首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Although it is assumed from in vitro experiments that the generation of reactive oxygen species such as the singlet oxygen (1O2), the hydroxyl radical, and the superoxide anion are responsible for chromium(VI) toxicity/carcinogenicity, no electron spin resonance (ESR) evidence for the generation of 1O2 in vivo has been reported. In this study, we have employed an ESR spin-trapping technique with 2,2,6,6-tetramethyl-4-piperidone (TMPD), a specific 1O2 trap, to detect 1O2 in blood. The ESR spectrum of the spin adduct observed in the blood of mice given 4.8 mmol Cr(VI)/kg body weight exhibited the 1:1:1 intensity pattern of three lines with a hyperfine coupling constant A(N) = 16.08 G and a g-value = 2.0066. The concentration of spin adduct detected in the blood was 1.46 microM (0.1% of total Cr concentration). The adduct production was inhibited by the addition of specific 1O2 scavengers such as 1,4-diazabicyclo[2.2.2]octane and sodium azide to the blood. The results indicate that the spin adduct is nitroxide produced by the reaction of 1O2 with TMPD. This is the first report of ESR evidence for the in vivo generation of 1O2 in mammals by Cr(VI).  相似文献   

2.
Chromium (VI) compounds are widely recognized as human carcinogens. Extensive studies in vitro and in model systems indicate that the reactive intermediate, Cr (V), generated by cellular reduction of Cr (VI), is likely the candidate for the ultimate carcinogenic form of chromium compounds. Here we review our current understanding of the in vivo reduction of Cr (VI) and its related free radical generation. Our results demonstrate that Cr (V) is indeed generated from the reduction of Cr (VI) in vivo, and that Cr (V) thus formed can mediate the generation of free radicals. Cr (V) and its related free radicals are very likely to be involved in the mechanism of Cr (VI)induced toxicity and carcinogenesis. These studies also illustrate that in vivo EPR spectroscopy and magnetic resonance imaging can be very useful and powerful tools for studying paramagnetic metal ions in chemical and biochemical reactions occurring in intact animals.  相似文献   

3.
To understand the role of the superoxide (O-2) radical in chromate-related genotoxicity, we investigated whether Cr(VI) can catalyze the Haber-Weiss cycle in vitro: O-2 + Cr(VI)----Cr(V) + O2 Cr(V) + H2O2----Cr(VI) + .OH + OH-. ESR and spin trapping techniques were utilized to monitor the O-2 (produced using xanthine/xanthine oxidase), .OH, and Cr(V) species. Superoxide dismutase as well as catalase inhibited the .OH radical radical formation, attesting to the direct involvement of O-2 and H2O2 in the process. ESR measurements also provided direct evidence for the formation of Cr(V). Kinetic measurements were consistent with the role of Cr(V) and H2O2 as intermediates in .OH formation. These results indicate that in cellular media, especially during chromate phagocytosis, the O-2 radical can become a significant source of .OH radicals and hence a significant factor in the biochemical mechanism of cellular damage due to Cr(VI) exposure.  相似文献   

4.
The role of glutathione (GSH) and chromium (V) in chromium (VI)-induced nephrotoxicity in mice was investigated at 24 h after K2Cr(VI)2O7 ip injection. Nephrotoxicity was assessed by measurements of relative kidney weight and serum urea nitrogen. Cr(VI) nephrotoxicity was accompanied by decreased renal GSH and glutathione reductase (GSSG-R) levels. Pretreatment with buthionine sulfoximine, an inhibitor of GSH biosynthesis, enhanced Cr(VI)-induced nephrotoxicity, and remarkably diminished kidney GSH and GSSG-R levels. In contrast, pretreatment with glutathione methyl ester, a GSH-supplying agent, prevented Cr(VI) from exerting a harmful effect on mouse kidney and restored kidney GSH level. Administration of a Cr(V) compound, K3Cr(V)O8, induced much higher toxicity in mouse kidney than Cr(VI), but it failed to diminish renal GSH level. Another Cr(V) compound, Cr(V)-GSH complex, and Cr(III) nitrate did not cause a nephrotoxic effect in mice. The mechanism of Cr(VI)-induced nephrotoxicity was explained using GSH and Cr(V).  相似文献   

