首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The dynamical nature of the binding of a substrate surrogate to lactate dehydrogenase is examined on the nanoseconds to milliseconds timescale by laser-induced temperature-jump relaxation spectroscopy. Fluorescence emission of the nicotinamide group of bound NADH is used to define the pathway and kinetics of substrate binding. Assignment of specific kinetic states and elucidation of their structures are accomplished using isotope edited infrared absorption spectroscopy. Such studies are poised to yield a detailed picture of the coupling of protein dynamics to function.  相似文献   

2.
We investigated the effect of substrate binding on the mechanical stability of mouse dihydrofolate reductase using single-molecule force spectroscopy by atomic force microscopy. We find that under mechanical forces dihydrofolate reductase unfolds via a metastable intermediate with lifetimes on the millisecond timescale. Based on the measured length increase of approximately 22 nm we suggest a structure for this intermediate with intact substrate binding sites. In the presence of the substrate analog methotrexate and the cofactor NADPH lifetimes of this intermediate are increased by up to a factor of two. Comparing mechanical and thermodynamic stabilization effects of substrate binding suggests mechanical stability is dominated by local interactions within the protein structure. These experiments demonstrate that protein mechanics can be used to probe the substrate binding status of an enzyme.  相似文献   

3.
The application of high-resolution 1H-NMR spectroscopy to monitor substrate and product time dependencies in progress curve enzyme kinetics is described with beta-glucosidase-catalyzed hydrolyses of cellobiose analogues as examples. It is demonstrated that inhibition patterns, relative binding specificities and catalytic rates can be inferred from competition experiments with two or more substrates. It could be concluded from competition experiments that substrates which form less stable enzyme-substrate complexes than methyl beta-cellobioside are hydrolyzed faster than this reference substrate when they are the sole substrate, due to a lower activation energy in the catalytic step, but that they are hydrolyzed slower than the reference compound in direct competition, due to the formation of the less stable enzyme-substrate complex in the binding step.  相似文献   

4.
The human norepinephrine (NE) transporter (hNET) attenuates neuronal signaling by rapid NE clearance from the synaptic cleft, and NET is a target for cocaine and amphetamines as well as therapeutics for depression, obsessive-compulsive disorder, and post-traumatic stress disorder. In spite of its central importance in the nervous system, little is known about how NET substrates, such as NE, 1-methyl-4-tetrahydropyridinium (MPP+), or amphetamine, interact with NET at the molecular level. Nor do we understand the mechanisms behind the transport rate. Previously we introduced a fluorescent substrate similar to MPP+, which allowed separate and simultaneous binding and transport measurement (Schwartz, J. W., Blakely, R. D., and DeFelice, L. J. (2003) J. Biol. Chem. 278, 9768-9777). Here we use this substrate, 4-(4-(dimethylamino)styrl)-N-methyl-pyridinium (ASP+), in combination with green fluorescent protein-tagged hNETs to measure substrate-transporter stoichiometry and substrate binding kinetics. Calibrated confocal microscopy and fluorescence correlation spectroscopy reveal that hNETs, which are homomultimers, bind one substrate molecule per transporter subunit. Substrate residence at the transporter, obtained from rapid on-off kinetics revealed in fluorescence correlation spectroscopy, is 526 micros. Substrate residence obtained by infinite dilution is 1000 times slower. This novel examination of substrate-transporter kinetics indicates that a single ASP+ molecule binds and unbinds thousands of times before being transported or ultimately dissociated from hNET. Calibrated fluorescent images combined with mass spectroscopy give a transport rate of 0.06 ASP+/hNET-protein/s, thus 36,000 on-off binding events (and 36 actual departures) occur for one transport event. Therefore binding has a low probability of resulting in transport. We interpret these data to mean that inefficient binding could contribute to slow transport rates.  相似文献   

