首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we propose a strategy for recombinant protein expression under conditions of low-temperatures. The low-temperature production of recombinant proteins was conducted in a cell-free protein synthesis reaction through the fusion of the N-terminus of the protein of interest with that from a temperature-insensitive protein. For instance, while the expression of hlL-2 or TNF-α was negligible when the reaction temperature was below 20°C, fusion constructs of the N-terminus of these proteins with the N-terminus of CAT allowed for a substantial expression of the fused protein. This method is predicted to provide a useful approach for the expression of unstable and/or aggregation-prone protein.  相似文献   

2.
A novel strategy for site-specific immobilization of recombinant proteins was investigated using microbial transglutaminase (MTG). Alkaline phosphatase (AP) was selected as a model protein and tagged with a short peptide (MKHKGS) at the N-terminus to provide a reactive Lys residue for MTG. On the other hand, casein, a well-known substrate for MTG, was chemically attached onto a polyacrylic resin to provide reactive Gln residues for the enzymatic immobilization of the recombinant AP. As a result, we succeeded in MTG-mediated functional immobilization of the recombinant AP onto casein-coated polyacrylic resin. It was found that the immobilized AP prepared using MTG exhibited much higher specific activity than that prepared by chemical modification. Moreover, enzymatic immobilization gave an immobilized formulation with higher stability upon repeated use than that obtained by physical adsorption. Use of this ability of MTG in posttranslational protein modification will provide us with a benign, site-specific immobilization method for functional proteins.  相似文献   

3.
In attempts to improve the post-translational modification and processing of recombinant factor IX (FIX) we have altered the cDNA sequence encoding pre-pro-FIX using site-directed mutagenesis and have expressed the variant cDNAs in BHK21 cells using a vaccinia-virus-derived vector. We find that substitution of the tyrosine residue at +1 for an alanine increases the biological activity of the recombinant molecules 2-fold. On the other hand, substitution of the proline at -3 for a valine results in no significant change to the specific activity of the protein. Other alterations to the N-terminus of the FIX proteins, in attempts to mimic other vitamin-K-dependent proteins, result in the failure to produce a secreted polypeptide. N-terminal sequence analysis of purified recombinant molecules reveals a correlation between specific activity and the efficiency of correct pro-sequence cleavage. gamma-Carboxylation analysis of purified recombinant proteins indicates that each molecule including unmutated FIX is completely gamma-carboxylated in this system. Thus the observed increase in biological activity of FIX variants containing an alanine at position +1 is not due to increased gamma-carboxylation but, at least in part, to more efficient pro-peptide cleavage.  相似文献   

4.
Protein phosphorylation is a major post-translational modification that regulates cellular signal transduction. The phosphorylation of substrate proteins by kinases requires cognate pairs of substrates and kinases. In addition, phosphorylation is mediated through both indirect and direct interaction between these kinases and substrates, which makes it difficult to effectively prepare large quantities of recombinant phosphorylated proteins. Here, we report a novel protein phosphorylation method involving the artificial introduction of cognate-binding modules into substrates and enzymes. This enhances the local concentration of substrates around enzymes so that the enzymatic reaction proceeds more efficiently. We prepared substrate proteins containing an SH3 domain at their N-terminus, and a kinase containing an SH3-binding motif at its C-terminus. This method was successfully applied to the phosphorylation of CrkII and the Vav DH domain, and we prepared (15)N-labelled phosphorylated CrkII for NMR analysis.  相似文献   

5.
Proteolytic degradation is the primary obstacle in the use of the yeast Pichia pastoris for the expression of recombinant proteins. During the production of a recombinant Plasmodium falciparum circumsporozoite protein in this system, the (NANP) n repeats region at the N-terminus were completely proteolytically degraded. To remove the potential proteolytic site within the recombinant protein, different strategies were tried, including adjusting the cultivation conditions and mutating the sequence at the junction of the repeat domain and C-terminal region, but the degradation continued. However, modification of the N-terminal sequence by adding an epitope-based peptide to the N-terminus not only protected the repeat domain from cleavage by native proteases during longer induction in the yeast host and purification process, but also stabilized this recombinant protein emulsified with adjuvant ISA720 for at least 6 months. The results showed that proteolytic degradation of the recombinant circumsporozoite protein produced in P. pastoris was amino acid sequence (NANP)-specific, and that this effect was likely dependent on the conformation of the recombinant protein.  相似文献   