5.
Electron spin resonance measurements provide evidence for the formation of long-lived Cr(V) intermediates in the reduction of Cr(VI) by glutathione reductase in the presence of NADPH and for the hydroxyl radical formation during the glutathione reductase catalyzed reduction of Cr(VI). Hydrogen peroxide suppresses Cr(V) and enhances the formation of hydroxyl radicals. Thus Cr(V) intermediates catalyze generation of hydroxyl radicals from hydrogen peroxide through a Fenton-like reaction. Thus the mechanism of Cr(VI) toxicity might involve the interaction between macromolecules and the hydroxyl radicals.  相似文献   

6.
The Long-Evans Cinnamon (LEC) rats accumulate excess copper (Cu) in the liver in a manner similar to patients with Wilson's disease (WD) and spontaneously develop acute hepatitis with severe jaundice. Although hydroxyl radicals (*OH) have been proposed to be a cause of hepatitis by the accumulation of Cu, it is not clear whether or not *OH can be produced in the liver of hepatitic LEC rats in vivo and also can be involved in the onset of hepatitis. In the present study, *OH production in plasma and liver of hepatitic LEC rats was quantified by trapping *OH with salicylic acid (SA) as 2, 3-dihydroxybenzoic acid (2, 3-DHBA). The ratios of 2, 3-DHBA/SA were significantly higher in plasma and liver of hepatitic LEC rats than those of Wistar rats and LEC rats showing no signs of hepatitis. Furthermore, the ratios of 2, 3-DHBA/SA in plasma and liver of hepatitic LEC rats were almost the same as those of Wistar rats treated orally with CuSO(4) (0.5 mmol/kg) 2 h before acetylsalicylic acid (ASA) injection. We also evaluated the protective effects of D-mannitol (a *OH scavenger) treatment against acute hepatitis in LEC rats. D-mannitol (500 mg/kg) was administered intraperitoneally to 10-week-old LEC rats for 3 weeks. D-mannitol treatment suppressed the increases in serum aspartate aminotransferase activity and total bilirubin concentration. In addition, D-mannitol treatment significantly reduced hepatic mitochondrial lipid peroxidation, which is thought to be important in the pathogenesis of Cu-induced hepatotoxicity. These observations suggest that accelerated generation of *OH catalyzed by free Cu in the liver may, at least in part, play a role in the pathogenesis of acute hepatitis in LEC rats.  相似文献   

7.
The first evidence has been obtained for Cr(VI) (chromate) binding to isolated calf thymus (CT) histones under physiological conditions (pH 7.4, Cl concentration 152 mM, 310 K). No significant Cr(VI) binding under the same conditions was observed for other extracellular and intracellular proteins, including albumin, apo-transferrin and G-actin, as well as for CT DNA. The mode of Cr(VI) binding to histones was studied by vibrational, electronic and X-ray absorption (X-ray absorption near-edge structure and X-ray absorption fine structure) spectroscopies and molecular mechanics calculations. A proposed binding mechanism includes electrostatic interactions of CrO4 2− with protonated Lys and Arg residues of histones, as well as the formation of hydrogen bonds with the protein backbone. Similarly, Cr(VI) can bind to nuclear localization signals (typically, Lys- and Arg-rich fragments) of other nuclear proteins. Selective binding of Cr(VI) to newly synthesized nuclear proteins (including histones) in the cytoplasm is likely to be responsible for the active transport of Cr(VI) into the nuclei of living cells. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

