首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Frogs rely on acoustic signaling to detect, discriminate, and localize mates. In the temperate zone, reproduction occurs in the spring, when frogs emerge from hibernation and engage in acoustically guided behaviors. In response to the species mating call, males typically show evoked vocal responses or other territorial behaviors, and females show phonotactic responses. Because of their strong seasonal behavior, it is possible that the frog auditory system also displays seasonal variation, as evidenced in their vocal control system. This hypothesis was tested in male Northern leopard frogs by evaluating the response characteristics of single neurons in the torus semicircularis (TS; a homolog of the inferior colliculus) to a synthetic mating call at different times of the year. We found that TS neurons displayed a seasonal change in frequency tuning and temporal properties. Frequency tuning shifted from a predominance of TS units sensitive to intermediate frequencies (700-1200 Hz) in the winter, to low frequencies (100-600 Hz) in the summer. In winter and early spring, most TS neurons showed poor, or weak, time locking to the envelope of the amplitude-modulated synthetic call, whereas in late spring and early summer the majority of TS neurons showed robust time-locked responses. These seasonal differences indicate that neural coding by auditory midbrain neurons in the Northern leopard frog is subject to seasonal fluctuation.  相似文献   

5.
The time course of poststimulatory adaptation of the inferior colliculus central nucleus (ICC) of CBB6F1 hybrid mice to sound sequences, specifically, series of four tonal stimuli presented at intervals of 0, 2, 4, 10, 20, 50, 100, 200, 500, 700, 1000, and 1500 ms were studied. Assessment of the adaptation of the entire neuronal population have shown that, at an interstimulus interval of 0–200 ms, the response to the first tone in a series is significantly stronger than those to the second to fourth tones, the strengths of the latter three responses not differing significantly from one another. If the interstimulus interval is 500 ms or longer, the response to none of the tones in a series differs significantly in strength from the others. The role of adaptation of midbrain neurons to the grouping of components of bioacoustic stimuli is discussed.  相似文献   

6.
Previous work has shown that neurons in the medial geniculate body (MGB) of the echolocating bat, Myotis lucifugus, display response properties that are distinguishable from those of their afferents in the inferior colliculus (IC). Specifically, MGB neurons display phasic temporal discharge patterns, poor entrainment to trains of constant-amplitude sound pulses, and facilitated responses to amplitude-modulated trains of sound pulses (Llano and Feng 1999). In this study we used a modeling approach to examine the relative contributions of different known sources of inhibition on the temporal response properties of auditory thalamocortical neurons. We found that GABAA-mediated post-excitatory inhibition resulting from coactivation of thalamocortical neurons and local inhibitory interneurons (in a triadic arrangement) is sufficient to reproduce many of the temporal response properties of MGB neurons. Addition of long-duration GABAB-mediated inhibition gave the thalamocortical neuron temporal response characteristics that more closely resemble those seen in the experimental data. Neither recurrent inhibition from the thalamic reticular nucleus nor post-synaptic nonlinear mechanisms were necessary to reproduce the temporal transformations between the IC and MGB. This work suggests that feed-forward inhibitory circuitry, coupled with slow GABAB-mediated inhibition, can emulate temporal information processing at the MGB. The transformation taking place in the MGB can be used to extract salient features from complex, time-varying stimuli, such as echoes returning from moving prey. Received: 11 August 1999 / Accepted in revised form: 5 April 2000  相似文献   

7.
8.
9.
The processing of temporal pitch and melody information in auditory cortex   总被引:16,自引:0,他引:16  
An fMRI experiment was performed to identify the main stages of melody processing in the auditory pathway. Spectrally matched sounds that produce no pitch, fixed pitch, or melody were all found to activate Heschl's gyrus (HG) and planum temporale (PT). Within this region, sounds with pitch produced more activation than those without pitch only in the lateral half of HG. When the pitch was varied to produce a melody, there was activation in regions beyond HG and PT, specifically in the superior temporal gyrus (STG) and planum polare (PP). The results support the view that there is hierarchy of pitch processing in which the center of activity moves anterolaterally away from primary auditory cortex as the processing of melodic sounds proceeds.  相似文献   

