首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have compared nine Enterococcus faecalis strains with E. faecalis V583 by comparative genomic hybridization using microarrays (CGH). The strains used in this study (the “test” strains) originated from various environments. CGH is a powerful and promising tool for obtaining novel information on genome diversity in bacteria. By CGH, one obtains clues about which genes are present or divergent in the strains, compared to a reference strain (here, V583). The information obtained by CGH is important from both ecological and systematic points of view. CGH of E. faecalis showed considerable diversity in gene content: Compared to V583, the percentage of divergent genes in the test strains varied from 15% to 23%, and 154 genes were divergent in all strains. The main variation was found in regions corresponding to exogenously acquired or mobile DNA in V583. Antibiotic resistance genes, virulence factors, and integrated plasmid genes dominated among the divergent genes. The strains examined showed various contents of genes corresponding to the pTEF1, pTEF2, and pTEF3 genes in V583. The extensive transport and metabolic capabilities of V583 appeared similar in the test strains; CGH indicated that the ability to transport and metabolize various carbohydrates was similar in the test strains (verified by API 50 CH assays). The contents of genes related to stress tolerance appeared similar in V583 and the nine test strains, supporting the view of E. faecalis as an organism able to resist harsh conditions.  相似文献   

2.
Enterococcus faecalis, a member of the natural microbiota of animal and human intestinal tracts, is also present as a natural contaminant in a variety of fermented foods. Over the last decade, E. faecalis has emerged as a major cause of nosocomial infections. We investigated the genetic diversity in 30 clinical and food isolates, including strains V583 and MMH594, in order to determine whether clinical and food isolates could be distinguished. Data were obtained using comparative genomic hybridization and specific PCR with a total of 202 probes of E. faecalis, selected using the available V583 genome sequence and part of the MMH594 pathogenicity island. The cognate genes encoded mainly exported proteins. Hybridization data were analyzed by a two-component mixture model that estimates the probability of any given gene to be either present or absent in the strains. A total of 78 genes were found to be variable, as they were absent in at least one isolate. Most of the variable genes were clustered in regions that, in the published V583 sequence, related to prophages or mobile genetic elements. The variable genes were distributed in three main groups: (i) genes equally distributed between clinical and dairy food isolates, (ii) genes absent from dairy food-related isolates, and (iii) genes present in MMH594 and V583 strains only. Further analysis of the distribution of the last gene group in 70 other isolates confirmed that six of the probed genes were always absent in dairy food-related isolates, whereas they were detected in clinical and/or commensal isolates. Two of them corresponded to prophages that were not detected in the cognate isolates, thus possibly extending the number of genes absent from dairy food isolates. Genes specifically detected in clinical isolates may prove valuable for the development of new risk assessment markers for food safety studies and for identification of new factors that may contribute to host colonization or infection.  相似文献   

3.
Comparative genomic hybridizations (CGH) using microarrays are performed with bacteria in order to determine the level of genomic similarity between various strains. The microarrays applied in CGH experiments are constructed on the basis of the genome sequence of one strain, which is used as a control, or reference, in each experiment. A strain being compared with the known strain is called the unknown strain. The ratios of fluorescent intensities obtained from the spots on the microarrays can be used to determine which genes are divergent in the unknown strain, as well as to predict the copy number of actual genes in the unknown strain. In this paper, we focus on the prediction of gene copy number based on data from CGH experiments. We assumed a linear connection between the log2 of the copy number and the observed log2-ratios, then predictors based on the factor analysis model and the linear random model were proposed in an attempt to identify the copy numbers. These predictors were compared to using the ratio of the intensities directly. Simulations indicated that the proposed predictors improved the prediction of the copy number in most situations. The predictors were applied on CGH data obtained from experiments with Enterococcus faecalis strains in order to determine copy number of relevant genes in five different strains.  相似文献   

4.
Escherichia coli, including the closely related genus Shigella, is a highly diverse species in terms of genome structure. Comparative genomic hybridization (CGH) microarray analysis was used to compare the gene content of E. coli K-12 with the gene contents of pathogenic strains. Missing genes in a pathogen were detected on a microarray slide spotted with 4,071 open reading frames (ORFs) of W3110, a commonly used wild-type K-12 strain. For 22 strains subjected to the CGH microarray analyses 1,424 ORFs were found to be absent in at least one strain. The common backbone of the E. coli genome was estimated to contain about 2,800 ORFs. The mosaic distribution of absent regions indicated that the genomes of pathogenic strains were highly diversified because of insertions and deletions. Prophages, cell envelope genes, transporter genes, and regulator genes in the K-12 genome often were not present in pathogens. The gene contents of the strains tested were recognized as a matrix for a neighbor-joining analysis. The phylogenic tree obtained was consistent with the results of previous studies. However, unique relationships between enteroinvasive strains and Shigella, uropathogenic, and some enteropathogenic strains were suggested by the results of this study. The data demonstrated that the CGH microarray technique is useful not only for genomic comparisons but also for phylogenic analysis of E. coli at the strain level.  相似文献   