8.
Xanthine oxidase has been hypothesized to be an important source of biological free radical generation. The enzyme generates the superoxide radical, .O2- and has been widely applied as a .O2- generating system; however, the enzyme may also generate other forms of reduced oxygen. We have applied electron paramagnetic resonance (EPR) spectroscopy using the spin trap 5,5'-dimethyl-1-pyrroline-N-oxide (DMPO) to characterize the different radical species generated by xanthine oxidase along with the mechanisms of their generation. Upon reaction of xanthine with xanthine oxidase equilibrated with air, both DMPO-OOH and DMPO-OH radicals are observed. In the presence of ethanol or dimethyl sulfoxide, alpha-hydroxyethyl or methyl radicals are generated, respectively, indicating that significant DMPO-OH generation occurred directly from OH rather than simply from the breakdown of DMPO-OOH. Superoxide dismutase totally scavenged the DMPO-OOH signal but not the DMPO-OH signal suggesting that .O2- was not required for .OH generation. Catalase markedly decreased the DMPO-OH signal, while superoxide dismutase + catalase totally scavenged all radical generation. Thus, xanthine oxidase generates .OH via the reduction of O2 to H2O2, which in turn is reduced to .OH. In anaerobic preparations, the enzyme reduces H2O2 to .OH as evidenced by the appearance of a pure DMPO-OH signal. The presence of the flavin in the enzyme is required for both .O2- and .OH generation confirming that the flavin is the site of O2 reduction. The ratio of .O2- and .OH generation was affected by the relative concentrations of dissolved O2 and H2O2. Thus, xanthine oxidase can generate the highly reactive .OH radical as well as the less reactive .O2- radical. The direct production of .OH by xanthine oxidase in cells and tissues containing this enzyme could explain the presence of oxidative cellular damage which is not prevented by superoxide dismutase.  相似文献   

9.
The reduction of hexavalent chromium, Cr(VI), can generate reactive Cr intermediates and various types of oxidative stress. The potential role of human microsomal enzymes in free radical generation was examined using reconstituted proteoliposomes (PLs) containing purified cytochrome b(5) and NADPH:P450 reductase. Under aerobic conditions, the PLs reduced Cr(VI) to Cr(V) which was confirmed by ESR using isotopically pure (53)Cr(VI). When 5-diethoxyphosphoryl-5-methyl-1-pyrroline-N-oxide (DEPMPO) was included as a spin trap, a very prominent signal for the hydroxyl radical (HO()) adduct was observed as well as a smaller signal for the superoxide (O(2)(-)) adduct. These adducts were observed even at very low Cr(VI) concentrations (10 muM). NADPH, Cr(VI), O(2), and the PLs were all required for significant HO() generation. Superoxide dismutase eliminated the O(2)(-) adduct and resulted in a 30% increase in the HO() adduct. Catalase largely diminished the HO() adduct signal, indicating its dependence on H(2)O(2). Some sources of catalase were found to have Cr(VI)-reducing contaminants which could confound results, but a source of catalase free of these contaminants was used for these studies. Exogenous H(2)O(2) was not needed, indicating that it was generated by the PLs. Adding exogenous H(2)O(2), however, did increase the amount of DEPMPO/HO() adduct. The inclusion of formate yielded the carbon dioxide radical adduct of DEPMPO, and experiments with dimethyl sulfoxide (DMSO) plus the spin trap alpha-phenyl-N-tert-butylnitrone (PBN) yielded the methoxy and methyl radical adducts of PBN, confirming the generation of HO(). Quantification of the various species over time was consistent with a stoichiometric excess of HO() relative to the net amount of Cr(VI) reduced. This also represents the first demonstration of a role for cytochrome b(5) in the generation of HO(). Overall, the simultaneous generation of Cr(V) and H(2)O(2) by the PLs and the resulting generation of HO() at low Cr(VI) concentrations could have important implications for Cr(VI) toxicity.  相似文献   