5.
SecB is a homotetrameric, cytosolic chaperone that forms part of the protein translocation machinery in Escherichia coli. We have investigated the bound-state conformation of a model protein substrate of SecB, bovine pancreatic trypsin inhibitor (BPTI) as well as the conformation of SecB itself by using proximity relationships based on site-directed spin-labeling and pyrene fluorescence methods. BPTI is a 58-residue protein and contains three disulfide groups between residues 5 and 55, 14 and 38, as well as 30 and 51. Mutants of BPTI that contained only a single disulfide were reduced, and the free cysteines were labeled with either thiol-specific spin labels or pyrene maleimide. The relative proximity of the labeled residues was studied using either electron spin resonance spectroscopy or fluorescence spectroscopy. The data suggest that SecB binds a collapsed coil of reduced unfolded BPTI, which then undergoes a structural rearrangement to a more extended state upon binding to SecB. Binding occurs at multiple sites on the substrate, and the binding site on each SecB monomer accommodates less than 21 substrate residues. In addition, we have labeled four solvent-accessible cysteine residues in the SecB tetramer and have investigated their relative spatial arrangement in the presence and absence of the substrate protein. The electron spin resonance data suggest that these cysteine residues are in close proximity (15 A) when no substrate protein is bound but move away to a distance of greater than 20 A when SecB binds substrate. This is the first direct evidence of a conformational change in SecB upon binding of a substrate protein.  相似文献   

6.
The lactose transport protein (LacS) from Streptococcus thermophilus bearing a single cysteine mutation, K373C, within the putative interhelix loop 10-11 has been overexpressed in native membranes. Cross-polarization magic-angle spinning nuclear magnetic resonance spectroscopy (NMR) could selectively distinguish binding of (13)C-labeled substrate to just 50-60 nmol of LacS(K373C) in the native fluid membranes. Nitroxide electron spin-label at the K373C location was essentially immobile on the time scale of both conventional electron spin resonance spectroscopy (ESR) (<10(-8)s) and saturation-transfer ESR (<10(-3)s), under the same conditions as used in the NMR studies. The presence of the nitroxide spin-label effectively obscured the high-resolution NMR signal from bound substrate, even though (13)C-labeled substrate was shown to be within the binding center of the protein. The interhelix loop 10-11 is concluded to be in reasonably close proximity to the substrate binding site(s) of LacS (<15 A), and the loop region is expected to penetrate between the transmembrane segments of the protein that are involved in the translocation process.  相似文献   

7.
Small heat shock proteins (sHSPs), as one important subclass of molecular chaperones, are able to specifically bind to denatured substrate proteins rather than to native proteins, of which their substrate-binding sites are far from clear. Our previous study showed an overlapping nature of the sites for both hydrophobic probe 1,1'-Bi(4-anilino)naphthalene-5,5'-disulfonic acid (bis-ANS) binding and substrate binding in Mycobacterium tuberculosis Hsp16.3 [X. Fu, H. Zhang, X. Zhang, Y. Cao, W. Jiao, C. Liu, Y. Song, A. Abulimiti, Z. Chang, A dual role for the N-terminal region of M. tuberculosis Hsp16.3 in self-oligomerization and binding denaturing substrate proteins, J. Biol. Chem. 280 (2005) 6337-6348]. In this work, two bis-ANS binding sites in Hsp16.3 were identified by a combined use of reverse phase HPLC, mass spectroscopy and N-terminal protein sequencing. One site is in the N-terminal region and the other one in the N-terminus of alpha-crystallin domain, both of which are similar to those identified so far in sHSPs. However, accumulating data suggest that these two sites differentially function in binding substrate proteins. With regard to this difference, we proposed a two-step mechanism by which Hsp16.3 binds substrate proteins, i.e., substrate proteins are recognized and initially captured by the N-terminal region that is exposed in the dissociated Hsp16.3 oligomers, and then the captured substrate proteins are further stabilized in the complex by the subsequent binding of the N-terminus of alpha-crystallin domain.  相似文献   

