首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
Yao YN  Wang L  Wu XF  Wang ED 《FEBS letters》2003,534(1-3):139-142
A His-tagged full-length cDNA of human mitochondrial leucyl-tRNA synthetase was expressed in a baculovirus system. The N-terminal sequence of the enzyme isolated from the mitochondria of insect cells was found to be IYSATGKWTKEYTL, indicating that the mitochondrial targeting signal peptide was cleaved between Ser39 and Ile40 after the enzyme precursor was translocated into mitochondria. The enzyme purified from mitochondria catalyzed the leucylation of Escherichia coli tRNA(1)(Leu)(CAG) and Aquifex aeolicus tRNA(Leu)(GAG) with higher catalytic activity in the leucylation of E. coli tRNA(Leu) than that previously expressed in E. coli without the N-terminal 21 residues.  相似文献   

2.
Aminoacyl-tRNA synthetases are a family of enzymes that are responsible for translating the genetic code in the first step of protein synthesis. Some aminoacyl-tRNA synthetases have editing activities to clear their mistakes and enhance fidelity. Leucyl-tRNA synthetases have a hydrolytic active site that resides in a discrete amino acid editing domain called CP1. Mutational analysis within yeast mitochondrial leucyl-tRNA synthetase showed that the enzyme has maintained an editing active site that is competent for post-transfer editing of mischarged tRNA similar to other leucyl-tRNA synthetases. These mutations that altered or abolished leucyl-tRNA synthetase editing were introduced into complementation assays. Cell viability and mitochondrial function were largely unaffected in the presence of high levels of non-leucine amino acids. In contrast, these editing-defective mutations limited cell viability in Escherichia coli. It is possible that the yeast mitochondria have evolved to tolerate lower levels of fidelity in protein synthesis or have developed alternate mechanisms to enhance discrimination of leucine from non-cognate amino acids that can be misactivated by leucyl-tRNA synthetase.  相似文献   

3.
The cytoplasmic leucyl-tRNA synthetases of Neurospora crassa wild type (grown at 37 degrees C) and mutant (grown at 28 degrees C) were purified approximately 1770-fold and 1440-fold respectively. Additional enzyme preparations were carried out with mutant cells grown for 24 h at 28 degrees C and transferred then to 37 degrees C for 10-70 h of growth. The mitochondrial leucyl-tRNA synthetase of the wild type was purified approximately 722-fold. The mitochondrial mutant enzyme was found only in traces. The cytoplasmic leucyl-tRNA synthetase from the mutant (grown at 37 degrees C) in vivo is subject of a proteolytic degradation. This leads to an increased pyrophosphate exchange, without altering aminoacylation. Proteolysis in vitro by trypsin or subtilisin of isolated cytoplasmic wild-type and mutant leucyl-tRNA synthetases, however, did not establish and difference in the degradation products and in their catalytic properties. Comparing the cytoplasmic wild-type and mutant enzymes (grown at 28 degrees C) via steady-state kinetics did not show significant differences between these synthetases either. The rate-determining step appears to be after the transfer of the aminoacyl group to the tRNA, e.g. a conformational change or the release of the product. Besides leucine only isoleucine is activated by the enzymes with a discrimination of approximately 1:600; however, no Ile-tRNALeu is released. Similarly these enzymes, when tested with eight ATP analogs, cannot be distinguished. For both enzymes six ATP analogs are neither substrates nor inhibitors. Two analogs are substrates with identical kinetic parameters. The mitochondrial wild-type leucyl-tRNA synthetase is different from the cytoplasmic enzyme, as particularly exhibited by aminoacylating Escherichia coli tRNALeu but not N. crassa cytoplasmic tRNALeu. The presence of traces of the analogous mitochondrial mutant enzyme could be demonstrated. Therefore, the difference between wild-type and mutant leu-5 does not rest in the catalytic properties of the cytoplasmic leucyl-tRNA synthetases. Differences in other properties of these enzymes are not excluded. In contrast the activity of the mitochondrial leucyl-tRNA synthetase of the mutant is approximately 1% of that of the wild-type enzyme.  相似文献   

