首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We are using the fungus Neurospora crassa as a model organism to study the circadian system of eukaryotes. Although the FRQ/WCC feedback loop is said to be central to the circadian system in Neurospora, rhythms can still be seen under many conditions in FRQ-less (frq knockout) strains. To try to identify components of the FRQ-less oscillator (FLO), we carried out a mutagenesis screen in a FRQ-less strain and selected colonies with altered conidiation (spore-formation) rhythms. A mutation we named UV90 affects rhythmicity in both FRQ-less and FRQ-sufficient strains. The UV90 mutation affects FRQ-less rhythms in two conditions: the free-running long-period rhythm in choline-depleted chol-1 strains becomes arrhythmic, and the heat-entrained rhythm in the frq(10) knockout is severely altered. In a FRQ-sufficient background, the UV90 mutation causes damping of the free-running conidiation rhythm, reduction of the amplitude of the FRQ protein rhythm, and increased phase-resetting responses to both light and heat pulses, consistent with a decreased amplitude of the circadian oscillator. The UV90 mutation also has small but significant effects on the period of the conidiation rhythm and on growth rate. The wild-type UV90 gene product appears to be required for a functional FLO and for sustained, high-amplitude rhythms in FRQ-sufficient conditions. The UV90 gene product may therefore be a good candidate for a component of the FRQ-less oscillator. These results support a model of the Neurospora circadian system in which the FRQ/WCC feedback loop mutually interacts with a single FLO in an integrated circadian system.  相似文献   

2.
3.
Although the fungus Neurospora crassa is a relatively simple lower eukaryote, its circadian system may be more complex than previously thought. In this paper we review evidence suggesting that there may be several output pathways coupled in complex ways to a single oscillator, or that there may be more than one oscillator driving independent output pathways. We have described two new rhythms in Neurospora that are not tightly coupled to the rhythm of conidiation bands that is the standard assay for the state of the Neurospora circadian clock. The first is a rhythm in the timing of differentiation, i.e. the production of aerial hyphae and spores. Large regions of the mycelium differentiate synchronously, as if responding to a spatially widespread signal. This rhythm may be distinct from the timer that sets the determination switch controlling the spatial pattern of conidiation bands. The second new rhythm is an oscillation in the levels of the neutral lipid diacylglycerol (DAG). This rhythm is found in all regions of a colony and is not always in phase with the rhythm of conidiation bands. The DAG rhythm shares some characteristics with the differentiation rhythm and has the potential to act as the signal that induces rhythmic differentiation.  相似文献   

4.
In Neurospora crassa, the circadian rhythm can be seen in the bd (band) strain as a series of "bands" or conidiation (spore-forming) regions on the surface of an agar medium. Certain mutations at 3 different genes (frq, wc-1, or wc-2) lead to the loss of the circadian rhythm. In this study, it was found that the addition of 10(-4) to 10(-5) M of geraniol or farnesol restored rhythmic banding to strains that lack a circadian rhythm due to mutations in any 1 of these 3 genes. These 3 conditionally arrhythmic strains now exhibited robust, free-running conidiation rhythms. Their rhythms were neither temperature-compensated nor obviously sensitive to light, so the full properties of a circadian rhythm were not restored. At 20 degrees C, in growth tubes, farnesol treatment gave periods of 28, 26, and 22 h for the frq10, wc-1, and wc-2 strains, respectively. Geraniol treatment at 20 degrees C gave periods of 23, 25.5, and 24.5 h for the frq10, wc-1, and wc-2 strains, respectively. A PRC for temperature pulses (1 h, 20 to 40 degrees C) for the frq10 strain grown in the presence of geraniol showed strong resetting (type 0), suggesting that a temperature-sensitive oscillator was present. Farnesol and geraniol are related to known intermediates in the steroid (or mevalonate) pathway. These data are interpreted in terms of a 2-oscillator model, in which farnesol/geraniol activate or amplify a remaining oscillator (a postulated frq-less oscillator).  相似文献   