8.
Rat and human short/branched chain acyl-CoA dehydrogenases exhibit key differences in substrate specificity despite an overall amino acid identity of 85% between them. Rat short/branched chain acyl-CoA dehydrogenases (SBCAD) are more active toward substrates with longer carbon side chains than human SBCAD, whereas the human enzyme utilizes substrates with longer primary carbon chains. The mechanism underlying this difference in substrate specificity was investigated with a novel surface plasmon resonance assay combined with absorbance and circular dichroism spectroscopy, and kinetics analysis of wild type SBCADs and mutants with altered amino acid residues in the substrate binding pocket. Results show that a relatively few amino acid residues are critical for determining the difference in substrate specificity seen between the human and rat enzymes and that alteration of these residues influences different portions of the enzyme mechanism. Molecular modeling of the SBCAD structure suggests that position 104 at the bottom of the substrate binding pocket is important in determining the length of the primary carbon chain that can be accommodated. Conformational changes caused by alteration of residues at positions 105 and 177 directly affect the rate of electron transfer in the dehydrogenation reactions, and are likely transmitted from the bottom of the substrate binding pocket to beta-sheet 3. Differences between the rat and human enzyme at positions 383, 222, and 220 alter substrate specificity without affecting substrate binding. Modeling predicts that these residues combine to determine the distance between the flavin ring of FAD and the catalytic base, without changing the opening of the substrate binding pocket.  相似文献   

9.
Chook YM  Jung A  Rosen MK  Blobel G 《Biochemistry》2002,41(22):6955-6966
Karyopherinbeta2 (Kapbeta2) imports a variety of mRNA binding proteins into the nucleus. Release of import substrates in the nucleus involves formation of a high-affinity Kapbeta2-RanGTP complex and concomitant dissociation of import substrates. The crystal structure of the Kapbeta2-RanGppNHp complex shows that Ran binds in the Kapbeta2 N-terminal arch and substrate most likely binds its C-terminal arch. The structure suggested a mechanism for Ran-mediated substrate dissociation where a long internal acidic loop in Kapbeta2 transmits structural information between the GTPase and substrate sites, leading to displacement of substrate by the loop when Ran is bound. To study the molecular mechanism of substrate dissociation, we have cleaved the acidic loop of Kapbeta2 proteolytically (cl-Kapbeta2) and also constructed a mutant of Kapbeta2 with a truncated loop (TL-Kapbeta2). Both modified Kapbeta2s are unable to undergo Ran-mediated substrate dissociation. We have also mapped the boundaries of the Kapbeta2 binding site of substrate mRNA binding protein A1 using a widely applicable method employing NMR spectroscopy. This has allowed design of reagents to quantitate the affinities of the Kapbeta2 proteins for Ran and substrate. cl-Kapbeta2, TL-Kapbeta2, and native Kapbeta2 have comparable affinities for both RanGppNHp and import substrates, indicating that perturbation of the loop has not altered the strength of binary Kapbeta2-Ran or Kapbeta2-substrate interactions. The TL-Kapbeta2 mutant also binds RanGppNHp and substrate simultaneously to form a ternary complex, indicating that in addition to the loss of coupling between Ran binding and substrate dissociation, the two ligand sites on Kapbeta2 are spatially distinct. The uncoupling of Ran binding and substrate dissociation in the TL-Kapbeta2 mutant is further evident in significant loss of Ran-mediated nuclear uptake of fluorescent substrate in digitonin-permeabilized HeLa cells. These results support our previously proposed GTPase-mediated Kapbeta2-substrate dissociation mechanism where the acidic loop of Kapbeta2 physically couples distinct Ran and substrate binding sites.  相似文献   

10.
The substrate binding site of pig mitochondrial malate dehydrogenase was characterized using complexes of the enzyme with the substrate analogue 8-hydroxypyrene-1,3,6-trisulfonate with and without the addition of coenzymes. The rotational mobility of the fluorescent dye within the binding site was examined with the aid of a multi-frequency phase-fluorimeter. Together with absorption, circular dichroism and fluorescence spectroscopy, conformational changes of the substrate binding site could be defined. The dye was generally found to be immobilized in the binding site. Addition of NADH to the binary complex caused strengthening of a hydrogen bond and further loss of mobility, whereas NAD enlarged the space available for motion of the dye with concomitant loss of the hydrogen bridge.  相似文献   