4.
The A3243G mutation in the human mitochondrial tRNALeu(UUR) gene causes a number of human diseases. This mutation reduces the level and fraction of aminoacylated tRNALeu(UUR) and eliminates nucleotide modification at the wobble position of the anticodon. These deficiencies are associated with mitochondrial translation defects that result in decreased levels of mitochondrial translation products and respiratory chain enzyme activities. We have suppressed the respiratory chain defects in A3243G mutant cells by overexpressing human mitochondrial leucyl-tRNA synthetase. The rates of oxygen consumption in suppressed cells were directly proportional to the levels of leucyl-tRNA synthetase. Fifteenfold higher levels of leucyl-tRNA synthetase resulted in wild-type respiratory chain function. The suppressed cells had increased steady-state levels of tRNALeu(UUR) and up to threefold higher steady-state levels of mitochondrial translation products, but did not have rates of protein synthesis above those in parental mutant cells. These data suggest that suppression of the A3243G mutation occurred by increasing protein stability. This suppression of a tRNA gene mutation by increasing the steady-state levels of its cognate aminoacyl-tRNA synthetase is a model for potential therapies for human pathogenic tRNA mutations.  相似文献   

5.
The yeast mitochondrial leucyl-tRNA synthetase (ymLeuRS) performs dual essential roles in group I intron splicing and protein synthesis. A specific LeuRS domain called CP1 is responsible for clearing noncognate amino acids that are misactivated during aminoacylation. The ymLeuRS CP1 domain also plays a critical role in splicing. Herein, the ymLeuRS CP1 domain was isolated from the full-length enzyme and was active in RNA splicing in vitro. Unlike its Escherichia coli LeuRS CP1 domain counterpart, it failed to significantly hydrolyze misaminoacylated tRNA(Leu). In addition and in stark contrast to the yeast domain, the editing-active E. coli LeuRS CP1 domain failed to recapitulate the splicing activity of the full-length E. coli enzyme. Although LeuRS-dependent splicing activity is rooted in an ancient adaptation for its aminoacylation activity, these results suggest that the ymLeuRS has functionally diverged to confer a robust splicing activity. This adaptation could have come at some expense to the protein's housekeeping role in aminoacylation and editing.  相似文献   

6.
Chen JF  Guo NN  Li T  Wang ED  Wang YL 《Biochemistry》2000,39(22):6726-6731
The amino acid discrimination by aminoacyl-tRNA synthetase is achieved through two sifting steps; amino acids larger than the cognate substrate are rejected by a "coarse sieve", while the reaction products of amino acids smaller than the cognate substrate will go through a "fine sieve" and be hydrolyzed. This "double-sieve" mechanism has been proposed for IleRS, a class I aminoacyl-tRNA synthetase. In this study, we created LeuRS-B, a mutant leucyl-tRNA synthetase from Escherichia coli with a duplication of the peptide fragment from Met328 to Pro368 (within its CP1 domain). This mutant has 50% of the leucylation activity of the wild-type enzyme and has the same ability to discriminate noncognate amino acids in the first step of the reaction. However, LeuRS-B can catalyze mischarging of tRNA(Leu) by methionine or isoleucine, suggesting that it is impaired in the ability to edit incorrect products. Wild-type leucyl-tRNA synthetase can edit the mischarged tRNA(Leu) made by LeuRS-B, while a separated CP1 domain cannot. These data suggest that the CP1 domain of leucyl-tRNA synthetase is crucial to the second editing sieve and that CP1 needs the structural context in leucyl-tRNA synthetase to fulfill its editing function.  相似文献   