5.
One approach to identifying components of the circadian oscillator is to screen for clock defects in mutants with known biochemical lesions. The chol-1 mutant of Neurospora crassa is defective in the first methylation step of phosphatidylcholine synthesis, the conversion of phosphatidylethanolamine to phosphatidylmonomethylethanolamine, and requires choline for normal growth. Choline depletion of this mutant inhibits growth and lengthens the period of the rhythm of conidiation. On high levels of choline (above 20 µM), the growth rate and the period of the rhythm are normal. Below about 10 µM choline, the growth rate and period length depend on the choline concentration, and the period is about 58 h on minimal medium without choline. Choline depletion decreases period stability, and replicate cultures do not remain in phase due to variability in period within each culture. At intermediate levels of choline (around 10 µM) cultures are often arrhythmic. The choline requirement for growth can be met by the phosphatidylcholine precursors monomethylethanolamine and dimethylethanolamine, and these supplements also restore a normal period. Choline depletion of the chol-1 strain exaggerates the rhythm in growth rate previously reported in a chol + strain. Growth rate during formation of a conidial band (measured as forward advance of the mycelial front) is less than half of the maximum rate during non-conidiating interband formation. Choline-depleted cultures can be entrained to light/dark (LD) cycles with periods near to their free-running periods. Cultures on 10 µM choline (with a free-running period of about 25 h) can be entrained to a 24 h (12:12) LD cycle, but not to a 36 h (18:18) or 48 h (24:24) LD cycle. Cultures on 0.5 µM choline (free-running period of about 52 h) or minimal medium (free-running period of about 58 h) can be entrained to 18:18 and 24:24 LD cycles, but not a 12:12 cycle. The phase relationship of the conidiation rhythm to the zeitgeber for low-choline cultures in LD 24:24 is similar to high choline cultures in LD 12:12. Continuous light abolishes rhythmicity in choline-depleted cultures. These results may indicate a role for membrane phospholipids, and the metabolites of phosphatidylcholine in particular, in the control of the period of the circadian oscillator in Neurospora.  相似文献   

6.
One approach to identifying components of the circadian oscillator is to screen for clock defects in mutants with known biochemical lesions. The chol-1 mutant of Neurospora crassa is defective in the first methylation step of phosphatidylcholine synthesis, the conversion of phosphatidylethanolamine to phosphatidylmonomethylethanolamine, and requires choline for normal growth. Choline depletion of this mutant inhibits growth and lengthens the period of the rhythm of conidiation. On high levels of choline (above 20 µM), the growth rate and the period of the rhythm are normal. Below about 10 µM choline, the growth rate and period length depend on the choline concentration, and the period is about 58 h on minimal medium without choline. Choline depletion decreases period stability, and replicate cultures do not remain in phase due to variability in period within each culture. At intermediate levels of choline (around 10 µM) cultures are often arrhythmic. The choline requirement for growth can be met by the phosphatidylcholine precursors monomethylethanolamine and dimethylethanolamine, and these supplements also restore a normal period. Choline depletion of the chol-1 strain exaggerates the rhythm in growth rate previously reported in a chol + strain. Growth rate during formation of a conidial band (measured as forward advance of the mycelial front) is less than half of the maximum rate during non-conidiating interband formation. Choline-depleted cultures can be entrained to light/dark (LD) cycles with periods near to their free-running periods. Cultures on 10 µM choline (with a free-running period of about 25 h) can be entrained to a 24 h (12:12) LD cycle, but not to a 36 h (18:18) or 48 h (24:24) LD cycle. Cultures on 0.5 µM choline (free-running period of about 52 h) or minimal medium (free-running period of about 58 h) can be entrained to 18:18 and 24:24 LD cycles, but not a 12:12 cycle. The phase relationship of the conidiation rhythm to the zeitgeber for low-choline cultures in LD 24:24 is similar to high choline cultures in LD 12:12. Continuous light abolishes rhythmicity in choline-depleted cultures. These results may indicate a role for membrane phospholipids, and the metabolites of phosphatidylcholine in particular, in the control of the period of the circadian oscillator in Neurospora .  相似文献   

