首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
L P Deiss  J Chou    N Frenkel 《Journal of virology》1986,59(3):605-618
Newly replicated herpes simplex virus (HSV) DNA consists of head-to-tail concatemers which are cleaved to generate unit-length genomes bounded by the terminally reiterated a sequence. Constructed defective HSV vectors (amplicons) containing a viral DNA replication origin and the a sequence are similarly replicated into large concatemers which are cleaved at a sequences punctuating the junctions between adjacent repeat units, concurrent with the packaging of viral DNA into nucleocapsids. In the present study we tested the ability of seed amplicons containing specific deletions in the a sequence to become cleaved and packaged and hence be propagated in virus stocks. These studies revealed that two separate signals, located within the Ub and Uc elements of the a sequence, were essential for amplicon propagation. No derivative defective genomes were recovered from seed constructs which lacked the Uc signal. In contrast, propagation of seed constructs lacking the Ub signal resulted in the selection of defective genomes with novel junctions, containing specific insertions of a sequences derived from the helper virus DNA. Comparison of published sequences of concatemeric junctions of several herpesviruses supported a uniform mechanism for the cleavage-packaging process, involving the measurement from two highly conserved blocks of sequences (pac-1 and pac-2) which were homologous to the required Uc and Ub sequences. These results form the basis for general models for the mechanism of cleavage-packaging of herpesvirus DNA.  相似文献   

2.
To gain further insight on the function of the herpes simplex virus type 1 (HSV-1) packaging signal (a sequence), we constructed a recombinant virus containing a unique a sequence, which was flanked by two loxP sites in parallel orientation. The phenotype of this recombinant, named HSV-1 LaL, was studied in cell lines which either express or do not express Cre recombinase. Although LaL virus multiplication was only slightly reduced in standard cell lines, its growth was strongly inhibited in Cre-expressing cells. In these cells, a sequences were detected mostly in low-molecular-weight DNA circles, indicating that they had been excised from virus DNA by site-specific recombination. Deletion of the a sequences from the viral genome resulted in the accumulation of uncleaved replication intermediates, as observed by pulsed-field gel electrophoresis. B-type capsids also accumulated in these cells, as shown both by electron microscopy and by sucrose gradient sedimentation. Further examination of the status of a sequences in Cre-expressing cells indicated that high-level amplification of this sequence can occur in the absence of the cleavage-packaging process. Moreover, the amplified a signals in small circular DNA molecules remained uncleaved, indicating that these molecules were not able to efficiently interact with the cleavage-packaging machinery. The cleavage-packaging machinery and the structural proteins required to assemble virions were, however, functional in HSV-1 LaL-infected Cre-expressing cells, since this system could be used to package plasmid DNA harboring an origin of virus replication and one normal a signal. This is the first study in which accumulation both of uncleaved replication intermediates and of B capsids has been obtained in the presence of the full set of proteins required to package virus DNA.  相似文献   

3.
J Chou  B Roizman 《Journal of virology》1989,63(3):1059-1068
The terminal 500-base-pair alpha sequence of the herpes simplex virus 1 genome contains signals for cleavage (Pac1 and Pac2) of unit-length DNA molecules from concatemers in unique stretches of sequences designated Ub and Uc, respectively, and a cis site for cleavage designated DR1. We report that nuclear extracts from infected cells contain factors which form two DNA-virus-specific protein complexes with components of the a sequence. Purification of the factors forming the V2 complex yielded a protein with an apparent molecular weight of 82,000 binding to DNA in a non-sequence-specific manner. Addition of Mg2+ to the purified protein-DNA probe mixture resulted in exonucleolytic degradation of the DNA. The protein was identified as the virus-specific DNase with monoclonal antibody specific for the viral enzyme. The purification of the proteins forming the V4 complex yielded two proteins with molecular weights of greater than 250,000 and 140,000 corresponding to infected cell protein 1 and to an as yet unidentified protein, respectively. These proteins formed two DNA sequence-common bands with a number of DNA probes and one sequence-specific band with probes containing both Pac2 and DR1 but not with probes containing either site alone or Pac1 and DR1. Since the DNA probe containing Pac2 and DR1 inserted into viral genome or into amplicons induced specific cleavage of the DR1 sequence whereas the nonreactive probes failed to induce the cleavage, the formation of this sequence-specific DNA-protein complex is significant and may reflect a DNA-protein interaction essential for cleavage. The possible role of the proteins identified in this study for the cleavage-packaging of viral DNA into capsids is presented.  相似文献   