7.
Human cytosolic leucyl-tRNA synthetase is one component of a macromolecular aminoacyl-tRNA synthetase complex. This is unlike prokaryotic and lower eukaryotic LeuRSs that exist as free soluble enzymes. There is little known about it, since the purified enzyme has been unavailable. Herein, human cytosolic leucyl-tRNA synthetase was heterologously expressed in a baculovirus system and purified to homogeneity. The molecular mass (135 kDa) of the enzyme is close to the theoretical value derived from its cDNA. The kinetic constants of the enzyme for ATP, leucine, and tRNA(Leu) in the ATP-PP(i) exchange and tRNA leucylation reactions were determined, and the results showed that it is quite active as a free enzyme. Human cytosolic leucyl-tRNA synthetase expressed in human 293 T cells localizes predominantly to the cytosol. Additionally, it is found to have a long C-terminal extension that is absent from bacterial and yeast LeuRSs. A C-terminal 89-amino acid truncated human cytosolic leucyl-tRNA synthetase was constructed and purified, and the catalytic activities, thermal stability, and subcellular location were found to be almost identical to native enzyme. In vivo and in vitro experiments, however, show that the C-terminal extension of human cytosolic leucyl-tRNA synthetase is indispensable for its interaction with the N-terminal of human cytosolic arginyl-tRNA synthetase in the macromolecular complex. Our results also indicate that the two molecules interact with each other only through their appended domains.  相似文献   

8.
9.
Base substitutions equivalent to those causing human pathologies have been introduced in yeast mitochondrial tRNA genes. These mutants can be utilized as flexible tools to investigate the molecular aspects of mitochondrial diseases and identify correcting genes. We show that for all studied tRNA mutations (including an homoplasmic one in tRNAVal) the severity of phenotypes follows the same trend in four different nuclear backgrounds. Correcting genes include TUF1 and genes encoding aminoacyl-tRNA synthetase. The effect of suppressors was analyzed by Northern blot. Mutated leucyl-tRNA synthetase with highly reduced catalytic activity maintains full suppressing effect, thus suggesting a chaperone-like and/or stabilizing function.  相似文献   

10.
In Tenebrio molitor, as well as in other biological systems, there are indications that differences in leucyl-tRNA synthetase activity may play a role in translational control. However, it has not been clear whether the difference in activity is due to the appearance of a multiplicity of enzymes during development or to the alteration of a single enzyme.The purification of leucyl-tRNA synthetase from day 1 and day 7 after the larval pupal molt of Tenebrio molitor is described. The enzyme from both developmental stages was purified over a 1000-fold. The two enzyme preparations are identical in molecular weight (99,000). They show the same characteristics after aging. The pH optimum, heat inactivation behavior, and dependency on divalent cations are the same for both enzymes. They also show identical kinetics with similar values of Km for leucine, ATP, Mg2+, and tRNA day 1. However, leucyl-tRNA synthetase purified from day 7 exhibits an additional function in recognizing a new species of isoaccepting tRNA in day 7 tRNA. We have tentatively concluded that the two enzymes are probably different forms of the same enzyme and the additional activity is due to alteration of the enzyme at the macromolecular level during development.  相似文献   

11.
T Li  N Guo  X Xia  E D Wang  Y L Wang 《Biochemistry》1999,38(40):13063-13069
Escherichia coli leucyl-tRNA synthetase (LeuRS) is a class I aminoacyl-tRNA synthetase that contains a large connecting polypeptide (CP1) inserted into its nucleotide binding fold, or active site. In this study, purified leucyl-tRNA synthetase was found to be cleaved between E292 and A293 in its CP1 domain. SDS-PAGE analysis showed peptides of 63 and 34 kDa in addition to the native 97.3 kDa synthetase. By internal complementation, the two peptides could form a 97.3 kDa complex similar to the native LeuRS. This complex could support the ATP approximately PP(i) exchange activity of LeuRS, but could not complement for aminoacylation. To study the function of the region around the bond of E292 and A293, four pairs of peptides resulting from different cleavage sites in CP1 were reconstituted in vivo. With the exception of the enzyme assembled from the E292-A293 cleavage site, all the reassembled LeuRSs catalyzed the aminoacylation of tRNA(Leu). Although the E292-A293-cleaved LeuRS could not catalyze aminoacylation, fluorescence titration revealed that its tRNA binding ability was almost identical to that of wild-type LeuRS. These results suggest that the region around E292-A293 may be responsible for maintaining the proper conformation of LeuRS required for the tRNA charging activity.  相似文献   