7.
Hunt S  Elvin M  Heintzen C 《Genetics》2012,191(1):119-131
In Neurospora crassa, the interactions between products of the frequency (frq), frequency-interacting RNA helicase (frh), white collar-1 (wc-1), and white collar-2 (wc-2) genes establish a molecular circadian clockwork, called the FRQ-WC-Oscillator (FWO), which is required for the generation of molecular and overt circadian rhythmicity. In strains carrying nonfunctional frq alleles, circadian rhythms in asexual spore development (conidiation) are abolished in constant conditions, yet conidiation remains rhythmic in temperature cycles. Certain characteristics of these temperature-synchronized rhythms have been attributed to the activity of a FRQ-less oscillator (FLO). The molecular components of this FLO are as yet unknown. To test whether the FLO depends on other circadian clock components, we created a strain that carries deletions in the frq, wc-1, wc-2, and vivid (vvd) genes. Conidiation in this ΔFWO strain was still synchronized to cyclic temperature programs, but temperature-induced rhythmicity was distinct from that seen in single frq knockout strains. These results and other evidence presented indicate that components of the FWO are part of the temperature-induced FLO.  相似文献   

8.
Lombardi L  Schneider K  Tsukamoto M  Brody S 《Genetics》2007,175(3):1175-1183
In Neurospora, the circadian rhythm is expressed as rhythmic conidiation driven by a feedback loop involving the protein products of frq (frequency), wc-1 (white collar-1), and wc-2, known as the frq/wc (FWC) oscillator. Although strains carrying null mutations such as frq(10) or wc-2Delta lack a functional FWC oscillator and do not show a rhythm under most conditions, a rhythm can be observed in them by the addition of geraniol or farnesol to the media. Employing this altered media as an assay, the effect of other clock mutations in a frq(10)- or wc-2Delta-null background can be measured. It was found that the existing clock mutations fall into three classes: (1) those, such as prd-3 or prd-4 or frq(1), that showed no effect in a clock null background; (2) those, such as prd-1 or prd-2 or prd-6, that did have a measurable effect in the frq(10) background; and (3) those, such as the new mutation ult, that suppressed the frq(10) or wc-2Delta effect, i.e., geraniol/farnesol was not required for a visible rhythm. This classification suggests that some of the known clock mutations are part of a broader multioscillator system.  相似文献   

9.
10.
Neurospora crassa (bdA) mycelia were kept in liquid culture. Without rhythmic conidiation the levels of adenine nucleotides undergo circadian changes in constant darkness. Maxima occur 12-17 hr and 33-35 hr after initiation of the rhythm, i.e., at CT 0-6 hr. Pulses of metabolic inhibitors such as vanadate (Na3Vo4), molybdate (Na2MoO4: 2 H2O), N-ethylmaleimide (NEM), azide (NaN3), cyanide (NaCN) and oligomycin phase shift the circadian conidiation rhythm of Neurospora crassa. Maximal advance phase shifts are observed at about CT 6 with all inhibitors.

Pulses of N,N'dicyclohexylcarbodiimide (DCCD) and light phase shift the conidiation rhythm following a phase response curve different from those of the other agents (maximal advance at about CT 18-24). The phase shifts with DCCD and light are significantly larger in the wild type compared to the mitochrondrial mutant poky. Such differences are not found in PRCs of the protein synthesis inhibitor cycloheximide.

[31P] NMR spectra of wild type Neurospora crassa and the clock mutants frq 1 and frq 7 which differ in their circadian period lengths did not reveal differences in the concentrations of adenine nucleotides, pyridine nucleotides or sugar phosphates. Starvation causes drastic changes of the levels of adenine nucleotides, phosphate and mobile polyphosphate without effecting phase or period length of the circadian rhythm.  相似文献   