11.
The thermodynamics of binding of unfolded polypeptides to the chaperone SecB was investigated in vitro by isothermal titration calorimetry and fluorescence spectroscopy. The substrates were reduced and carboxamidomethylated forms of RNase A, BPTI, and alpha-lactalbumin. SecB binds both fully unfolded RNase A and BPTI as well as compact, partially folded disulfide intermediates of alpha-lactalbumin, which have 40-60% of native secondary structure. The heat capacity changes observed on binding the reduced and carboxamidomethylated forms of alpha-lactalbumin, BPTI, and RNase A were found to be -0.10, -0.29, and -0.41 kcal mol(-1) K(-1), respectively, and suggest that between 7 and 29 residues are buried upon substrate binding to SecB. In all cases, binding occurs with a stoichiometry of one polypeptide chain per monomer of SecB. There is no evidence for two separate types of binding sites for positively charged and hydrophobic ligands. Spectroscopic and proteolysis protection studies of the binding of SecB to poly-L-Lys show that binding of highly positively charged peptide ligands to negatively charged SecB leads to charge neutralization and subsequent aggregation of SecB. The data are consistent with a model where SecB binds substrate molecules at an exposed hydrophobic cleft. SecB aggregation in the absence of substrate is prevented by electrostatic repulsion between negatively charged SecB tetramers.  相似文献   

12.
The interaction of aromatic donor molecules with lactoperoxidase (LPO) was studied using 1H-NMR and optical difference spectroscopy techniques. pH dependence of substrate proton resonance line-widths indicated that the binding was facilitated by protonation of an amino acid residue (with pKa of 6.1) which is presumably a distal histidine. Dissociation constants evaluated from both optical difference spectroscopy and 1H-NMR relaxation measurements were found to be an order of magnitude larger than those for binding to horse radish peroxidase (HRP), indicating relatively weak binding of the donors to LPO. The dissociation constants evaluated in presence of excess of I- and SCN- showed a considerable increase in their values, indicating that the iodide and thiocyanate ions compete for binding at the same site. The dissociation constant of the substrate binding was, however, not affected by cyanide binding to the ferric centre of LPO. All these results indicate that the organic substrates bind to LPO away from the ferric center. Comparison of the dissociation constants between the different substrates suggested that hydrogen bonding of the donors with the distal histidine amino acid, and hydrophobic interaction between the donors and the active site contribute significantly towards the associating forces. Free energy, entropy and enthalpy changes associated with the LPO-substrate equilibrium have been evaluated. These thermodynamic parameters were found to be all negative and relatively low compared to those for binding to HRP. The distances of the substrate protons from the ferric center were found to be in the range 9.4-11.1 A which are 2-3 A larger than those reported for the HRP-substrate complexes. These structural informations suggest that the heme in LPO may be more deeply buried in the heme crevice than that in the HRP.  相似文献   

13.
Stauffer ME  Young JK  Evans JN 《Biochemistry》2001,40(13):3951-3957
5-Enolpyruvylshikimate-3-phosphate (EPSP) synthase catalyzes the transfer of the enolpyruvyl moiety from phosphoenolpyruvate (PEP) to shikimate-3-phosphate (S3P). Mutagenesis and X-ray crystallography data suggest that the active site of the enzyme is in the cleft between its two globular domains; however, they have not defined which residues are responsible for substrate binding and catalysis. Here we attempt to establish the binding of the substrate S3P to the isolated N-terminal domain of EPSP synthase using a combination of NMR spectroscopy and isothermal titration calorimetry. Our experimental results indicate that there is a saturable and stable conformational change in the isolated N-terminal domain upon S3P binding and that the chemical environment of the S3P phosphorus when bound to the isolated domain is very similar to that of S3P bound to EPSP synthase. We also conclude that most of the free energy of S3P binding to EPSP synthase is contributed by the N-terminal domain.  相似文献   