12.
Comprehensive steady-state and transient kinetic studies of the synthetic and editing activities of Escherichia coli leucyl-tRNA synthetase (LeuRS) demonstrate that the enzyme depends almost entirely on post-transfer editing to endow the cell with specificity against incorporation of norvaline into protein. Among the three class I tRNA synthetases possessing a dedicated post-transfer editing domain (connective peptide 1; CP1 domain), LeuRS resembles valyl-tRNA synthetase in its reliance on post-transfer editing, whereas isoleucyl-tRNA synthetase differs in retaining a distinct tRNA-dependent synthetic site pre-transfer editing activity to clear noncognate amino acids before misacylation. Further characterization of the post-transfer editing activity in LeuRS by single-turnover kinetics demonstrates that the rate-limiting step is dissociation of deacylated tRNA and/or amino acid product and highlights the critical role of a conserved aspartate residue in mediating the first-order hydrolytic steps on the enzyme. Parallel analyses of adenylate and aminoacyl-tRNA formation reactions by wild-type and mutant LeuRS demonstrate that the efficiency of post-transfer editing is controlled by kinetic partitioning between hydrolysis and dissociation of misacylated tRNA and shows that trans editing after rebinding is a competent kinetic pathway. Together with prior analyses of isoleucyl-tRNA synthetase and valyl-tRNA synthetase, these experiments provide the basis for a comprehensive model of editing by class I tRNA synthetases, in which kinetic partitioning plays an essential role at both pre-transfer and post-transfer steps.  相似文献   

13.
Respiratory deficient mutants of Saccharomyces cerevisiae previously assigned to complementation group G59 are pleiotropically deficient in respiratory chain components and in mitochondrial ATPase. This phenotype has been shown to be a consequence of mutations in a nuclear gene coding for mitochondrial leucyl-tRNA synthetase. The structural gene (MSL1) coding for the mitochondrial enzyme has been cloned by transformation of two different G59 mutants with genomic libraries of wild type yeast nuclear DNA. The cloned gene has been sequenced and shown to code for a protein of 894 residues with a molecular weight of 101,936. The amino-terminal sequence (30-40 residues) has a large percentage of basic and hydroxylated residues suggestive of a mitochondrial import signal. The cloned MSL1 gene was used to construct a strain in which 1 kb of the coding sequence was deleted and substituted with the yeast LEU2 gene. Mitochondrial extracts obtained from the mutant carrying the disrupted MSL1::LEU2 allele did not catalyze acylation of mitochondrial leucyl-tRNA even though other tRNAs were normally charged. These results confirmed the correct identification of MSL1 as the structural gene for mitochondrial leucyl-tRNA synthetase. Mutations in MSL1 affect the ability of yeast to grow on nonfermentable substrates but are not lethal indicating that the cytoplasmic leucyl-tRNA synthetase is encoded by a different gene. The primary sequence of yeast mitochondrial leucyl-tRNA synthetase has been compared to other bacterial and eukaryotic synthetases. Significant homology has been found between the yeast enzyme and the methionyl- and isoleucyl-tRNA synthetases of Escherichia coli. The most striking primary sequence homology occurs in the amino-terminal regions of the three proteins encompassing some 150 residues. Several smaller domains in the more internal regions of the polypeptide chains, however, also exhibit homology. These observations have been interpreted to indicate that the three synthetases may represent a related subset of enzymes originating from a common ancestral gene.  相似文献   