10.
The present study investigates whether reactive oxygen species (ROS)are involved in p53 activation, and if they are, which species isresponsible for the activation. Our hypothesis is that hydroxyl radical(·OH) functions as a messenger for the activation of this tumorsuppressor protein. Human lung epithelial cells (A549) were used totest this hypothesis. Cr(VI) was employed as the source of ROS due toits ability to generate a whole spectrum of ROS inside the cell. Cr(VI)is able to activate p53 by increasing the protein levels and enhancingboth the DNA binding activity and transactivation ability of theprotein. Increased cellular levels of superoxide radicals(O2·), hydrogen peroxide(H2O2), and ·OH radicals were detected on theaddition of Cr(VI) to the cells. Superoxide dismutase, by enhancing theproduction of H2O2 from O2·radicals, increased p53 activity. Catalase, anH2O2 scavenger, eliminated ·OH radicalgeneration and inhibited p53 activation. Sodium formate and aspirin,·OH radical scavengers, also suppressed p53 activation. Deferoxamine,a metal chelator, inhibited p53 activation by chelating Cr(V) to makeit incapable of generating radicals from H2O2.NADPH, which accelerated the one-electron reduction of Cr(VI) to Cr(V)and increased ·OH radical generation, dramatically enhanced p53activation. Thus ·OH radical generated from Cr(VI) reduction in A549cells is responsible for Cr(VI)-induced p53 activation.

  相似文献   

11.
Since chromium(VI) is unreactive toward DNA under physiological conditions in vitro, the ability of carcinogenic chromium(VI) compounds to damage DNA depends on the presence of cellular redox components that reduce chromium(VI) to reactive species capable of interacting with DNA. We have examined the role of glutathione and hydrogen peroxide in chromium(VI)-induced DNA damage in vitro. Upon reaction with chromium(VI), glutathione produced chromium(V) and glutathione thiyl radical reactive intermediates, whereas hydrogen peroxide produced chromium(V) and hydroxyl radical. Reaction of DNA with chromium(VI) in the presence of glutathione resulted in binding of chromium and glutathione to DNA with little or no DNA strand breakage. Reaction of DNA with chromium(VI) in the presence of hydrogen peroxide produced the 8-hydroxydeoxy-guanosine adduct and extensive DNA strand breakage in the absence of significant Cr-DNA adduct formation. These results suggest that the nature of chromium(VI)-induced DNA damage will be strongly dependent on reactive intermediates such as chromium(V), glutathione thiyl radical, and hydroxyl radical, produced by cellular components active in chromium(VI) metabolism. In order to assess the ability of chromium(VI)-induced DNA damage to affect the normal template function of DNA, we investigated the effects of chromium(VI) on steady-state mRNA levels of various genes in chick embryo liver in vivo, and compared the effects to the levels of DNA damage observed. Chromium(VI) induced DNA-protein and DNA interstrand cross-links in chick embryo liver in vivo and suppressed the induction of 5-aminolevulinic acid synthase and cytochrome P-450 mRNA expression by porphyrinogenic drugs. In contrast, chromium(VI) increased the basal levels of expression of these two inducible genes, but had little or no effect on the expression of the constitutive albumin, β-actin, and conalbumin genes. Comparison of the time course of formation and repair of DNA damage with that of changes in gene expression suggests that chromium(VI) may form a mono-adduct prior to formation of DNA cross-links, and that chromium(VI)-induced DNA lesions may target certain classes of genes and lead to changes in their expression.  相似文献   

12.
13.
The interaction of mutagenic Cr(VI) with red blood cells has been studied by ESR spectroscopy. Signals of two Cr(V) species are observed almost immediately after contacting red cells with chromate(VI) aqueous solution at pH 7.4. The signal at go = 1.985, which decays within one hour, is attributed to a Cr(V) complex formed by glutathione due its reducing and chelating ability. The other signal at go = 1.979, which is distinctly more persistent, may indicate that some immobilization of the formed Cr(V) ions takes place on the macromolecular cell components, e.g. glycoproteins.  相似文献   