4.
Replication of human cytomegalovirus (HCMV) produces large DNA concatemers of head-to-tail-linked viral genomes that upon packaging into capsids are cut into unit-length genomes. The mechanisms underlying cleavage-packaging and the subsequent steps prior to nuclear egress of DNA-filled capsids are incompletely understood. The hitherto uncharacterized product of the essential HCMV UL52 gene was proposed to participate in these processes. To investigate the function of pUL52, we constructed a ΔUL52 mutant as well as a complementing cell line. We found that replication of viral DNA was not impaired in noncomplementing cells infected with the ΔUL52 virus, but viral concatemers remained uncleaved. Since the subnuclear localization of the known cleavage-packaging proteins pUL56, pUL89, and pUL104 was unchanged in ΔUL52-infected fibroblasts, pUL52 does not seem to act via these proteins. Electron microscopy studies revealed only B capsids in the nuclei of ΔUL52-infected cells, indicating that the mutant virus has a defect in encapsidation of viral DNA. Generation of recombinant HCMV genomes encoding epitope-tagged pUL52 versions showed that only the N-terminally tagged pUL52 supported viral growth, suggesting that the C terminus is crucial for its function. pUL52 was expressed as a 75-kDa protein with true late kinetics. It localized preferentially to the nuclei of infected cells and was found to enclose the replication compartments. Taken together, our results demonstrate an essential role for pUL52 in cleavage-packaging of HCMV DNA. Given its unique subnuclear localization, the function of pUL52 might be distinct from that of other cleavage-packaging proteins.  相似文献   

5.
Sequences present at the genomic termini of herpesviruses become linked during lytic-phase replication and provide the substrate for cleavage and packaging of unit length viral genomes. We have previously shown that homologs of the consensus herpesvirus cleavage-packaging signals, pac1 and pac2, are located at the left and right genomic termini of human herpesvirus 6 (HHV-6), respectively. Immediately adjacent to these elements are two distinct arrays of human telomeric repeat sequences (TRS). We now show that the unique sequence element formed at the junction of HHV-6B genome concatemers (pac2-pac1) is necessary and sufficient for virally mediated cleavage of plasmid DNAs containing the HHV-6B lytic-phase origin of DNA replication (oriLyt). The concatemeric junction sequence also allowed for the packaging of these plasmid molecules into intracellular nucleocapsids as well as mature, infectious viral particles. In addition, this element significantly enhanced the replication efficiency of oriLyt-containing plasmids in virally infected cells. Experiments revealed that the concatemeric junction sequence possesses an unusual, S1 nuclease-sensitive conformation (anisomorphic DNA), which might play a role in this apparent enhancement of DNA replication—although additional studies will be required to test this hypothesis. Finally, we also analyzed whether the presence of flanking viral TRS had any effect on the functional activity of the minimal concatemeric junction (pac2-pac1). These experiments revealed that the TRS motifs, either alone or in combination, had no effect on the efficiency of virally mediated DNA replication or DNA cleavage. Taken together, these data show that the cleavage and packaging of HHV-6 DNA are mediated by cis-acting consensus sequences similar to those found in other herpesviruses, and that these sequences also influence the efficiency of HHV-6 DNA replication. Since the adjacent TRS do not influence either viral cleavage and packaging or viral DNA replication, their function remains uncertain.  相似文献   