5.
6.
7.
Analysis of the genome sequence of Enterococcus faecalis clinical isolate V583 revealed novel genes encoding surface proteins. Twenty-seven of these proteins, annotated as having unknown functions, possess a putative N-terminal signal peptide and a conserved C-terminal region characterized by a novel conserved domain designated WxL. Proteins having similar characteristics were also detected in other low-G+C-content gram-positive bacteria. We hypothesized that the WxL region might be a determinant of bacterial cell location. This hypothesis was tested by generating protein fusions between the C-terminal regions of two WxL proteins in E. faecalis and a nuclease reporter protein. We demonstrated that the C-terminal regions of both proteins conferred a cell surface localization to the reporter fusions in E. faecalis. This localization was eliminated by introducing specific deletions into the domains. Interestingly, exogenously added protein fusions displayed binding to whole cells of various gram-positive bacteria. We also showed that the peptidoglycan was a binding ligand for WxL domain attachment to the cell surface and that neither proteins nor carbohydrates were necessary for binding. Based on our findings, we propose that the WxL region is a novel cell wall binding domain in E. faecalis and other gram-positive bacteria.  相似文献   

8.
Variable phenotypes have been identified for Entamoeba species. Entamoeba histolytica is invasive and causes colitis and liver abscesses but only in approximately 10% of infected individuals; 90% remain asymptomatically colonized. Entamoeba dispar, a closely related species, is avirulent. To determine the extent of genetic diversity among Entamoeba isolates and potential genotype-phenotype correlations, we have developed an E. histolytica genomic DNA microarray and used it to genotype strains of E. histolytica and E. dispar. On the basis of the identification of divergent genetic loci, all strains had unique genetic fingerprints. Comparison of divergent genetic regions allowed us to distinguish between E. histolytica and E. dispar, identify novel genetic regions usable for strain and species typing, and identify a number of genes restricted to virulent strains. Among the four E. histolytica strains, a strain with attenuated virulence was the most divergent and phylogenetically distinct strain, raising the intriguing possibility that genetic subtypes of E. histolytica may be partially responsible for the observed variability in clinical outcomes. This microarray-based genotyping assay can readily be applied to the study of E. histolytica clinical isolates to determine genetic diversity and potential genotypic-phenotypic associations.  相似文献   

9.
Uropathogenic Escherichia coli (UPEC) strains are responsible for the majority of uncomplicated urinary tract infections, which can present clinically as cystitis or pyelonephritis. UPEC strain CFT073, isolated from the blood of a patient with acute pyelonephritis, was most cytotoxic and most virulent in mice among our strain collection. Based on the genome sequence of CFT073, microarrays were utilized in comparative genomic hybridization (CGH) analysis of a panel of uropathogenic and fecal/commensal E. coli isolates. Genomic DNA from seven UPEC (three pyelonephritis and four cystitis) isolates and three fecal/commensal strains, including K-12 MG1655, was hybridized to the CFT073 microarray. The CFT073 genome contains 5,379 genes; CGH analysis revealed that 2,820 (52.4%) of these genes were common to all 11 E. coli strains, yet only 173 UPEC-specific genes were found by CGH to be present in all UPEC strains but in none of the fecal/commensal strains. When the sequences of three additional sequenced UPEC strains (UTI89, 536, and F11) and a commensal strain (HS) were added to the analysis, 131 genes present in all UPEC strains but in no fecal/commensal strains were identified. Seven previously unrecognized genomic islands (>30 kb) were delineated by CGH in addition to the three known pathogenicity islands. These genomic islands comprise 672 kb of the 5,231-kb (12.8%) genome, demonstrating the importance of horizontal transfer for UPEC and the mosaic structure of the genome. UPEC strains contain a greater number of iron acquisition systems than do fecal/commensal strains, which is reflective of the adaptation to the iron-limiting urinary tract environment. Each strain displayed distinct differences in the number and type of known virulence factors. The large number of hypothetical genes in the CFT073 genome, especially those shown to be UPEC specific, strongly suggests that many urovirulence factors remain uncharacterized.  相似文献   