6.
The bite of spiders of the genus Loxosceles can induce a variety of biological effects, including dermonecrosis and complement-dependent haemolysis. The aim of this study was to generate recombinant proteins from the Loxosceles spider gland to facilitate structural and functional studies in the mechanisms of loxoscelism. Using "Expressed Sequencing Tag" strategy of aleatory clones from, L. laeta venom gland cDNA library we have identified clones containing inserts coding for proteins with significant similarity with previously obtained N-terminus of sphingomyelinases from Loxosceles intermedia venom [1]. Clone H17 was expressed as a fusion protein containing a 6x His-tag at its N-terminus and yielded a 33kDa protein. The recombinant protein was endowed with all biological properties ascribed to the whole L. laeta venom and sphingomyelinases from L. intermedia, including dermonecrotic and complement-dependent haemolytic activities. Antiserum raised against the recombinant protein recognised a 32-kDa protein in crude L. laeta venom and was able to block the dermonecrotic reaction caused by whole L. laeta venom. This study demonstrates conclusively that the sphingomyelinase activity in the whole venom is responsible for the major pathological effects of Loxosceles spider envenomation.  相似文献   

7.
Summary A novel expression vector pGEX-5T was constructed which directs the synthesis of a fusion protein with a histidine-hexapeptide and glutathione-S-transferase at its N-terminus and the recombinant protein at its C-terminus inEscherichia coli. The designed fusion gene strategy allows the purification of soluble and insoluble recombinant proteins to homogeneity with single-step affinity chromatography using immobilized glutathione and metal chelating matrix, respectively. The principle and availability of this new expression system was respectively tested with the purification of a soluble and insoluble recombinant fusion protein containing 24 and 75 amino acids of the human thrombomodulin.  相似文献   

8.
The 'seventeen kilodalton protein' Skp confers transient solubility on outer membrane proteins during biogenesis in Gram-negative bacteria. Here we report a first biophysical characterization of this chaperone itself, which also possesses biotechnological potential in the production of recombinant proteins. Using cross-linking and gel filtration methods, we found that Skp forms a stable homo-trimer in solution. Following thermal denaturation, monitored by CD spectroscopy, this chaperone refolds with high efficiency but exhibits a pronounced hysteresis between the un- and refolding transitions. Using the recombinant protein equipped with the Strep-tag II at its N-terminus, suitable crystallization conditions for Skp were found. A first data set was collected to 2.60 A resolution.  相似文献   

9.
The production of recombinant proteins in Escherichia coli involves substantial optimization in the size of the protein and over-expression strategies to avoid inclusion-body formation. Here we report our observations on this so-called construct dependence using the catalytic domains of five Drosophila melanogaster receptor protein tyrosine phosphatases as a model system. Five strains of E. coli as well as three variations in purification tags viz., poly-histidine peptide attachments at the N- and C-termini and a construct with Glutathione-S-transferase at the N-terminus were examined. In this study we observe that inclusion of a 45 residue stretch at the N-terminus was crucial for over-expression of the enzymes, influencing both the solubility and the stability of these recombinant proteins. While the addition of negatively charged residues in the N-terminal extension could partially rationalize the improvement in the solubility of these constructs, conventional parameters like the proportion of order promoting residues or aliphatic index did not correlate with the improved biochemical characteristics. These findings thus suggest the inclusion of additional parameters apart from rigid domain predictions to obtain domain constructs that are most likely to yield soluble protein upon expression in E. coli.  相似文献   

10.
The intracellular parasite Toxoplasma gondii invades almost all nucleated cells, and has infected approximately 34% of the world's population to date. In order to develop effective vaccines against T. gondii infection, understanding of the role of the molecules that are involved in the invasion process is important. For this purpose, we characterized T. gondii proteins that contain microneme adhesive repeats (MARs), which are common in moving junction proteins. T. gondii MAR domain-containing protein 4a (TgMCP4a), which contains repeats of 17–22 amino acid segments at the N-terminus and three putative MAR domains at the C-terminus, is localized near the rhoptry of extracellular parasites. Following infection, TgMCP4a was detected in the parasitophorous vacuole. The recombinant Fc-TgMCP4a N-terminus protein (rTgMCP4a-1/Fc) showed binding activity to the surface proteins of Vero, 293T, and CHO cells. The recombinant GST-TgMCP4a N-terminus protein (rTgMCP4a-1/GST), which exhibited binding activity, was used to pull down the interacting factors from 293T cell lysate, and subsequent mass spectrometry analysis revealed that three types of heat shock proteins (HSPs) interacted with TgMCP4a. Transfection of a FLAG fusion protein of TgMCP4a-1 (rTgMCP4a-1/FLAG) into 293T cell and the following immunoprecipitation with anti-FLAG antibody confirmed the interactions of HSC70 with TgMCP4a. The addition of rTgMCP4a-1/GST into the culture medium significantly affected the growth of the parasite. This study hints that T. gondii may employ HSP proteins of host cell to facilitate their growth.  相似文献   