10.
Woodpeckers and certain passerine species secure encased food in the environment in various ways to facilitate the extraction of the contents with their bills. They do this by securing the food items in locations such as crevices and holes, newly defined in this paper as ‘vice-anvils’. Here I report that free-living New Caledonian crows (Corvus moneduloides) and rooks (Corvus frugilegus, in New Zealand) also use vice-anvils to process candlenuts and walnuts, respectively. New Caledonian crows placed candlenut sections in vice-anvils to aid kernel extraction, after the candlenuts had been dropped onto an anvil to break them open. In contrast, rooks used vice-anvils to secure walnuts while they broke the shell with their bills. Long-term use by rooks of a vice-anvil in a tree had produced a ‘purpose-made’ nut-cracking site. My findings extend the persistent use of specific vice-anvils to Corvus species and further demonstrate their innovative and flexible foraging behaviour.  相似文献   

11.
Charismatic megafauna have been used as icons and financial drivers of conservation efforts worldwide given that they are useful surrogates for biodiversity in general. However, tests of this premise have been constrained by data limitations, especially at large scales. Here we overcome this problem by combining large-scale citizen-sourced data with intensive expert observations of two endangered charismatic species, Blakiston’s fish owl (forest specialist) and the red-crowned crane (wetland specialist). We constructed large-scale maps of species richness for 52 forest and 23 grassland/wetland bird species using hierarchical community modeling and citizen-sourced data at 1, 2, 5, and 10-km grid resolutions. We compared the species richness of forest and grassland/wetland birds between the breeding and non-breeding sites of the two charismatic birds at each of the four spatial resolutions, and then assessed the scale dependency of the biodiversity surrogates. Regardless of the habitat amounts, owl and crane breeding sites had higher forest and grassland/wetland bird species richness, respectively. However, this surrogacy was more effective at finer scales (1–2-km resolutions), which corresponds to the charismatic species’ home range sizes (up to 9.4 ± 2.0 km2 for fish owls, and 3–4 km2 for cranes). Species richness showed the highest spatial variations at 1–2-km resolutions. We suggest that the agreement of functional scales between surrogate species and broader biodiversity is essential for successful surrogacy, and that habitat conservation and restoration targeting multiple charismatic species with different specialties can complement to biodiversity conservation.  相似文献   

12.
13.
Novel nonstationary and nonlinear dynamic time series analysis tools are applied to multiyear eddy covariance CO2 flux and micrometeorological data from the Harvard Forest and University of Michigan Biological Station field study sites. Firstly, the utility of these tools for partitioning the gross photosynthesis and bulk respiration signals within these series is demonstrated when employed within a simple model framework. This same framework offers a promising new method for gap filling missing CO2 flux data. Analysing the dominant seasonal components extracted from the CO2 flux data using these tools, models are inferred for daily gross photosynthesis and bulk respiration. Despite their simplicity, these models fit the data well and yet are characterized by well‐defined parameter estimates when the models are optimized against calibration data. Predictive validation of the models also demonstrates faithful forecasts of annual net cumulative CO2 fluxes for these sites.  相似文献   

14.
15.
Neural selectivity to signal duration within the auditory midbrain has been observed in several species and is thought to play a role in signal recognition. Here we examine the effects of signal duration on the coding of individual and concurrent vocal signals in a teleost fish with exceptionally long duration vocalizations, the plainfin midshipman, Porichthys notatus. Nesting males produce long-duration, multi-harmonic signals known as hums to attract females to their nests; overlapping hums produce acoustic beats at the difference frequency of their spectral components. Our data show that all midbrain neurons have sustained responses to long-duration hum-like tones and beats. Overall spike counts increase linearly with signal duration, although spike rates decrease dramatically. Neurons show varying degrees of spike rate decline and hence, differential changes in spike rate across the neuron population may code signal duration. Spike synchronization to beat difference frequency progressively increases throughout long-duration beats such that significant difference frequency coding is maintained in most neurons. The significance level of difference frequency synchronization coding increases by an order of magnitude when integrated over the entirety of long-duration signals. Thus, spike synchronization remains a reliable difference frequency code and improves with integration over longer time spans.  相似文献   

