首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Air pollution represents a threat to biodiversity throughout the world and particularly in the Mediterranean area, where high tropospheric ozone (O3) concentrations and atmospheric nitrogen (N) deposition are frequently recorded. Mediterranean annual pastures are among the most important ecosystems in southern Europe due to their high biodiversity and extension. Aiming to study the responses of these communities to the main atmospheric pollutants in the Mediterranean region, an experimental study was performed in an open-top chamber (OTC) facility. A mixture of six species representative of annual pastures was grown under field conditions inside the OTC. Plants were exposed for 39 days to four O3 treatments and three doses of N. The species responded heterogeneously to both factors. Legumes did not react to N but were very sensitive to O3: Trifolium species responded negatively, while Ornithopus responded positively, taking advantage of the greater sensitivity of clovers to O3. The grasses and the herb were more tolerant of O3 and grasses were the most responsive to N. Significant interactions between factors indicated a loss of effectiveness of N in O3-polluted atmospheres and an ability of O3 to counterbalance the damage induced by N input, but both effects were dependent on O3 and N levels. The inclusion of plant competition in the experimental design was necessary to reveal results that would otherwise be missed, such as the positive growth responses under elevated O3 levels. Surprisingly, competition within the legume family played the most important role in the overall response of the annual community to O3. Both tropospheric O3 and N deposition should be considered important drivers of the structure and biodiversity of Mediterranean annual pastures.  相似文献   

2.
3.
4.
Tropospheric ozone (O3) is an important stressor in natural ecosystems, with well‐documented impacts on soils, biota and ecological processes. The effects of O3 on individual plants and processes scale up through the ecosystem through effects on carbon, nutrient and hydrologic dynamics. Ozone effects on individual species and their associated microflora and fauna cascade through the ecosystem to the landscape level. Systematic injury surveys demonstrate that foliar injury occurs on sensitive species throughout the globe. However, deleterious impacts on plant carbon, water and nutrient balance can also occur without visible injury. Because sensitivity to O3 may follow coarse physiognomic plant classes (in general, herbaceous crops are more sensitive than deciduous woody plants, grasses and conifers), the task still remains to use stomatal O3 uptake to assess class and species’ sensitivity. Investigations of the radial growth of mature trees, in combination with data from many controlled studies with seedlings, suggest that ambient O3 reduces growth of mature trees in some locations. Models based on tree physiology and forest stand dynamics suggest that modest effects of O3 on growth may accumulate over time, other stresses (prolonged drought, excess nitrogen deposition) may exacerbate the direct effects of O3 on tree growth, and competitive interactions among species may be altered. Ozone exposure over decades may be altering the species composition of forests currently, and as fossil fuel combustion products generate more O3 than deteriorates in the atmosphere, into the future as well.  相似文献   

5.
Apoplastic reactive oxygen intermediates, which are formed during the exposure of a higher plant to ozone (O3), have been proposed to be detoxified by apoplastic ascorbate (ASC). An investigation to determine whether the differential sensitivity of two white clover clones (Trifolium repens L. cv Regal) to O3 was related with their levels of ASC, glutathione derivatives or with the total antioxidative capacity. In contrast to what might be expected, the sensitive clone of white clover (NC-S) constitutively showed a 72% higher concentration of apoplastic ASC compared to the O3-tolerant clone (NC-R). Furthermore, NC-S also showed a higher redox status of apoplastic ASC. These results indicate that higher ASC levels in the apoplast of NC-S are not sufficient to induce a higher O3 tolerance. The redox status, but not the absolute concentration of homoglutathione in the symplast was found to be constitutively higher in NC-R than in NC-S. It is not clear, however, whether homoglutathione is a direct cause of the differential O3 detoxification capacity of both clones. Total antioxidative capacity measurements ruled out the contribution of other low-molecular antioxidants to the relative tolerance of NC-R. It was concluded that elevated apoplastic ASC levels can not always be sufficient to render a plant O3 tolerant.  相似文献   