10.
Spread of antibiotic resistance among bacteria responsible for nosocomial and community-acquired infections urges for novel therapeutic or prophylactic targets and for innovative pathogen-specific antibacterial compounds. Major challenges are posed by opportunistic pathogens belonging to the low GC% gram-positive bacteria. Among those, Enterococcus faecalis is a leading cause of hospital-acquired infections associated with life-threatening issues and increased hospital costs. To better understand the molecular properties of enterococci that may be required for virulence, and that may explain the emergence of these bacteria in nosocomial infections, we performed the first large-scale functional analysis of E. faecalis V583, the first vancomycin-resistant isolate from a human bloodstream infection. E. faecalis V583 is within the high-risk clonal complex 2 group, which comprises mostly isolates derived from hospital infections worldwide. We conducted broad-range screenings of candidate genes likely involved in host adaptation (e.g., colonization and/or virulence). For this purpose, a library was constructed of targeted insertion mutations in 177 genes encoding putative surface or stress-response factors. Individual mutants were subsequently tested for their i) resistance to oxidative stress, ii) antibiotic resistance, iii) resistance to opsonophagocytosis, iv) adherence to the human colon carcinoma Caco-2 epithelial cells and v) virulence in a surrogate insect model. Our results identified a number of factors that are involved in the interaction between enterococci and their host environments. Their predicted functions highlight the importance of cell envelope glycopolymers in E. faecalis host adaptation. This study provides a valuable genetic database for understanding the steps leading E. faecalis to opportunistic virulence.  相似文献   

11.
12.
The use of Enterococcus faecalis in the food industry has come under dispute because of the pathogenic potential of some strains of this species. In this study, we have compared the secretome and whole-cell proteome of one food isolate (E. faecalis DISAV 1022) and one clinical isolate (E. faecalis H1) by 2-DE and iTRAQ analyses, respectively. Extracellular protein patterns differed significantly, with only seven proteins common to both strains. Notably, only the clinical isolate expressed various well-characterized virulence factors such as the gelatinase coccolysin (GelE) and the extracellular serine proteinase V8 (SprE). Moreover, various other putative virulence factors, e.g. superoxide dismutase, choline- and chitin-binding proteins and potential moonlighting proteins, have been detected exclusively in the secretome of the clinical isolate, but not in the food isolate. The iTRAQ analysis of whole-cell proteins of the two strains highlighted a stronger expression of pathogenic traits such as an endocarditis-specific antigen and an adhesion lipoprotein in the pathogenic strain E. faecalis H1. Subsequently, six food isolates (including E. faecalis DISAV 1022) and six clinical isolates (including E. faecalis H1) were tested for the presence of gelatinase and protease activity in the culture supernatants. Both enzymatic activities were found in the clinical as well as the food isolates which clearly indicates that protease expression is strain specific and not representative for pathogenic isolates. Genetic analyses revealed that not only the gelatinase and serine protease genes but also the regulatory fsr genes must be present to allow protease expression.  相似文献   

13.
Enterococcus faecalis, a leading cause of nosocomial antibiotic resistant infections, frequently possesses a 150 kb pathogenicity island (PAI) that carries virulence determinants. The presence of excisionase and integrase genes, conjugative functions and multiple insertion sequence elements suggests that the PAI, or segments thereof, might be capable of horizontal transfer. In this report, the transfer of the E. faecalis PAI is demonstrated and a mechanism for transfer elucidated. In filter matings, chloramphenicol resistance was observed to transfer from strain MMH594b, a clinical isolate possessing the PAI tagged with a cat marker, to OG1RF (pCGC) with a frequency of 3.2 x 10(-10) per donor. Secondary transfer from primary transconjugant TCRFB1 to strain JH2SS in filter and broth matings occurred with a frequency of 1 and 2 x 10(-1) per donor respectively. Analysis of the transconjugants demonstrated that a 27,744 bp internal PAI segment was capable of excision and circularization in the donor, and is mobilized as a cointegrate with a pTEF1-like plasmid. High-frequency transfer also occurred from TCRFB1 to JH2SS during transient colonization of the mouse gastrointestinal tract. This is the first demonstration of the horizontal transfer of PAI-encoded virulence determinants in E. faecalis and has implications for genome evolution and diversity.  相似文献   