16.
17.
During metamorphosis, the lateral line system of ranid frogs (Rana catesbeiana) degenerates and an auditory system sensitive to airborne sounds develops. We examined the onset of function and developmental changes in the central auditory system by recording multi-unit activity from the principal nucleus of the torus semicircularis (TSp) of bullfrogs at different postmetamorphic stages in response to tympanically-presented auditory stimuli. No responses were recorded to stimuli of up to 95 dB SPL from latemetamorphic tadpoles, but auditory responses were recorded within 24 hours of completion of metamorphosis. Audiograms from froglets (SVL < 5.5 cm) were relatively flat in shape with high thresholds, and showed a decrease in most sensitive frequency (MSF) from about 2500 Hz to about 1500 Hz throughout the first 7–10 days after completion of metamorphosis. Audiograms from frogs larger than 5.5 cm showed continuous downward shifts in MSF and thresholds, and increases in sharpness around MSF until reaching adult-like values. Spontaneous activity in the TSp increased throughout postmetamorphic development. The torus increased in volume by approximately 50% throughout development and displayed changes in cell density and nuclear organization. These observations suggest that the onset of sensitivity to tympanically presented airborne sounds is limited by peripheral, rather than central, auditory maturation.Abbreviations CF characteristic frequency - MSF most sensitive frequency - PB phasic burst - PL primary like - S sustained - SVL snout-vent length - TS torus semicircularis - TSl laminar nucleus of TS - TSm magnocellular nucleus of TS - TSp principal nucleus of TS - TW tympanic width  相似文献   

18.
19.
Modulation of antibody responses induced by IgM directed against the immunogen was investigated. When IgM directed against ox erythrocytes (ORBC) was given together with trinitrophenyl (TNP)-ORBC, the subsequent antibody response to the carrier, ORBC, as well as the response to the hapten, TNP, was potentiated. In contrast, IgG with carrier specificity inhibited both responses. The hapten-specific potentiation was found in both direct and indirect plaques, and was antigen-dose dependent, i.e., no potentiation was found with the lowest antigen doses. The response to 2,4-dinitrophenyl (DNP)-labeled proteins was potentiated by a monoclonal IgM with specificity for the hapten. The effects were observed both in primary and secondary responses. One strict requirement for IgM potentiation to occur was observed. The determinant against which potentiation was achieved had to be physically linked to the determinant against which the IgM was directed, be it hapten or carrier determinants. Thus, irrelevant IgM-antigen complexes were incapable of potentiating the responses. Similar specificity requirements were found for IgG induced suppression of antibody responses. Experiments with nude mice and their euthymic littermates showed that IgM potentiation of antibody production is T-cell dependent. Furthermore, passive transfer of carrier-primed spleen cells together with antigen challenge suggests that IgM potentiation of secondary antibody responses is dependent on specific carrier-primed immune T cells.  相似文献   

20.
Sensitivity to acoustic amplitude modulation in crickets differs between species and depends on carrier frequency (e.g., calling song vs. bat-ultrasound bands). Using computational tools, we explore how Ca2+-dependent mechanisms underlying selective attention can contribute to such differences in amplitude modulation sensitivity. For omega neuron 1 (ON1), selective attention is mediated by Ca2+-dependent feedback: [Ca2+]internal increases with excitation, activating a Ca2+-dependent after-hyperpolarizing current. We propose that Ca2+ removal rate and the size of the after-hyperpolarizing current can determine ON1’s temporal modulation transfer function (TMTF). This is tested using a conductance-based simulation calibrated to responses in vivo. The model shows that parameter values that simulate responses to single pulses are sufficient in simulating responses to modulated stimuli: no special modulation-sensitive mechanisms are necessary, as high and low-pass portions of the TMTF are due to Ca2+-dependent spike frequency adaptation and post-synaptic potential depression, respectively. Furthermore, variance in the two biophysical parameters is sufficient to produce TMTFs of varying bandwidth, shifting amplitude modulation sensitivity like that in different species and in response to different carrier frequencies. Thus, the hypothesis that the size of after-hyperpolarizing current and the rate of Ca2+ removal can affect amplitude modulation sensitivity is computationally validated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号