6.
Six pairs of O3-sensitive and O3-tolerant cultivars, clones or populations of different plants (tobacco, plantain, clover, radish, poplar and loblolly pine) were taken through identical but short episodic exposures to O3 in a controlled-environment fumigation system. Emissions of ethene and concentrations of polyamines, total phenols and ascorbate as well as levels of reduced glutathione and ascorbate in fumigated and clean air controls were determined in these various cultivars, clones and populations. A large number of significant differences were detected between the various sensitive and tolerant pairs, but it is clear that different sequences of response involving these parameters occur in these various plant pairs to account for their individual O3 sensitivity or tolerance. Some O3-tolerant plants have increased polyamines, others total phenols and some appear to be able to form reduced ascorbate and glutathione more rapidly. In the case of ethene emissions, however, all O3-sensitive selections produce more ethene when fumigated while O3-tolerant ones either reduce their rates of emissions below those of clean air-grown controls or at least keep them at the same level.  相似文献   

7.
The inhibitory effects of tropospheric O3 on crop photosynthesis, growth, and yield have been documented in numerous studies over the past 35 years. In large part, the results of this research supported governmental regulations designed to limit tropospheric O3 levels to concentrations that affected crop production at economically acceptable levels. Recent studies have brought into question the efficacy of these concentration-based O3 standards compared with flux-based approaches that incorporate O3 uptake along with environmental and biotic factors that influence plant responses. In addition, recent studies provide insight into the biochemical mechanisms of O3 injury to plants. Current interpretations suggest that upon entry into the leaf intercellular space O3 rapidly reacts with components of the leaf apoplast to initiate a complex set of responses involving the formation of toxic metabolites and generation of plant defence responses that constitute variably effective countermeasures. Plant species and cultivars exhibit a range of sensitivity to O3, evident as heritable characteristics, that must reflect identifiable biochemical and molecular processes that affect sensitivity to O3 injury, although their exact makeup remains unclear. Ozone clearly impairs photosynthetic processes, which might include the effects on electron transport and guard cell homeostasis as well as the better-documented effects on carbon fixation via decreased Rubisco activity. Translocation of photosynthate could be inhibited by O3 exposure as well. Further, the influence of tropospheric O3 needs to be considered when assessing potential effects of rising concentrations of atmospheric CO2 on crop production. Advances in O3 flux modelling and improved understanding of biochemical and molecular effects of O3 on photosynthetic gas exchange and plant defence processes are leading to more complete, integrated assessments of O3 impacts on crop physiology that continue to support the rationale for maintaining or improving current O3 air quality standards as well as providing a basis for development of more O3-tolerant crop lines.  相似文献   

8.
Ecological risk assessment of O3 impact requires consideration of many factors that, perhaps, are not of concern in human health risk assessment. The episodic nature of O3 exposure, functional complexity of species assemblages, and the broad spatial and temporal scales characteristic of natural ecosystems make ecological risk assessment extremely difficult. The majority of exposure studies using plants have examined the sensitivity of individual species, growing under controlled conditions. Research has shown that individuals growing in plant mixtures may not respond the same way to O3 as when growing alone. In addition, other naturally occurring stresses can modify plant response to O3. Understanding the effect of O3 on natural systems and protecting vegetation resources represent significant scientific and regulatory challenges. Here we review several factors that need to be considered when evaluating ecosystem response to O3. Then we briefly present two examples of controlled seedling studies that were conducted to better understand mechanisms of tree response to O3. In the first example controlled exposure studies revealed responses in tree roots that led to hypothesis testing in the field in ponderosa pine ecosystems. Field experiments have confirmed a similar response in root biomass and carbohydrates across a natural O3 gradient in S. California, suggesting at least a partial role for O3 in the response. The second example illustrates the difficulty of understanding mechanistic interactions to O3 stress even in controlled chamber studies. The second example also illustrates the difficulty of using chamber studies to understand responses in the field. While our knowledge of vegetation response to O3 is extensive and compelling, important questions remain about how to quantify these effects in the field, assess their magnitude, and establish a suitable standard that is protective of ecosystems.  相似文献   