14.
In order to probe the active site of the heme protein indoleamine 2,3-dioxygenase, magnetic and natural circular dichroism (MCD and CD) and electron paramagnetic resonance (EPR) studies of the substrate (L-tryptophan)-free and substrate-bound enzyme with and without various exogenous ligands have been carried out. The MCD spectra of the ferric and ferrous derivatives are similar to those of the analogous myoglobin and horseradish peroxidase species. This provides strong support for histidine imidazole as the fifth ligand to the heme iron of indoleamine 2,3-dioxygenase. The substrate-free native ferric enzyme exhibits predominantly high-spin EPR signals (g perpendicular = 6, g parallel = 2) along with weak low-spin signals (g perpendicular = 2.86, 2.28, 1.60); similar EPR, spin-state and MCD features are found for the benzimidazole adduct of ferric myoglobin. This suggests that the substrate-free ferric enzyme has a sterically hindered histidine imidazole nitrogen donor sixth ligand. Upon substrate binding, noticeable MCD and EPR spectral changes are detected that are indicative of an increased low spin content (from 30 to over 70% at ambient temperature). Concomitantly, new low spin EPR signals (g = 2.53, 2.18, 1.86) and MCD features characteristic of hydroxide complexes of histidine-ligated heme proteins appear. For almost all of the other ferric and ferrous derivatives, only small substrate effects are observed with MCD spectroscopy, while substantial substrate effects are seen with CD spectroscopy. Thus, changes in the heme coordination structure of the ferric enzyme and in the protein conformation at the active site of the ferric and ferrous enzyme are induced by substrate binding. The observed substrate effects on the ferric enzyme may correlate with the previously observed kinetic substrate inhibition of indoleamine 2,3-dioxygenase activity, while such effects on the ferrous enzyme suggest the possibility that the substrate is activated during turnover.  相似文献   

15.
The substrate induced conformational change of glutamine binding protein isolated from E. coli has been studied by high resolution proton magnetic resonance spectroscopy. The addition of L-glutamine to a protein solution caused a marked change in the proton magnetic resonance spectrum. The chemical shifts of several resonances were considerably different for the free and complexed protein. The line width of the methyl protons decreased considerably with the addition of substrate indicating that the environment of a sizeable percentage of the methyl groups is different. The kinetics of binding as well as a possible mode of action of the binding proteins will be discussed.  相似文献   

16.
Chen Z  Wang LH  Schelvis JP 《Biochemistry》2003,42(9):2542-2551
Thromboxane synthase is a hemethiolate enzyme that catalyzes the isomerization of prostaglandin H2 to thromboxane A2. We report the first resonance Raman (RR) spectra of recombinant human thromboxane synthase (TXAS) in both the presence and the absence of substrate analogues U44069 and U46619. The resting enzyme and its U44069 complex are found to have a 6-coordinate, low spin (6c/ls) heme, in agreement with earlier experiments. The U46619-bound enzyme is detected as a 6c/ls heme too, which is in contradiction with a previous conclusion based on absorption difference spectroscopy. Two new vibrations at 368 and 424 cm(-1) are observed upon binding of the substrate analogues in the heme pocket and are assigned to the second propionate and vinyl bending modes, respectively. We interpret the changes in these vibrational modes as the disruption of the protein environment and the hydrogen-bonding network of one of the propionate groups when the substrate analogues enter the heme pocket. We use carbocyclic thromboxane A2 (CTA2) to convert the TXAS heme cofactor to its 5-coordinate, high spin (5c/hs) form, as is confirmed by optical and RR spectroscopy. In this 5c/hs state of the enzyme, the Fe-S stretching frequency is determined at 350 cm(-1) with excitation at 356.4 nm. This assignment is supported by comparison to the spectrum of resting enzyme excited at 356.4 nm and by exciting at different wavelengths. Implications of our findings for substrate binding and the catalytic mechanism of TXAS will be discussed.  相似文献   