14.
The interaction between tRNA conformers inactive in aminoacylation and leucyl-tRNA synthetase has been investigated. Heat inactivation of the enzyme in the presence of inactive tRNA conformers is shown to lead to a marked increase of inactivation rate while active tRNA conformers, on the other hand, reveal a protecting effect. To study the properties of the enzyme complexed with different tRNA conformers limited proteolysis has been used. Active tRNA conformers are found to protect leucyl-tRNA synthetase against hydrolysis while inactive ones tend to intensify it. Inactive tRNA conformers are also shown to inhibit the aminoacylation of native tRNA in vitro. On the basis of these data biologically inactive conformers of animal tRNA are assumed to form an unproductive complex with leucyl-tRNA synthetase and the structure of the enzyme involved in such interaction is supposed to be more labile and 'extended' than that in complex with active tRNA conformers.  相似文献   

15.
Altered leucyl-tRNA synthetase from a mammalian cell culture temperature-sensitive mutant, tsHl, was compared with enzyme from normal wild type Chinese hamster ovary cells. The mutant enzyme had a Km for leucine four times larger than that of wild type and enzyme levels 3-10% that of wild type. The presence of tRNA was necessary during in vitro heating of the mutant enzyme to allow expression of thermolability while the presence of tRNA protected wild type enzyme against thermal inactivation. The tsHl enzyme was stable when heated alone or in the presence of tRNA, leucine, and ATP simultaneously. The mutant's enzymes aminoacylated tRNALeu, tRNAVal, and tRNAIle with fidelity in vitro as determined by cochromatography of the amino-acyl-tRNA isoacceptors on RPC-5 reversed phase chromatography. The mutant failed to show any defect other than the direct formation of leucyl tRNALeu by leucyl-tRNA synthetase.  相似文献   

16.
A cDNA clone encoding the human mitochondrial leucyl-tRNA synthetase (mtLeuRS) has been identified from the EST databases. Analysis of the protein encoded by this cDNA indicates that the protein is 903 amino acids in length and contains a mitochondrial signal sequence that is predicted to encompass the first 21 amino acids. Sequence analysis shows that this protein contains the characteristic motifs of class I aminoacyl-tRNA synthetases and regions of high homology to other mitochondrial and bacterial LeuRS proteins. The mature form of this protein has been cloned and expressed in Escherichia coli. Gel filtration indicates that human mtLeuRS is active in a monomeric state, with an apparent molecular mass of 101 kDa. The human mtLeuRS is capable of aminoacylating E. coli tRNA(Leu). Its activity is inhibited at high levels of either monovalent or divalent cations. K(M) and k(cat) values for ATP:PP(i) exchange and for the aminoacylation reaction have been determined.  相似文献   

17.
The cytoplasmic leucyl-tRNA synthetase was purified from bean (Phaseolus vulgaris) leaves. After ammonium sulfate fractionation and chromatography on Sephadex G-50, DEAE-cellulose, hydroxylapatite, and phosphocellulose, complete purification was achieved by blue Sepharose CL-6B chromatography using specific elution with pure yeast tRNALeu1. The enzyme was purified 1050-fold and had a specific activity of 940 nmol of leucyl-tRNA formed/min/mg of protein. Polyacrylamide gel electrophoresis of the native enzyme showed one band, but the denatured enzyme showed two bands. These two protein bands are structurally related. The smallest protein appears to be a cleavage product from the largest one, suggesting the presence of a sensitive cleavage site in the cytoplasmic leucyl-tRNA synthetase. The cytoplasmic enzyme is a monomer (Mr = 130,000), larger than its chloroplastic counterpart (Mr = 120,000). The two enzymes differ in their substrate (tRNA) specificity, tryptic peptide map, and amino acid composition. Antibodies were raised against the cytoplasmic enzyme and against the chloroplastic enzyme and no cross-immunological reaction was detected, showing that the two enzymes do not share any antigenic determinant. Taken together, these results suggest that P. vulgaris cytoplasmic and chloroplastic leucyl-tRNA synthetases are coded for by different genes.  相似文献   