11.
Isolation of Circadian Clock Mutants of NEUROSPORA CRASSA   总被引:17,自引:4,他引:13  
Three mutants of Neurospora crassa have been isolated which have altered period lengths of their circadian rhythm of conidiation. The strains, designated "frequency" (frq), were obtained after mutagenesis of the band (bd) strain with N-methyl-N'-nitro-N-nitrosoguanidine. In continuous darkness at 25 degrees bd has a period length of 21.6 +/- 0.5 hours; under the same conditions the period length of frq-1 is 16.5 +/- 0.5 hours; frq-2, 19.3 +/- 0.4 hours; and frq-3, 24.0 +/- 0.4 hours. Each of the mutants segregates as a single nuclear gene. All three mutants appear very tightly linked to each other, but it has not yet been determined whether the mutants are allelic. No major changes in the responses to light and temperature have been observed in any of the mutants. It is suggested that these mutants represent alterations in the basic timing mechanism of the circadian clock of Neurospora.  相似文献   

12.
13.
S. Suzuki  S. Katagiri    H. Nakashima 《Genetics》1996,143(3):1175-1180
Two newly isolated mutant strains of Neurospora crassa, cpz-1 and cpz-2, were hypersensitive to chlorpromazine with respect to mycelial growth but responded differently to the drug with respect to the circadian conidiation rhythm. In the wild type, chlorpromazine caused shortening of the period length of the conidiation rhythm. Pulse treatment with the drug shifted the phase and inhibited light-induced phase shifting in Neurospora. By contrast to the wild type, the cpz-2 strain was resistant to these inhibitory effects of chlorpromazine. Inhibition of cpz-2 function by chlorpromazine affected three different parameters of circadian conidiation rhythm, namely, period length, phase and light-induced phase shifting. These results indicate that the cpz-2 gene must be involved in or related closely to the clock mechanism of Neurospora. By contrast, the cpz-1 strain was hypersensitive to chlorpromazine with respect to the circadian conidiation rhythm.  相似文献   

14.
Recent work on circadian clocks in Neurospora has primarily focused on the frequency (frq) and white-collar (wc) loci. However, a number of other genes are known that affect either the period or temperature compensation of the rhythm. These include the period (no relationship to the period gene of Drosophila) genes and a number of genes that affect cellular metabolism. How these other loci fit into the circadian system is not known, and metabolic effects on the clock are typically not considered in single-oscillator models. Recent evidence has pointed to multiple oscillators in Neurospora, at least one of which is predicted to incorporate metabolic processes. Here, the Neurospora clock-affecting mutations will be reviewed and their genetic interactions discussed in the context of a more complex clock model involving two coupled oscillators: a FRQ/WC-based oscillator and a 'frq-less' oscillator that may involve metabolic components.  相似文献   

15.
FREQUENCY (FRQ) is a crucial element of the circadian clock in Neurospora crassa. In the course of a circadian day FRQ is successively phosphorylated and degraded. Here we report that two PEST-like elements in FRQ, PEST-1 and PEST-2, are phosphorylated in vitro by recombinant CK-1a and CK-1b, two newly identified Neurospora homologs of casein kinase 1 epsilon. CK-1a is localized in the cytosol and the nuclei of Neurospora and it is in a complex with FRQ in vivo. Deletion of PEST-1 results in hypophosphorylation of FRQ and causes significantly increased protein stability. A strain harboring the mutant frq Delta PEST-1 gene shows no rhythmic conidiation. Despite the lack of overt rhythmicity, frq Delta PEST-1 RNA and FRQ Delta PEST-1 protein are rhythmically expressed and oscillate in constant darkness with a circadian period of 28 h. Thus, by deletion of PEST-1 the circadian period is lengthened and overt rhythmicity is dissociated from molecular oscillations of clock components.  相似文献   