11.
In order to study the function of the Mycobacterium tuberculosis protein ESAT-6 in the infection process, we searched for host proteins that interact with this secreted mycobacterial protein. Using a yeast two-hybrid system we identified the rat syntenin-1 protein as a candidate to interact with ESAT-6. This interaction was confirmed in vitro by protein overlay and by surface plasmon resonance using recombinant ESAT-6 and human syntenin-1, and by co-purification analysis of the mycobacterial expressed ESAT-6 and macrophage derived syntenin-1. The interaction domains were localized by two-hybrid studies using truncated derivatives of both proteins and by peptide spot analysis. Two domains of each protein mediate the ESAT-6/syntenin-1 interaction. The C-terminus of ESAT-6 binds to the PDZ-domains of syntenin-1 and the N-terminus of ESAT-6 binds to the N-terminus of syntenin-1. Thus, the host protein syntenin-1 represents a possible cellular receptor for the mycobacterial protein ESAT-6.  相似文献   

12.
A novel, highly specific protein modification approach is described. By using conventional molecular cloning techniques, a protein can be constructed and expressed such that the N-terminal residue is replaced by cysteine. Its 1,2-aminothiol structure reacts very specifically with a glyoxylyl group at pH 7 or below, forming a relatively stable thiazolidine bridge. Therefore, a glyoxylyl-based labeling agent (e.g., radioactive tags, fluorescent probes, biotin) can be used to specifically modify a protein at its N-terminus. To highlight this novel approach, a recombinant anti-insulin single chain antibody (scFv) was specifically biotinylated at its N-terminus even in the presence of other proteins in the total cell lysate. The glyoxylyl-biotinylated scFv retained binding activity similar to unmodified scFv.  相似文献   

13.
14.
Rotaviruses are one of the worldwide leading causes of gastroenteritis in children under 5 yr old. The rotavirus nonstructural NSP5 is a phosphoprotein implicated in viroplasms formation, whereas NSP6 could have a possible regulatory role of NSP5. It has been reported that N- and C-termini of NSP5 are important for amount of protein is required for structural analysis, efficient expression systems are required. His-tag fusion at the C-terminus and glutathione-S-transferase (GST)-fusion at the N-terminus were used as expression systems, and conditions for recombinant proteins expression were obtained. His-tag fusion was not efficient to produce NSP5 (2% of total protein), but NSP6 was expressed in higher amounts (11% of total protein). In contrast, GST-NSP5 and GST-NSP6 proteins correspond to 34 and 31% of the total proteins, respectively. GST-fusions seem to have a protective effect against nonstructural rotavirus protein toxicity in Escherichia coli; however, in both systems, NSP5 and NSP6 recombinant proteins were expressed as inclusion bodies. Conditions for solubilization and purification of recombinant proteins were achieved. This is the first report of expression and purification of NSP5 and NSP6 recombinant proteins in suitable amounts for further structural analysis.  相似文献   

15.
We screened a phage library of Rickettsia typhi with a polyclonal antiserum to clone genes which encode immunogenic proteins of R. typhi. Among several clones obtained, one clone codes for a 466-amino-acid protein similar to the heat-shock protein, HtrA. The deduced rickettsial HtrA contains a putative signal peptide sequence at the N-terminus, a serine protease-like domain, and two PDZ domains. The recombinant protein of rickettsial HtrA reacted with sera from patients with murine typhus and tsutsugamushi disease. We suggest that this gene and its recombinant protein would be valuable for the immunologic diagnosis of rickettsial diseases.  相似文献   

16.
An N-terminus sequence of human interleukin 1beta (hIL-1beta) was used as a fusion expression partner for the production of two recombinant therapeutic proteins, human granulocyte-colony stimulating factor (hG-CSF) and human growth hormone (hGH), using Saccharomyces cerevisiae as a host. The expression cassette comprised the leader sequence of killer toxin of Kluyveromyces lactis, the N-terminus 24 amino acids (Ser5-Ala28) of mature hIL-1beta, the KEX2 dibasic endopeptidase cleavage site, and the target protein (hG-CSF or hGH). The gene expression was controlled by the inducible UAS(gal)/MF-alpha1 promoter. With the expression vector above, both recombinant proteins were well secreted into culture medium with high secretion efficiencies, and especially, the recombinant hGH was accumulated up to around 1.3 g/L in the culture broth. This is due presumably to the significant role of fused hIL-1beta as secretion enhancer in the yeast secretory pathway. In our recent report, various immunoblotting analyses have shown that the presence of a core N-glycosylation resident in the hIL-1beta fragment is likely to be of crucial importance in the high-level secretion of hG-CSF from the recombinant S. cerevisiae. When the N-glycosylation was completely blocked with the addition of tunicamycin to the culture, the secretion of hG-CSF and hGH was decreased to a negligible level although the other host-derived proteins were well secreted to the culture broth regardless of the presence of tunicamycin. The N-terminal sequencing of the purified hG-CSF verified that the hIL-1beta fusion peptide was correctly removed by in vivo KEX2 protease upon the exit of fusion protein from Golgi complex. From the results presented in this article, it is strongly suggested that the N-terminus fusion of the hIL-1beta peptide could be utilized as a potent secretion enhancer in the expression systems designed for the secretory production of other heterologous proteins from S. cerevisiae.  相似文献   