6.
Optimal lengths for DNAs encapsidated by Epstein-Barr virus.   总被引:6,自引:5,他引:1       下载免费PDF全文
T A Bloss  B Sugden 《Journal of virology》1994,68(12):8217-8222
We measured the efficiency of DNA packaging by Epstein-Barr virus (EBV) as a function of the length of the DNA being packaged. Plasmids that contain oriP (the origin of latent EBV DNA replication), oriLyt (the origin of lytic EBV DNA replication), the viral terminal repeats (necessary for cleavage and packaging by EBV), and various lengths of bacteriophage lambda DNA were introduced into EBV-positive cells. Upon induction of the resident EBV's lytic phase, introduced plasmids replicated as concatemers and were packaged. Plasmid-derived concatemers of DNA with certain lengths were found to predominate in isolated virion particles. We measured the distribution of lengths of plasmid concatemers found within cells supporting the lytic phase of the viral life cycle and found that this distribution differed from the distribution of lengths of concatemers found in mature virion particles. This finding indicates that the DNA packaged into mature virions represents a selected subset of those present in the cell during packaging. These observations together indicate that the length of DNA affects the efficiency with which that DNA is packaged by EBV. Finally, we measured the length of the packaged B95-8 viral DNA and found it to be approximately 165 kbp, or 10 kbp shorter than the originally predicted size for B95-8 based on its sequence. Together with the results of other studies, these findings indicate that the packaging of DNAs by EBV is dependent on two imprecisely recognized elements: the viral terminal repeats and the length of the DNA being packaged by the virus.  相似文献   

7.
Packaging of DNA into preformed capsids is a fundamental early event in the assembly of herpes simplex virus type 1 (HSV-1) virions. Replicated viral DNA genomes, in the form of complex branched concatemers, and unstable spherical precursor capsids termed procapsids are thought to be the substrates for the DNA-packaging reaction. In addition, seven viral proteins are required for packaging, although their individual functions are undefined. By analogy to well-characterized bacteriophage systems, the association of these proteins with various forms of capsids, including procapsids, might be expected to clarify their roles in the packaging process. While the HSV-1 UL6, UL15, UL25, and UL28 packaging proteins are known to associate with different forms of stable capsids, their association with procapsids has not been tested. Therefore, we isolated HSV-1 procapsids from infected cells and used Western blotting to identify the packaging proteins present. Procapsids contained UL15 and UL28 proteins; the levels of both proteins are diminished in more mature DNA-containing C-capsids. In contrast, UL6 protein levels were approximately the same in procapsids, B-capsids, and C-capsids. The amount of UL25 protein was reduced in procapsids relative to that in more mature B-capsids. Moreover, C-capsids contained the highest level of UL25 protein, 15-fold higher than that in procapsids. Our results support current hypotheses on HSV DNA packaging: (i) transient association of UL15 and UL28 proteins with maturing capsids is consistent with their proposed involvement in site-specific cleavage of the viral DNA (terminase activity); (ii) the UL6 protein may be an integral component of the capsid shell; and (iii) the UL25 protein may associate with capsids after scaffold loss and DNA packaging, sealing the DNA within capsids.  相似文献   

8.
9.
Although herpes simplex virus (HSV) 1 and human cytomegalovirus (CMV) differ remarkably in their biological characteristics and do not share nucleotide sequence homology, they have in common a genome structure that undergoes sequence isomerization of the long (L) and short (S) components. We have demonstrated that the similarity in their genome structures extends to the existence of an alpha sequence in the CMV genome as previously defined for the HSV genome. As such, the alpha sequence is predicted to participate as a cis-replication signal in four viral functions: (i) inversion, (ii) circularization, (iii) amplification, and (iv) cleavage and packaging of progeny viral DNA. We have constructed a chimeric HSV-CMV amplicon (herpesvirus cis replication functions carried on an Escherichia coli plasmid vector) substituting CMV DNA sequences for the HSV cleavage/packaging signal in a test of the ability of this CMV L-S junction sequence to provide the cis signal for cleavage/packaging in HSV 1-infected cells. We demonstrate that the alpha sequence of CMV DNA functions as a cleavage/packaging signal for HSV defective genomes. We show the structure of this sequence and provide a functional demonstration of cross complementation in replication signals which have been preserved over evolutionary time in these two widely divergent human herpesviruses.  相似文献   