9.
10.
Hydrogen peroxide (H2O2) is a key reactive oxygen species (ROS) in signal transduction pathways leading to activation of plant defenses against biotic and abiotic stresses. In this study, we investigated the effects of H2O2 pretreatment on aluminum (Al) induced antioxidant responses in root tips of two wheat (Triticum aestivum L.) genotypes, Yangmai‐5 (Al‐sensitive) and Jian‐864 (Al‐tolerant). Al increased accumulation of H2O2 and O2?? leading to more predominant lipid peroxidation, programmed cell death and root elongation inhibition in Yangmai‐5 than in Jian‐864. However, H2O2 pretreatment alleviated Al‐induced deleterious effects in both genotypes. Under Al stress, H2O2 pretreatment increased the activities of superoxide dismutase, catalase, peroxidase, ascorbate peroxidase and monodehydroascorbate reductase, glutathione reductase and glutathione peroxidase as well as the levels of ascorbate and glutathione more significantly in Yangmai‐5 than in Jian‐864. Furthermore, H2O2 pretreatment also increased the total antioxidant capacity evaluated as the 2, 2‐diphenyl‐1‐picrylhydrazyl‐radical scavenging activity and the ferric reducing/antioxidant power more significantly in Yangmai‐5 than in Jian‐864. Therefore, we conclude that H2O2 pretreatment improves wheat Al acclimation during subsequent Al exposure by enhancing the antioxidant defense capacity, which prevents ROS accumulation, and that the enhancement is greater in the Al‐sensitive genotype than in the Al‐tolerant genotype.  相似文献   

11.
A second order rotatable design was used to obtain polynomial equations describing the effects of combinations of sulfur dioxide (SO2) and ozone (O3) on foliar injury and plant growth. The response surfaces derived from these equations were displayed as contour or isometric (3-dimensional) plots. The contour plots aided in the interpretation of the pollutant interactions and were judged easier to use than the isometric plots. Plants of `Grand Rapids' lettuce (Lactuca sativa L.), `Cherry Belle' radish (Raphanus sativus L.), and `Alsweet' pea (Pisum sativum L.) were grown in a controlled environment chamber and exposed to seven combinations of SO2 and O3. Injury was evaluated based on visible chlorosis and necrosis and growth was evaluated as leaf area and dry weight. Covariate measurements were used to increase precision. Radish and pea had greater injury, in general, that did lettuce; all three species were sensitive to O3, and pea was most sensitive and radish least sensitive to SO2. Leaf injury responses were relatively more affected by the pollutants than were plant growth responses in radish and pea but not in lettuce. In radish, hypocotyl growth was more sensitive to the pollutants than was leaf growth.  相似文献   

12.
Non-indigenous species (NIS) and hypoxia (<2 mg O2 l−1) can disturb and restructure aquatic communities. Both are heavily influenced by human activities and are intensifying with global change. As these disturbances increase, understanding how they interact to affect native species and systems is essential. To expose patterns, outcomes, and generalizations, we thoroughly reviewed the biological invasion literature and compiled 100 studies that examine the interaction of hypoxia and NIS. We found that 64% of studies showed that NIS are tolerant of hypoxia, and 62% showed that NIS perform better than native species under hypoxia. Only one-quarter of studies examined NIS as creators of hypoxia; thus, NIS are more often considered passengers associated with hypoxia, rather than drivers of it. Paradoxically, the NIS that most commonly create hypoxia are primary producers. Taxa like molluscs are typically more hypoxia tolerant than mobile taxa like fish and crustaceans. Most studies examine individual-level or localized responses to hypoxia; however, the most extensive impacts occur when hypoxia associated with NIS affects communities and ecosystems. We discuss how these influences of hypoxia at higher levels of organization better inform net outcomes of the biological invasion process, i.e. establishment, spread, and impact, and are thus most useful to management. Our review identifies wide variation in the way in which the interaction between hypoxia and NIS is studied in the literature, and suggests ways to address the number of variables that affect their interaction and refine insight gleaned from future studies. We also identify a clear need for resource management to consider the interactive effects of these two global stressors which are almost exclusively managed independently.  相似文献   

13.
The 18O signature of atmospheric water vapour (δ18OV) is known to be transferred via leaf water to assimilates. It remains, however, unclear how the 18O-signal transfer differs among plant species and growth forms. We performed a 9-hr greenhouse fog experiment (relative humidity ≥ 98%) with 18O-depleted water vapour (−106.7‰) on 140 plant species of eight different growth forms during daytime. We quantified the 18O-signal transfer by calculating the mean residence time of O in leaf water (MRTLW) and sugars (MRTSugars) and related it to leaf traits and physiological drivers. MRTLW increased with leaf succulence and thickness, varying between 1.4 and 10.8 hr. MRTSugars was shorter in C3 and C4 plants than in crassulacean acid metabolism (CAM) plants and highly variable among species and growth forms; MRTSugars was shortest for grasses and aquatic plants, intermediate for broadleaf trees, shrubs, and herbs, and longest for conifers, epiphytes, and succulents. Sucrose was more sensitive to δ18OV variations than other assimilates. Our comprehensive study shows that plant species and growth forms vary strongly in their sensitivity to δ18OV variations, which is important for the interpretation of δ18O values in plant organic material and compounds and thus for the reconstruction of climatic conditions and plant functional responses.  相似文献   