14.
粪肠、屎肠球菌及相近种部分持家基因的系统发育分析   总被引:1,自引:0,他引:1  
【目的】利用16S rRNA、clpX和recA基因分子标记研究Enterococcus faecalis、Enterococcus faecium及相近种间的种系发育关系,并比较这些基因序列对E.faecalis、E.faecium及相近种的区分能力。【方法】以分离自传统乳制品中的9株E.faecium和1株E.durans分离株为研究对象,以clpX和recA基因片段为标记,通过PCR扩增、测序,结合已公布的近缘种相应序列构建系统发育树并与16S rRNA基因进行比较。【结果】在基于clpX和recA基因的进化树中,10株试验菌株与E.faecalis始终处于同一分支。与该物种这两个基因的平均相似性为99.6%和98.6%,与另一分支的Faecium-group(E.durans和E.faecium)的平均相似性仅为61.5%和33.5%。相近种E.durans和E.hirae间这两个基因的差异性为20.3%和39.0%;在基于16S rRNA基因的进化树中,试验菌株与Faecium-group(E.lactis、E.faecium、E.durans、E.hirae)处于同一分支。与这些成员间该基因的相似性大于99.6%,与E.faecalis基因的平均相似性可达98.4%。相近种间该基因相似性无明显差异。【结论】按照10株试验菌株clpX和recA基因的分析结果可将由传统生理生化和16S rRNA基因序列鉴定的9株E.faecium和1株E.durans归类为E.faecalis,clpX和recA基因可用于部分相近种的分类鉴定。  相似文献   

15.
Enterococcus faecalis cells cannot synthesize porphyrins and do not rely on heme for growth but can take up heme and use it to synthesize heme proteins. We recently described a cytochrome bd in E. faecalis strain V583 and here report the identification of a chromosomal gene, katA, encoding a heme-containing cytoplasmic catalase. The 54-kDa KatA polypeptide shows sequence similarity to members of the family of monofunctional catalases. A hexahistidyl-tagged version of the catalase was purified, and major characteristics of the enzyme were determined. It contains one protoheme IX group per KatA polypeptide. Catalase activity was detected only in E. faecalis cells grown in the presence of heme in the medium; about 2 and 10 micro M hemin was required for half-maximal and maximal production of catalase, respectively. Our finding of a catalase whose synthesis is dependent on the acquisition of heme in the opportunistic pathogen E. faecalis might be of clinical importance. Studies of cellular heme transport and heme protein assembly and in vivo synthesis of metalloprotein analogs for biotechnological applications are impeded by the lack of experimental systems. We conclude that the E. faecalis cell potentially provides such a desired system.  相似文献   

16.
The Enterococcus faecalis virulence plasmid pAD1 encodes a mating response induced by exposure to an octapeptide sex pheromone, cAD1, secreted by plasmid-free enterococci. The determinant for the pheromone in E. faecalis FA2-2, designated cad, was found to encode a 309-amino-acid lipoprotein precursor with the last 8 residues of its 22-amino acid signal sequence representing the cAD1 moiety. The lipoprotein moiety contained two 77-amino-acid repeats (70% identity) separated by 45 residues. The nonisogenic E. faecalis strain V583 determinant encodes a homologous precursor protein, but it differs at two amino acid positions, both of which are located within the pheromone peptide moiety (positions 2 and 8). Construction of a variant of strain FA2-2 containing the differences present in V583 resulted in cells that did not produce detectable cAD1. The mutant appeared normal under laboratory growth conditions, and while significantly reduced in recipient potential, when carrying pAD1 it exhibited a normal mating response. A mutant of FA2-2 with a truncated lipoprotein moiety appeared normal with respect to recipient potential and, when carrying plasmid DNA, donor potential. A gene encoding a protein designated Eep, believed to be a zinc metalloprotease, had been previously identified as required for pheromone biosynthesis and was believed to be involved in the processing of a pheromone precursor. Our new observation that the pAD1-encoded inhibitor peptide, iAD1, whose precursor is itself a signal sequence, is also dependent on Eep is consistent with the likelihood that such processing occurs at the amino terminus of the cAD1 moiety.  相似文献   