17.
The coding sequence of the cyanogenic alpha-hydroxynitrile lyase gene of Manihot esculenta Crantz (cassava) was cloned in the plasmid vector pMal-c2 and expressed in Escherichia coli strain JM105. DNA sequencing showed that the recombinant plasmid contained the same sequence as the cDNA clone pHNL10. Peptide sequencing of the recombinant protein showed that the N-terminus was heterogeneous, with either four or six additional amino acid residues compared with the native protein. Circular dichroism spectra indicated similar secondary structure contents for both proteins. Enzyme assays showed that specific activity of native and recombinant proteins were 0.24 and 0.26 mmol CN(-)/mg/min, respectively; that both proteins had optimal activity at 40 degrees C and pH 5.5; and that both proteins were inhibited by the serine protease inhibitor phenyl-methane sulfonyl flouride (PMSF). Isoelectric focusing of native and recombinant protein revealed multiple isoforms for both proteins; the recombinant protein had a more basic mean isoelectric point (pl) (5.1) than the native protein (4.5). (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 53: 332-338, 1997.  相似文献   

18.
Centromere protein B (CENP-B) is one of the centromere DNA binding proteins constituting centromeric heterochromatin of human chromosomes. This protein was originally identified as the target antigen in autoimmune disease patients (often with scleroderma). In this study, we cloned a human CENP-B cDNA which was longer than the previously isolated one and expressed functional recombinant CENP-B in Escherichia coli. The DNA binding domain was finely located within the N-terminal 134-amino-acid residues covering a predicted helix-loop-helix (HLH) structure, by using a set of recombinant products with stepwise deletions from the C-terminus. From the analysis of their reactivity to anti-centromere sera from autoimmune disease patients, four epitopes were mapped on CENP-B antigen. In addition to two epitopes at the C-terminus, two were found on the HLH region at the N-terminus. In the analysis of the interaction between the antigen and autoantibodies, we found that the DNA binding activity of CENP-B was distorted by the attack of the anti-HLH domain antibodies in in vitro binding reactions. Our results suggest that the direct inhibition of the DNA binding activity by the autoantibodies might be involved in patients' autoimmune reactions in vivo.  相似文献   

19.
Pichia pastoris is a highly successful system for the large-scale expression of heterologous proteins, with the added capability of performing most eukaryotic post-translational modifications. However, this system has one significant disadvantage - frequent proteolytic degradation by P. pastoris proteases of heterologously expressed proteins. Several methods have been proposed to address this problem, but none has proven fully effective. We tested the effectiveness of a broad specificity protease inhibitor to control proteolysis. A recombinant variant of the BPTI-Kunitz protease inhibitor ShPI-1 isolated from the sea anemone Stichodactyla helianthus, was expressed in P. pastoris. The recombinant inhibitor (rShPI-1A), containing four additional amino acids (EAEA) at the N-terminus, was folded similarly to the natural inhibitor, as assessed by circular dichroism. rShPI-1A had broad protease specificity, inhibiting serine, aspartic, and cysteine proteases similarly to the natural inhibitor. rShPI-1A protected a model protein, recombinant human miniproinsulin (rhMPI), from proteolytic degradation during expression in P. pastoris. The addition of purified rShPI-1A at the beginning of the induction phase significantly protected rhMPI from proteolysis in culture broth. The results suggest that a broad specificity protease inhibitor such as rShPI-1A can be used to improve the yield of recombinant proteins secreted from P. pastoris.  相似文献   

20.
The virulence-associated phospholipase of Yersinia enterocolitica (YplA), which is secreted by a flagellar type III secretion system, was cloned and purified for structure-function analysis using a His(6)-tag expression system. Two versions of YplA have been proposed on the basis of two potential initiating methionine residues. The longer derivative possesses 59 additional amino acids at its N-terminus and appears to represent the native form of YplA; however, the shorter recombinant protein possesses enhanced activity in vitro. Both recombinant YplA derivatives are highly active as type-A(2) phospholipases and possess similar physical properties. Based on type III secretion substrates from other gram-negative bacteria, the N-terminus of YplA is probably required as a secretion signal; however, differences in the time-based activity of these two recombinant enzymes, the N-terminus of YplA may also have a regulatory function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号