14.
An artificial fresh-water protozoan community was subjected to different concentrations of Zn and Cu in a test system consisting of Plexiglas troughs through which pond water flowed continuously. Although the % survival of colonizing species exposed to Cu or Zn fluctuated greatly at each concentration, the range of toxicity for each compound allowed comparison of protozoa with other organisms with respect to resistance to heavy metal toxicity. Individual protozoan species also were exposed for 3 hr to Zn, Cu, Cr, phenol, Pb, Mn, Co, HNO3, acetic acid, Al, Sn, and HCl to derive time to death curves. Protozoa tested appeared to be more resistant than Daphnia to phenol, K2C2O7, and Cu; however, some species were more sensitive than Daphnia to Zn, nitric acid, and HCl. This suggests that the sensitivity of protozoa to toxicants may be either more or less than that of macroinvertebrates and that information does not suffice to predict sensitivity. Moreover, the relative sensitivity of protozoa to various toxicants will not always be the same, i.e. species X may be twice as tolerant to a toxicant as species Y but its relative sensitivity may be quite different for another toxicant.  相似文献   

15.
The present study was conceived to elucidate the potential importance of the D1 turnover-mediated repair mechanism in UV-B tolerance of the photosynthetic apparatus in microalgae. To this end, the lab-identified UV-B sensitive and tolerant species of Chlorophyte and Chromophyte algae was used to examine photosynthetic response to UV-B exposure in the presence vs. the absence of streptomycin, an inhibitor of chloroplast protein synthesis. Measurements of photosynthetic O2 evolution capacity and chlorophyll fluorescence parameters (Fv/Fm, ΦPSII) illustrated species-specific UV-B sensitivity of the photosynthetic apparatus. Addition of the inhibitor streptomycin caused significant enhancements of UV-B-caused depression of photosynthesis in UV-B tolerant species, while little effect was observed in the sensitive species. In the tolerant species, recovery from UV-B induced 20 percnt; decline in Fv/Fm reached completion within 2 hours, much faster than that in the sensitive species. Immunoblotting revealed that exposure to UV-B radiation caused substantial degradation of the D1 protein in the sensitive Heterococcus brevicellularis, which was little enhanced by addition of the inhibitor. The same UV-B exposure lead to less D1 degradation in the tolerant Scenedesmus sp., which was significantly enhanced by addition of the inhibitor. This study shows that UV-B tolerance of the photosynthetic apparatus in microalgae was associated with a strong capacity for recovery from the UV-B-induced damage and this capacity related to the D1 turnover-mediated repair cycle, and largely determined UV-B tolerance of the photosynthetic apparatus in these organisms.  相似文献   

16.
  1. Biological invasions can greatly alter ecological communities, affecting not only the diversity and abundance but also composition of invaded assemblages. This is because invaders’ impacts are mediated by characteristics of resident species: some may be highly sensitive to invader impacts while others are unaffected or even facilitated. In some cases, this can result in invasive species promoting further invasions; in particular, herbivory by introduced animals has been shown to disproportionately harm native plants, which can indirectly benefit non-native plants. Here, we investigated whether such patterns emerged through the effects of an invasive fish species on lake plant communities.
  2. Specifically, we tested whether invasion of Minnesota (U.S.A.) lakes by Cyprinus carpio (common carp), an omnivorous, benthivorous fish known to reduce abundance and richness of aquatic plants, differentially affected native versus non-native plant species. We applied statistical models to a large, long-term monitoring dataset (206 macrophyte taxa recorded in 913 lakes over a 20-year time period) to test whether carp altered community composition, to identify which macrophyte species were most sensitive to carp and determine whether species characteristics predicted carp sensitivity, and to characterise consequences of carp invasion on lake-level vegetation attributes.
  3. We found that carp exerted strong selective pressure on community composition. Native macrophytes, those with a more aquatic growth form, and those considered less tolerant of disturbance (i.e. higher coefficients of conservatism) were more sensitive to carp. Conversely, no introduced macrophytes exhibited sensitivity to carp and all had higher probabilities of occurrence as carp abundance increased. The net effect of carp invasion was a shift toward less species-rich plant communities characterised by more non-native and disturbance-tolerant species.
  4. These results have several implications for conservation and management. First, they reinforce the need to prevent further spread of carp outside of their native range. Where carp have already established, their control should be incorporated into efforts to restore aquatic vegetation; this may be an essential step for recovering particular plant species of high conservation importance. Furthermore, reducing carp abundance could have ancillary benefits of reducing dominance by invasive plant species. Lastly, where carp cannot be eliminated, managers should target native macrophytes that are relatively tolerant of carp in shoreline plantings and other revegetation efforts.
  相似文献   