14.
Liu X  Lu J  Liu S 《Mutation research》1999,440(1):109-117
Chromium(VI) compounds and cigarette smoke are known human carcinogens. We found that K2Cr2O7 and cigarette smoke solution synergistically induced DNA single-strand breaks (0.23+/-0.04 breaks per DNA molecule) in pUC118 plasmid DNA. K2Cr2O7 alone or cigarette smoke solution alone induced much less strand breaks (0.03+/-0.01 or 0.07+/-0.02 breaks per DNA molecule, respectively). The synergistic effect was prevented by catalase and by hydroxyl radical scavengers such as deferoxamine, dimethylsulfoxide, d-mannitol, and Tris, but not by superoxide dismutase. Ascorbic acid enhanced the synergism. Glutathione inhibited strand breakage only at high concentrations. Electron spin resonance (ESR) studies using a hydroxyl radical trap demonstrated that hydroxyl radicals were generated when DNA was incubated with K2Cr2O7 and cigarette smoke solution. Hydroxyl radical adduct decreased dose-dependently when strand breakage was prevented by catalase, deferoxamine, dimethylsulfoxide, d-mannitol or Tris, but not significantly by superoxide dismutase. We also used ESR spectroscopy to study the effects of different concentration of ascorbic acid and glutathione. The results showed that hydroxyl radical, which is proposed as a main carcinogenic mechanism for both chromium(VI) compounds and cigarette smoke solution was mainly responsible for the DNA breaks they induced.  相似文献   

15.
In the ongoing investigation into the biological importance and toxicity issues surrounding the bioinorganic chemistry of chromium, the accepted literature procedure for the isolation of the biological form of chromium, low molecular weight chromium binding protein (LMWCr) or chromodulin, was investigated for its specificity. When chromium(VI) is added to bovine liver homogenate, results presented here indicate at least four chromium(III) binding peptides and proteins are produced and that the process is non-specific for the isolation of LMWCr. A novel trivalent chromium containing protein (1) has been isolated to purity and initial characterization is reported here. Chromium(III) identification was determined by optical spectroscopy and diphenylcarbazide testing. This chromium binding protein has a molecular weight of 15.6kDa, which was determined from both gel-electrophoresis and mass spectrometry. The protein is comprised primarily of Asx, Glx, His, Gly/Thr, Ala, and Lys in a 1.00:2.51:0.37:2.09:0.39:1.17 ratio and is anionic at pH 7.4. In addition, the protein binds approximately 2.5 chromium(III) ions per molecule.  相似文献   

16.
Summary N-acetylchitooligosaccharides, fragments of the backbone of fungal cell wall, trigger rapid membrane responses such as transient depolarization, and elicit defense reactions including phytoalexin production in suspension-cultured rice cells. The generation of reactive oxygen species triggered by the oligosaccharide signal was analyzed with EPR spectroscopy using a spin trapping system, 4-pyridyl 1-oxideN-tert-butyl nitrone (4-POBN) and ethanol. OH generation was detected as the -hydroxyethyl adduct of 4-POBN after elicitation. Superoxide dismutase, catalase or diethylenetriamine pentaacetic acid, a metal chelator, inhibited generation, proposing the following reaction sequence: generation of in response to the oligosaccharide elicitor, followed by dismutation to H2O2, then generation of by the reaction of H2O2 with Fe2+ that is generated by the reduction of Fe3+ by . Generation of the same reactive oxygen species was also triggered by calyculin A, a protein phosphatase inhibitor, alone, suggesting the involvement of protein phosphorylation in its regulation during the oligosaccharide signal transduction.Abbreviations DMPO 5,5-dimethyl-1-pyrroline N-oxide - DTPA diethylenetriamine pentaacetic acid - 4-POBN 4-pyridyl 1-oxideN-tert-butylnitrone - SOD Superoxide dismutase - 4-hydroxy-TEMPO 2,2,6,6-tetramethyl-4-hydroxypiperidine-1-oxyl  相似文献   

17.
We investigated the efficacy of histidine on iron (II)-induced hydroxyl radical (.OH) generation in extracellular fluid of the rat myocardium using a flexibly mounted microdialysis technique (O system). Rats were anesthetized and a microdialysis probe was implanted in the left ventricular, followed by infusion of sodium salicylate in Ringer's solution (0.5 nmol/microL/min) to detect the generation .OH as reflected by the non-enzymatic formation of 2,3-dihydroxybenzoic acid (DHBA). Iron (II) clearly produced a concentration-dependent increase in .OH formation. A positive linear correlation between iron (II) and the formation of 2,3-DHBA (R2 = 0.987) was observed. However, histidine (25 mM) was infused through a microdialysis probe; iron (II) failed to increase the 2,3-DHBA formation obtained. To examine the effect of histidine on ischemia-reperfusion of the myocardium, the heart was subjected to myocardial ischemia for 15 min by occlusion of the left anterior descending coronary artery (LAD). When the heart was reperfused, a marked elevation of the levels of 2,3-DHBA was observed in the heart dialysate. When corresponding experiments were performed with histidine (25 mM)-pretreated animals, histidine prevented the ischemia-reperfusion induced .OH generation trapped as 2,3-DHBA. These results indicate that histidine protects the myocardium against ischemia-reperfusion damage by .OH generation.  相似文献   

