylserine, and nuclear permeability changes can all be observed within 15 min of treatment. However, there is no activation of caspases or chromatin condensation. Expression of a fusion protein containing the enhanced green fluorescent protein (EGFP) and human cytosolic Group IVA phospholipase A(2)alpha (EGFP-cPLA(2)alpha) in these cells prevents ionomycin-induced phosphatidylserine externalization and death. Cells expressing the cPLA(2)alpha mutant D43N, which does not bind calcium, retain their susceptibility to ionomycin-induced cell death. Both nonexpressing and EGFP-D43N-cPLA(2)alpha-expressing human embryonic kidney cells can be spared from ionomycin-induced cell death by pretreating them with exogenous arachidonic acid. Moreover, during calcium overload, mitochondrial depolarization is significantly lower in the EGFP-cPLA(2)alpha-expressing cells than in cells expressing normal amounts of cPLA(2)alpha. These results suggest that early cell death events promoted by an overload of calcium can be prevented by the presence of high levels of arachidonic acid.  相似文献   

18.
The inositol 1,4,5-trisphosphate receptor (InsP3R), an intracellular calcium release channel, is found in virtually all cells and is abundant in the cerebellum. We used Mn2+ as a tool to study two aspects of the cerebellar InsP3R. First, to investigate the structure of the ion pore, Mn2+ permeation through the channel was determined. We found that Mn2+ can pass through the InsP3R; the selectivity sequence for divalent cations is Ba2+ > Sr2+ > Ca2+ > Mg2+ > Mn2+. Second, to begin characterization of the cytosolic regulatory sites responsible for the Ca(2+)-dependent modulation of InsP3R function, the ability of Mn2+ to replace Ca2+ was investigated. We show that Mn2+, as Ca2+, modulates InsP3R activity with a bell-shaped dependence where the affinity of the activation site of the InsP3R is similar for both ions, but higher concentrations of Mn2+ were necessary to inhibit the channel. These results suggest that the two regulatory sites are structurally distinct. Our findings are also important for the understanding of cellular responses when Mn2+ is used to quench the intracellular fluorescence of Ca2+ indicator dyes.  相似文献   

19.
The properties of the Ca2+, Mg2+-ATPase of erythrocyte membranes from patients with cystic fibrosis (CF) were extensively compared to that of healthy controls. Following removal of an endogenous membrane inhibitor of the ATPase, activation of the enzyme by Ca2+, calmodulin, limited tryptic digestion or oleic acid, as well as inhibition by trifluoperazine, were studied. The only properties found to be significantly different (CF cells vs controls) were calmodulin-stimulated peak activity (90 vs 101, P less than 0.02) and trypsin-activated peak activity (92 vs 102, P less than 0.02). No significant difference could be measured in the steady-state Ca2+-dependent phosphorylation of CF and control erythrocyte membranes indicating similar numbers of enzyme molecules per cell. The functional state of Ca2+ homeostasis in intact erythrocytes was investigated by measuring the resting cytosolic free Ca2+ levels using quin-2. Both CF and control erythrocytes maintained cytosolic free Ca2+ between 20 to 30 nM. Addition of 50 uM trifluoperazine resulted in an increase in erythrocyte cytosolic free Ca2+ to about 50 nM in both CF and control cells. Estimates of erythrocyte membrane permeability using the steady-state uptake of 45Ca into intact erythrocytes revealed no differences between CF and control cells. These results confirm that there is a small decrease in the calmodulin-stimulated activity of the erythrocyte Ca2+, Mg2+-ATPase in CF. However, this deficit is apparently not large enough to impair the ability of the CF erythrocyte to maintain normal resting levels of cytosolic free Ca2+.  相似文献   

20.
The binding of Ca2+ to porcine pancreatic phospholipase A2 was studied by batch microcalorimetry. Enthalpies of binding at 25 degrees C were determined as a function of Ca2+ concentration in buffered solutions at pH 8.0 using both the Tris-HCl and Hepes-NaOH buffer systems. The calorimetric results indicate that protons are released on calcium binding and that in addition to the binding of the active-site calcium, there appears to be weak binding of a second Ca2+. Results from potentiometric titrations indicate that this proton release on binding Ca2+ arises from a change in pK of a histidine(s) functional group. The thermodynamic functions delta G0, delta H0 and delta S0 for calcium binding to phospholipase A2 have been determined. These results are compared with literature data for Ca2+ complex formation with some small molecules and also the protein troponin-C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号