10.
J R Smiley  J Duncan    M Howes 《Journal of virology》1990,64(10):5036-5050
We investigated the sequence requirements for the site-specific DNA cleavages and recombinational genome isomerization events driven by the terminal repeat or a sequence of herpes simplex virus type 1 KOS DNA by inserting a series of mutated a sequences into the thymidine kinase locus in the intact viral genome. Our results indicate that sequences located at both extremities of the a sequence contribute to these events. Deletions entering from the Ub side of the a sequence progressively reduced the frequency of DNA rearrangements, and further deletion of the internal DR2 repeat array had an additional inhibitory effect. This deletion series allowed us to map the pac1 site-specific DNA cleavage signal specifying the S-terminal cleavage to a sequence that is conserved among herpesvirus genomes. Constructs lacking this signal were unable to directly specify the S-terminal cleavage event but retained a reduced ability to give rise to S termini following recombination with intact a sequences. Deletions entering from the Uc side demonstrated that the copy of direct repeat 1 located adjacent to the Uc region plays an important role in the DNA rearrangements induced by the a sequence: mutants lacking this sequence displayed a reduced frequency of novel terminal and recombinational inversion fragments, and further deletions of the Uc region had a relatively minor additional effect. By using a construct in which site-specific cleavage was directed to heterologous DNA sequences, we found that the recombination events leading to genome segment inversion did not occur at the sites of DNA cleavage used by the cleavage-packaging machinery. This observation, coupled with the finding that completely nonoverlapping portions of the a sequence retained detectable recombinational activity, suggests that inter-a recombination does not occur by cleavage-ligation at a single specific site in herpes simplex virus type 1 strain KOS. The mutational sensitivity of the extremities of the a sequence leads us to hypothesize that the site-specific DNA breaks induced by the cleavage-packaging system stimulate the initiation of recombination.  相似文献   

11.
Earlier studies have shown that the U(L)31 protein is homogeneously distributed throughout the nucleus and cofractionates with nuclear matrix. We report the construction from an appropriate cosmid library a deletion mutant which replicates in rabbit skin cells carrying the U(L)31 gene under a late (gamma1) viral promoter. The mutant virus exhibits cytopathic effects and yields 0.01 to 0.1% of the yield of wild-type parent virus in noncomplementing cells but amounts of virus 10- to 1,000-fold higher than those recovered from the same cells 3 h after infection. Electron microscopic studies indicate the presence of small numbers of full capsids but a lack of enveloped virions. Viral DNA extracted from the cytoplasm of infected cells exhibits free termini indicating cleavage/packaging of viral DNA from concatemers for packaging into virions, but analyses of viral DNAs by pulsed-field electrophoresis indicate that at 16 h after infection, both the yields of viral DNA and cleavage of viral DNA for packaging are decreased. The repaired virus cannot be differentiated from the wild-type parent. These results suggest the possibility that U(L)31 protein forms a network to enable the anchorage of viral products for the synthesis and/or packaging of viral DNA into virions.  相似文献   

12.
Yang K  Wills EG  Baines JD 《Journal of virology》2011,85(22):11972-11980
Herpesvirus genomic DNA is cleaved from concatemers that accumulate in infected cell nuclei. Genomic DNA is inserted into preassembled capsids through a unique portal vertex. Extensive analyses of viral mutants have indicated that intact capsids, the portal vertex, and all components of a tripartite terminase enzyme are required to both cleave and package viral DNA, suggesting that DNA cleavage and packaging are inextricably linked. Because the processes have not been functionally separable, it has been difficult to parse the roles of individual proteins in the DNA cleavage/packaging reaction. In the present study, a virus bearing the deletion of codons 400 to 420 of U(L)15, encoding a terminase component, was analyzed. This virus, designated vJB27, failed to replicate on noncomplementing cells but cleaved concatemeric DNA to ca. 35 to 98% of wild-type levels. No DNA cleavage was detected in cells infected with a U(L)15-null virus or a virus lacking U(L)15 codons 383 to 385, comprising a motif proposed to couple ATP hydrolysis to DNA translocation. The amount of vJB27 DNA protected from DNase I digestion was reduced compared to the wild-type virus by 6.5- to 200-fold, depending on the DNA fragment analyzed, thus indicating a profound defect in DNA packaging. Capsids containing viral DNA were not detected in vJB27-infected cells, as determined by electron microscopy. These data suggest that pU(L)15 plays an essential role in DNA translocation into the capsid and indicate that this function is separable from its role in DNA cleavage.  相似文献   