18.
The study presented in this article investigated the influence of different Cr(III) and Cr(VI) compounds in the cultivation medium on the uptake and localization of chromium in the cell structure of the yeast Candida intermedia. The morphology of the yeast cell surface was observed by the scanning electron microscopy. Results demonstrated that the growth inhibitory concentration of Cr(III) in the cultivation medium induced changes in the yeast cell shape and affected the budding pattern, while inhibitory concentration of Cr(VI) did not cause any visible effects on morphological properties of the yeast cells. The amount of total accumulated chromium in yeast cells and the distribution of chromium between the yeast cell walls and spheroplasts were determined by atomic absorption spectroscopy. No significant differences were found neither in total chromium accumulation nor in the distribution of chromium in yeast cell walls and spheroplasts between the two of Cr(VI) compounds. Conversely, substantial differences between Cr(III) compounds were demonstrated in the total uptake as well as the localization of chromium in yeast cells.  相似文献   

19.
Hydroxylation of l-phenylalanine (Phe) by hydroxyl radical (*OH) yields 4-, 3-, and 2-hydroxyl-Phe (para-, meta-, and ortho-tyrosine, respectively). Phe derivative measurements have been employed to detect *OH formation in cells and tissues, however, the specificity of this assay is limited since Phe derivatives also arise from intracellular Phe hydroxylase. d-Phe, the d-type enantiomer, is not hydroxylated by Phe hydroxylase. We evaluate whether d-Phe reacts with *OH as well as l-Phe, providing a more reliable probe for *OH generation in biological systems. With *OH generated by a Fenton reaction or xanthine oxidase, d- and l-Phe equally gave rise to p, m, o-tyr and this could be prevented by *OH scavengers. Resting human neutrophils (PMNs) markedly converted l-Phe to p-tyr, through non-oxidant-mediated reactions, whereas d-Phe was unaffected. In contrast, when PMNs were stimulated in the presence of redox cycling iron the *OH formed resulted in more significant rise of p-tyr from d-Phe (9.4-fold) than l-Phe (3.6-fold) due to the significant background formation of p-tyr from l-Phe. Together, these data indicated that d- and l-Phe were equally hydroxylated by *OH. Using d-Phe instead of l-Phe can eliminate the formation of Phe derivatives from Phe hydroxylase and achieve more specific, sensitive measurement of *OH in biological systems.  相似文献   

20.
Diesel exhaust particles (DEP) induce pulmonary tumors, asthma-like symptoms, and the like in experimental animals. The involvement of reactive oxygen species (ROS) is suggested in the injuries induced by DEP, though the generation of ROS has not been proven. The present study provided the first direct evidence of *OH generation in the lungs of living mice after intratracheal instillation of DEP, using noninvasive L-band ESR spectroscopy and a membrane-impermeable nitroxyl probe. *OH generation is confirmed with the enhancement of in vivo ESR signal decay rate of the probe. The decay rate at mid-thorax was significantly enhanced in DEP-treated mice compared to that in vehicle-treated mice. The enhancement was completely suppressed by the administration of either *OH scavengers, catalase, or desferrioxamine, while the administration of SOD further increased the rate. The administration of Fenton's reagents into the lung also enhanced the decay rate of the probe at mid-thorax of mice. These results clearly provided evidence that the intratracheal exposure to DEP in mice produced *OH in the lung through an iron-catalyzed reaction of superoxide/H(2)O(2). This first direct evidence of *OH generation in DEP-treated mice lung may be utilized to determine treatments for DEP-induced lung injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号