16.
The circadian rhythm of Neurospora crassa can be seen as a conidiation rhythm that produces concentric rings of bands (conidiating regions) alternating with interbands (non-conidiating regions) on the surface of an agar medium. To follow quantitatively this rhythm, densitometric analysis, gravimetric procedures, and video microscopy were employed. The circadian behavior of N. crassa is commonly monitored by cultivation in race tubes; in this work we report different growth kinetics during cultivation in conventional Petri dish cultures. Two different growth parameters were measured: total colony mass (true growth rate) and distance (colony radial expansion or hyphal elongation). Determinations of cellular mass revealed a dramatic circadian oscillation with a marked drop in growth rate during new interband formation followed by a sharp increase during the development of a new conidiation band. On the other hand, we found that the radial expansion of the colony previously reported to decrease periodically seemed unaffected by the circadian clock. Densitometric analysis showed no initial difference in the expanding margin of the colony, independent of whether that area was destined to be a band or an interband. The band areas increased rapidly in density for about 15 h whereas the interband areas maintained an equally rapid rate of increase for only 6h. The density of band areas kept increasing slowly for almost 40 h, along with an increase in the amount of conidia. Video microscopy showed the importance of cytoplasmic flow in colony development with continuous forward flow to support hyphal morphogenesis and reverse flow to support an extended period of conidiogenesis. Our results indicate that the circadian system of Neurospora can be expressed at the level of cellular mass formation, not just as the developmental conidiation rhythm.  相似文献   

17.
18.
In Neurospora crassa, a circadian rhythm of conidiation (asexual spore formation) can be seen on the surface of agar media. This rhythm has a period of 22 hr in constant darkness (D/D). Under constant illumination (L/L), no rhythm is visible and cultures show constant conidiation. However, here we report that strains with a mutation in the vivid (vvd) gene, previously shown to code for the photoreceptor involved in photo-adaptation, exhibit conidiation rhythms in L/L as well as in D/D. The period of the rhythm of vvd strains ranges between 6 and 21 hr in L/L, depending upon the intensity of the light, the carbon source, and the presence of other mutations. Temperature compensation of the period also depends on light intensity. Dark pulses given in L/L shift the phase of the rhythm. Shifts from L/L to D/D show unexpected after effects; i.e., the short period of a vvd strain in L/L gradually lengthens over 2–3 days in D/D. The rhythm in L/L requires the white collar (wc-1) gene, but not the frequency (frq) gene. FRQ protein shows no rhythm in L/L in a vvd strain. The conidiation rhythm in L/L in vvd is therefore driven by a FRQ-less oscillator (FLO).  相似文献   

19.
Huang G  Wang L  Liu Y 《The EMBO journal》2006,25(22):5349-5357
Circadian singularity behavior (also called suppression of circadian rhythms) is a phenomenon characterized by the abolishment of circadian rhythmicities by a critical stimulus. Here we demonstrate that both temperature step up and light pulse, stimuli that activate the expression of the Neurospora circadian clock gene frequency (frq), can trigger singularity behavior in this organism. The arrhythmicity is transient and is followed by the resumption of rhythm in randomly distributed phases. In addition, we show that induction of FRQ expression alone can trigger singularity behavior, indicating that FRQ is a state variable of the Neurospora circadian oscillator. Furthermore, mutations of frq lead to changes in the amplitude of FRQ oscillation, which determines the sensitivity of the clock to phase-resetting cues. Our results further suggest that the singularity behavior is due to the loss of rhythm in all cells. Together, these data suggest that the singularity behavior is due to a circadian negative feedback loop driven to a steady state after the critical treatment. After the initial arrhythmicity, cell populations are then desynchronized.  相似文献   

20.
We model theoretically the response of the widely studied circadian oscillator of Neurospora crassa to inactivation of the frq gene. The resulting organism has been termed "arrhythmic" under constant conditions. Under entrainment to periodic temperature cycles Roenneberg, Merrow and coworkers have shown that the phase angle at which spore formation occurs depends on the entrainment period, curiously even in the null frq mutants (frq9 and frq10). We show that such a response does not imply the presence of a self-sustained free-running oscillator. We derive a simple candidate model (a damped harmonic oscillator) for the null frq mutants that successfully reproduces the observed phase angle response. An endogenous period of 21 h for the damped harmonic oscillator coincides with the endogenous period of wild-type Neurospora. This suggests that the (noise driven) "residual system" present in the mutants may have a significant timekeeping role in the wild-type organism. Our model (with no change of parameters) was then used to investigate spore formation patterns under constant conditions and reproduces the corresponding experimental data of Aronson et al. (Proc. Natl. Acad. Sci. USA 91 (1994) 7683.)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号