13.
14.
Previous reports (H. Delius and J. B. Clements, J. Gen. Virol. 33:125-134, 1976; G. S. Hayward, R. J. Jacob, S. C. Wadsworth, and B. Roizman, Proc. Natl. Acad. Sci. U.S.A. 72:4243-4247, 1975; B. Roizman, G. S. Hayward, R. Jacob, S. W. Wadsworth, and R. W. Honess, Excerpta Med. Int. Congr. Ser. 2:188-198, 1974) have shown that herpes simplex virus DNA extracted from virions accumulating in the cytoplasm of infected cells consists of four populations of linear molecules differing in the orientation of the covalently linked large (L) and small (S) components relative to each other. Together, these four isomeric arrangements of viral DNA display four different termini and four different L-S component junctions. In the studies reported in this paper, we analyzed with restriction endonucleases the newly replicated viral DNA shortly after the onset of viral DNA synthesis, the progeny DNA accumulating in the nuclei late in infection, and rapidly sedimenting DNA present in nuclei of infected cells at 8 h after infection. In each instance the nuclear viral DNA contained a decreased concentration of all four terminal fragments and an increase in the concentration of fragments spanning the junction of L and S components relative to the concentration of other DNA fragments. The results are consistent with the hypothesis that the viral DNA accumulating in the nuclei consists of head-to-tail concatemers arising from the replication of DNA by a rolling-circle mechanism. A model is presented for generation of all four isomeric arrangements of herpes simplex virus DNA from one arrangement based on excision and repair of unit length DNA from head-to-tail concatemers and known features of the sequence arrangement of viral DNA.  相似文献   

15.
The linear virion Epstein-Barr virus (EBV) DNA is terminated at both ends by a variable number of direct, tandemly arranged terminal repeats (TRs) which are approximately 500 bp in size The number of TRs at each terminus can vary. After infection of host cells, the EBV DNA circularizes via the TRs by an unknown mechanism, and replication of the viral DNA during the lytic phase of the EBV life cycle leads to large DNA concatemers which need to be cleaved into virion DNA units, eventually. This cleavage event occurs at an unknown locus within the TRs of EBV, which are the cis-acting elements essential for cleavage of the concatemers and encapsidation of the virion DNA. To investigate the mechanism of DNA processing during genome circularization and cleavage of concatemeric DNA, the genomic termini of EBV were cloned, sequenced, and analyzed by direct labeling of the virion DNA. Both termini ended with identical 11-bp elements; the right end has acquired an additional 9-bp stretch that seemed to originate from the leftmost unique sequences. The left terminus is blunt, whereas the right terminus appears to have a 3' single-base extension. In a transient packaging assay, a single terminal repeat was found to be sufficient for encapsidation of plasmid DNA, and mutagenesis of the TR element defined a region of 159 bp, including the 11-bp element, which is essential for packaging. These results indicate that the genomic termini of EBV are not generated by a simple cut of a hypothetical terminase. The mechanism for cleavage of concatemers seems to involve recombination events.  相似文献   

16.
It has been shown earlier that the reiterated regions TRS and IRS bracketing the Us segment of herpes simplex virus type 1 Angelotti DNA are heterogeneous in size by stepwise insertion of one to six copies of a 550-base-pair nucleotide sequence. Considerably higher amplification of this sequence was observed in defective viral DNA: up to 14 copies were detected to be inserted in the repeat units of a major class of defective herpes simplex virus type 1 Angelotti DNA, dDNA1, which originated from noncontiguous sites located in UL and the inverted repeats of the S component of the parental genome. Physical maps were established for the cleavage sites of KpnI, PstI, XhoI, and BamHI restriction endonucleases on the repeats of dDNA1. The map position of the insertion sequence was determined. It was demonstrated that the amplified inserts were not distributed at random among or within the repeats. A given total population of dDNA1 molecules consisted of different homopolymers, each of which contained a constant number of inserts in all of its repeats. Assuming that a rolling-circle mechanism is involved in the generation of full-length defective herpes simplex virus type 1 Angelotti DNA from single repeat units, these data suggest that the 550-base-pair sequence is amplified in the repeats before the replication process.  相似文献   