18.
Mutations in human mitochondrial DNA are often associated with incurable human neuromuscular diseases. Among these mutations, an important number have been identified in tRNA genes, including 29 in the gene MT-TL1 coding for the tRNA(Leu(UUR)). The m.3243A>G mutation was described as the major cause of the MELAS syndrome (mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes). This mutation was reported to reduce tRNA(Leu(UUR)) aminoacylation and modification of its anti-codon wobble position, which results in a defective mitochondrial protein synthesis and reduced activities of respiratory chain complexes. In the present study, we have tested whether the mitochondrial targeting of recombinant tRNAs bearing the identity elements for human mitochondrial leucyl-tRNA synthetase can rescue the phenotype caused by MELAS mutation in human transmitochondrial cybrid cells. We demonstrate that nuclear expression and mitochondrial targeting of specifically designed transgenic tRNAs results in an improvement of mitochondrial translation, increased levels of mitochondrial DNA-encoded respiratory complexes subunits, and significant rescue of respiration. These findings prove the possibility to direct tRNAs with changed aminoacylation specificities into mitochondria, thus extending the potential therapeutic strategy of allotopic expression to address mitochondrial disorders.  相似文献   

19.
Leucyl-transfer ribonucleic acid (tRNA) synthetase was purified 100-fold from extracts of Salmonella typhimurium. The partially purified enzyme had the following K(m) values: leucine, 1.1 x 10(-5)m; adenosine triphosphate, 6.5 x 10(-4)m; tRNA(I) (Leu), 4.1 x 10(-8)m; tRNA(II) (Leu), 4.3 x 10(-8)m; tRNA(III) (Leu), 5.3 x 10(-8)m; and tRNA(IV) (Leu), 2.9 x 10(-8)m. The tRNA(Leu) fractions were isolated from Salmonella bulk tRNA by chromatography on reversed-phase columns and benzoylated diethylaminoethyl cellulose. The enzyme had a pH optimum of 8.5 and an activation energy of 10,400 cal per mole, and was inactivated exponentially at 49.5 C with a first-order rate constant of 0.064 min(-1). Strain CV356 (leuS3 leuABCD702 ara-9 gal-205) was isolated as a mutant resistant to dl-4-azaleucine and able to grow at 27 C but not at 37 C. Extracts of strain CV356 had no leucyl-tRNA synthetase activity (charging assay) when assayed at 27 or 37 C. Temperature sensitivity and enzyme deficiency were caused by mutation in the structural gene locus specifying leucyl-tRNA synthetase. A prototrophic derivative of strain CV356 (CV357) excreted branched-chain amino acids and had high pathway-specific enzyme levels when grown at temperatures where its doubling time was near normal. At growth-restricting temperatures, both amino acid excretion and enzyme levels were further elevated. The properties of strain CV357 indicate that there is only a single leucyl-tRNA synthetase in S. typhimurium.  相似文献   

20.
The Neurospora mitochondrial and cytoplasmic leucyl-tRNA synthetases differ from each other not only in location but also with respect to tRNA specificity, chromatographic mobility, leucine affinity, and sensitivity to phosphate inhibition. Strain 45208t, which bears a mutation in the leu-5 cistron, produces a cytoplasmic enzyme with reduced affinity for leucine and little if any mitochondrial enzyme activity. Reversion of the 45208t mutation was found to result not only in the reappearance of mitochondrial leucyl-tRNA synthetase activity but also in the production of a cytoplasmic synthetase with an affinity for leucine intermediate between mutant and wild type. The reversion studied, then, did not involve a return to the wild-type nucleotide sequence in the leu-5 cistron. The results obtained lend further support to the conclusion that the leu-5 cistron is involved in specifying, at least in part, the structure of both the cytoplasmic and mitochondrial leucyl-tRNA synthetases, despite the physical and functional differences between them.Research was supported in part by National Science Foundation Grant 27575.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号