17.
Enterococcus faecalis, a gram-positive opportunistic pathogen, has become one of the leading causes of nosocomial infections. Normally a resident of the gastrointestinal tract, extensive use of antibiotics has resulted in the rise of E. faecalis strains that are resistant to multiple antibiotics. This, compounded with the ability to easily exchange antibiotic determinants with other bacteria, has made certain E. faecalis infections difficult to treat medically. The genetic toolbox for the study of E. faecalis has expanded greatly in recent years, but has lacked methodology to stably introduce a gene in single copy in a non-disruptive manner for complementation or expression of non-native genes. In this study, we identified a specific site in the genome of E. faecalis OG1RF that can serve as an expression site for a gene of interest. This site is well conserved in most of the sequenced E. faecalis genomes. A vector has also been developed to integrate genes into this site by allelic exchange. Using this system, we complemented an in-frame deletion in eutV, demonstrating that the mutation does not cause polar effects. We also generated an E. faecalis OG1RF strain that stably expresses the green fluorescent protein and is comparable to the parent strain in terms of in vitro growth and pathogenicity in C. elegans and mice. Another major advantage of this new methodology is the ability to express integrated genes without the need for maintaining antibiotic selection, making this an ideal tool for functional studies of genes in infection models and co-culture systems.  相似文献   

18.
Pang B  Zheng X  Diao B  Cui Z  Zhou H  Gao S  Kan B 《PloS one》2011,6(8):e24267
Vibrio cholerae is commonly found in estuarine water systems. Toxigenic O1 and O139 V. cholerae strains have caused cholera epidemics and pandemics, whereas the nontoxigenic strains within these serogroups only occasionally lead to disease. To understand the differences in the genome and clonality between the toxigenic and nontoxigenic strains of V. cholerae serogroups O1 and O139, we employed a whole genome PCR scanning (WGPScanning) method, an rrn operon-mediated fragment rearrangement analysis and comparative genomic hybridization (CGH) to analyze the genome structure of different strains. WGPScanning in conjunction with CGH revealed that the genomic contents of the toxigenic strains were conservative, except for a few indels located mainly in mobile elements. Minor nucleotide variation in orthologous genes appeared to be the major difference between the toxigenic strains. rrn operon-mediated rearrangements were infrequent in El Tor toxigenic strains tested using I-CeuI digested pulsed-field gel electrophoresis (PFGE) analysis and PCR analysis based on flanking sequence of rrn operons. Using these methods, we found that the genomic structures of toxigenic El Tor and O139 strains were syntenic. The nontoxigenic strains exhibited more extensive sequence variations, but toxin coregulated pilus positive (TCP+) strains had a similar structure. TCP+ nontoxigenic strains could be subdivided into multiple lineages according to the TCP type, suggesting the existence of complex intermediates in the evolution of toxigenic strains. The data indicate that toxigenic O1 El Tor and O139 strains were derived from a single lineage of intermediates from complex clones in the environment. The nontoxigenic strains with non-El Tor type TCP may yet evolve into new epidemic clones after attaining toxigenic attributes.  相似文献   

19.
We have cloned an Enterococcus faecalis gene cluster, cydABCD, which when expressed in Bacillus subtilis results in a functional cytochrome bd terminal oxidase. Our results indicate that E. faecalis V583 cells have the capacity of aerobic respiration when grown in the presence of heme.  相似文献   

20.

Background

Enterococcus faecalis has emerged as a major hospital pathogen. To explore its diversity, we sequenced E. faecalis strain OG1RF, which is commonly used for molecular manipulation and virulence studies.

Results

The 2,739,625 base pair chromosome of OG1RF was found to contain approximately 232 kilobases unique to this strain compared to V583, the only publicly available sequenced strain. Almost no mobile genetic elements were found in OG1RF. The 64 areas of divergence were classified into three categories. First, OG1RF carries 39 unique regions, including 2 CRISPR loci and a new WxL locus. Second, we found nine replacements where a sequence specific to V583 was substituted by a sequence specific to OG1RF. For example, the iol operon of OG1RF replaces a possible prophage and the vanB transposon in V583. Finally, we found 16 regions that were present in V583 but missing from OG1RF, including the proposed pathogenicity island, several probable prophages, and the cpsCDEFGHIJK capsular polysaccharide operon. OG1RF was more rapidly but less frequently lethal than V583 in the mouse peritonitis model and considerably outcompeted V583 in a murine model of urinary tract infections.

Conclusion

E. faecalis OG1RF carries a number of unique loci compared to V583, but the almost complete lack of mobile genetic elements demonstrates that this is not a defining feature of the species. Additionally, OG1RF's effects in experimental models suggest that mediators of virulence may be diverse between different E. faecalis strains and that virulence is not dependent on the presence of mobile genetic elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号