17.
Drosophila P-element somatic inhibitor protein (PSI) regulates splicing of the P-element transposase pre-mRNA by binding a pseudo-splice site upstream of the authentic splice site using four tandem KH-type RNA binding motifs. While the binding domains and specificity of PSI have been established, little is known about the contributions of each PSI KH domain to overall protein stability and RNA binding affinity. Using a construct containing only the RNA binding domain of PSI (PSI-KH03), we introduced a physiologically relevant point mutation into each KH domain of PSI individually and measured stability and RNA binding affinity of the resulting mutant proteins. Although secondary structure, as measured by circular dichroism spectroscopy, is only subtly changed for each mutant protein relative to wild type, RNA binding affinity is reduced in each case. Mutations in the second or third KH domains of the protein are significantly more deleterious to substrate recognition than mutation of the outer (first and fourth) domains. These results show that despite the ability of a single KH domain to bind RNA in some systems, PSI requires multiple tandem KH domains for specific and high-affinity recognition of substrate RNA.  相似文献   

18.
Saturation transfer difference NMR spectroscopy is used to study non-covalent interactions between four different glycostructure transforming enzymes and selected substrates and products. Resulting binding patterns represent a molecular basis of specific binding between ligands and biocatalysts. Substrate and product binding to Aspergillus fumigatus glycosidase and to Candida tenuis xylose reductase are determined under binding-only conditions. Measurement of STD effects in substrates and products over the course of enzymatic conversion provides additional information about ligand binding during reaction. Influences of co-substrates and co-enzymes in substrate binding are determined for Schizophyllum commune trehalose phosphorylase and C. tenuis xylose reductase, respectively. Differences between ligand binding to wild type enzyme and a corresponding mutant enzyme are shown for Corynebacterium callunae starch phosphorylase and its His-334-->Gly mutant. The resulting binding patterns are discussed with respect to the possibility that ligands do not only bind in the productive mode.  相似文献   

19.
Nuclear magnetic resonance (NMR) observation of the uniformly (2) H,(15) N-labeled stringent 33-kDa substrate protein rhodanese in a productive complex with the uniformly (14) N-labeled 400 kDa single-ring version of the E. coli chaperonin GroEL, SR1, was achieved with the use of transverse relaxation-optimized spectroscopy, cross-correlated relaxation-induced polarization transfer, and cross-correlated relaxation-enhanced polarization transfer. To characterize the NMR-observable parts of the bound rhodanese, coherence buildup rates by different magnetization transfer mechanisms were measured, and effects of covalent crosslinking of the rhodanese to the apical binding surface of SR1 were investigated. The results indicate that the NMR-observable parts of the SR1-bound rhodanese are involved in intracomplex rate processes, which are not related to binding and release of the substrate protein from the SR1 binding surface. Rather, they correspond to mobility of the stably bound substrate, which thus appears to include flexibly disordered polypeptide segments devoid of long-lived secondary structures or tertiary folds, as was previously observed also with the smaller substrate human dihydrofolate reductase.  相似文献   

20.
Gulotta M  Deng H  Deng H  Dyer RB  Callender RH 《Biochemistry》2002,41(10):3353-3363
The motions of key residues at the substrate binding site of lactate dehydrogenase (LDH) were probed on the 10 ns to 10 ms time scale using laser-induced temperature-jump relaxation spectroscopy employing both UV fluorescence and isotope-edited IR absorption spectroscopy as structural probes. The dynamics of the mobile loop, which closes over the active site and is important for catalysis and binding, were characterized by studies of the inhibitor oxamate binding to the LDH/NADH binary complex monitoring the changes in emission of bound NADH. The bound NAD-pyruvate adduct, whose pyruvate moiety likely interacts with the same residues that interact with pyruvate in its ternary complex with LDH, served as a probe for any relative motions of active site residues against the substrate. The frequencies of its C=O stretch and -COO(-) antisymmetric stretch shift substantially should any relative motion of the polar moieties at the active site (His-195, Asp-168, Arg-109, and Arg-171) occur. The dynamics associated with loop closure are observed to involve several steps with motions from 1 to 300 microms. Apart from the "melting" of a few residues on the protein's surface, no kinetics were observed on any time scale in experiments of the bound NAD-pyr adduct although the measurements were made with a high degree of accuracy, even for final temperatures close to the unfolding transition of the protein. This is contrary to simple physical considerations and models. These results show that, once a productive protein/substrate complex is formed, the binding pocket is very rigid with very little, if any, motion apart from the mobile loop. The results also show that loop opening involves concomitant movement of the substrate out of the binding pocket.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号