17.
Herpesviruses have large double-stranded linear DNA genomes that are formed by site-specific cleavage from complex concatemeric intermediates. In this process, only one of the two genomic ends are formed on the concatemer. Although the mechanism underlying this asymmetry is not known, one explanation is that single genomes are cleaved off of concatemer ends in a preferred direction. This implies that cis elements control the direction of packaging. Two highly conserved cis elements named pac1 and pac2 lie near opposite ends of herpesvirus genomes and are important for cleavage and packaging. By comparison of published reports and by analysis of two additional herpesviruses, we found that pac2 elements lie near the ends formed on replicative concatemers of four herpesviruses: herpes simplex virus type 1, equine herpesvirus 1, guinea pig cytomegalovirus, and murine cytomegalovirus. Formation of pac2 ends on concatemers depended on terminal cis sequences, since ectopic cleavage sites engineered into the murine cytomegalovirus genome mediated formation of pac2 ends on concatemers regardless of the orientation of their insertion. These findings are consistent with a model in which pac2 elements at concatemer ends impart a directionality to concatemer packaging by binding proteins that initiate insertion of concatemer ends into empty capsids.  相似文献   

18.
Role of the UL25 protein in herpes simplex virus DNA encapsidation   总被引:1,自引:0,他引:1       下载免费PDF全文
The herpes simplex virus protein UL25 attaches to the external vertices of herpes simplex virus type 1 capsids and is required for the stable packaging of viral DNA. To define regions of the protein important for viral replication and capsid attachment, the 580-amino-acid UL25 open reading frame was disrupted by transposon mutagenesis. The UL25 mutants were assayed for complementation of a UL25 deletion virus, and in vitro-synthesized protein was tested for binding to UL25-deficient capsids. Of the 11 mutants analyzed, 4 did not complement growth of the UL25 deletion mutant, and analysis of these and additional mutants in the capsid-binding assay demonstrated that UL25 amino acids 1 to 50 were sufficient for capsid binding. Several UL25 mutations were transferred into recombinant viruses to analyze the effect of the mutations on UL25 capsid binding and on DNA cleavage and packaging. Studies of these mutants demonstrated that amino acids 1 to 50 of UL25 are essential for its stable interaction with capsids and that the C terminus is essential for DNA packaging and the production of infectious virus through its interactions with other viral packaging or tegument proteins. Analysis of viral DNA cleavage demonstrated that in the absence of a functional UL25 protein, aberrant cleavage takes place at the unique short end of the viral genome, resulting in truncated viral genomes that are not retained in capsids. Based on these observations, we propose a model where UL25 is required for the formation of DNA-containing capsids by acting to stabilize capsids that contain full-length viral genomes.  相似文献   

19.
A recombinant plasmid harboring both genomic termini of tupaia herpesvirus (THV) DNA was characterized by restriction enzyme analysis and by determination of the nucleotide sequence. A unique NotI cleavage site was found that is located approximately 19 base pairs upstream of the THV terminal junction. THV DNA fragments from virion DNA were analyzed by using the same restriction enzymes as for the recombinant plasmid. The comparative fine mapping of virion THV DNA revealed heterogeneous molecules of variable lengths with the NotI cleavage site conserved. A number of short direct and inverted repeats and palindromes were found surrounding the THV terminal joint. The THV repetitive sequences were compared with the repeats reported for the DNA termini of herpes simplex virus, varicella-zoster virus, and Epstein-Barr virus and are discussed in respect to signals for a site-specific endonuclease required for packaging.  相似文献   

20.
We have constructed and evaluated the utility of a helper-dependent virus vector system that is derived from Human Cytomegalovirus (HCMV). This vector is based on the herpes simplex virus (HSV) amplicon system and contains the HCMV orthologs of the two cis-acting functions required for replication and packaging of HSV genomes, the complex HCMV viral DNA replication origin (oriLyt), and the cleavage packaging signal (the a sequence). The HCMV amplicon vector replicated independently and was packaged into infectious virions in the presence of helper virus. This vector is capable of delivering and expressing foreign genes in infected cells including progenitor cells such as human CD34+ cells. Packaged defective viral genomes were passaged serially in fibroblasts and could be detected at passage 3; however, the copy number appeared to diminish upon serial passage. The HCMV amplicon offers an alternative vector strategy useful for gene(s) delivery to cells of the hematopoietic lineage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号