17.
  • Tropospheric ozone (O3) is considered a major air pollutant having negative effects on plant growth and productivity. Background concentrations are expected to rise in several regions of the world in the next 50 years, affecting plant responses to diseases, thus requiring new management strategies for food production.
  • The effects of elevated O3 on the severity of a bacterial disease, and the effectiveness of a chemical defence inducer, were examined in two cultivars of tomato, Roma and Moneymaker, which present different tolerance to this pollutant. The two cultivars differ in their ability to produce and accumulate reactive oxygen species (ROS) in leaf tissues. Tomato plants were challenged with a strain of Xanthomonas vesicatoria, Xv9, which is pathogenic on tomato.
  • Ozone consistently increased severity of the disease by over 40% in both cultivars. In the more tolerant cultivar, O3 pollution increased disease intensity, even after applying a commercially available product to enhance resistance (acibenzolar‐S‐methyl, BTH). In the more susceptible cultivar, level of disease attained depended on the oxidative balance that resulted from other stress factors.
  • The antioxidant capacity of the plant at the time of infection was relevant for controlling development of the disease. Our results suggest that development of O3 tolerance in commercial crops might impose a penalty cost in terms of disease management under projected higher O3 concentrations.
  相似文献   

18.
The rising trend in concentrations of ground‐level ozone (O3) – a common air pollutant and phytotoxin – currently being experienced in some world regions represents a threat to agricultural yield. Soybean (Glycine max (L.) Merr.) is an O3‐sensitive crop species and is experiencing increasing global demand as a dietary protein source and constituent of livestock feed. In this study, we collate O3 exposure‐yield data for 49 soybean cultivars, from 28 experimental studies published between 1982 and 2014, to produce an updated dose–response function for soybean. Different cultivars were seen to vary considerably in their sensitivity to O3, with estimated yield loss due to O3 ranging from 13.3% for the least sensitive cultivar to 37.9% for the most sensitive, at a 7‐h mean O3 concentration (M7) of 55 ppb – a level frequently observed in regions of the USA, India and China in recent years. The year of cultivar release, country of data collection and type of O3 exposure used were all important explanatory variables in a multivariate regression model describing soybean yield response to O3. The data show that the O3 sensitivity of soybean cultivars increased by an average of 32.5% between 1960 and 2000, suggesting that selective breeding strategies targeting high yield and high stomatal conductance may have inadvertently selected for greater O3 sensitivity over time. Higher sensitivity was observed in data from India and China compared to the USA, although it is difficult to determine whether this effect is the result of differential cultivar physiology, or related to local environmental factors such as co‐occurring pollutants. Gaining further understanding of the underlying mechanisms that govern the sensitivity of soybean cultivars to O3 will be important in shaping future strategies for breeding O3‐tolerant cultivars.  相似文献   

19.
Aluminium (Al) is the main factor that limits crop production in acidic soils. There is evidence that antioxidant enzymes such as superoxide dismutase (SOD) play a key role against Al‐induced oxidative stress in several plant species. Rye is one of the most Al‐tolerant cereals and exudes both citrate and malate from the roots in response to Al. The role of SOD against Al‐induced oxidative stress has not been studied in rye. Al accumulation, lipid peroxidation, H2O2 production and cell death were significantly higher in sensitive than in tolerant rye cultivars. Also, we characterised two genes for rye SOD: ScCu/ZnSOD and ScMnSOD. These genes were located on the chromosome arms of 2RS and 3RL, respectively, and their corresponding hypothetical proteins were putatively classified as cytosolic and mitochondrial, respectively. The phylogenetic relationships indicate that the two rye genes are orthologous to the corresponding genes of other Poaceae species. In addition, we studied Al‐induced changes in the expression profiles of mRNAs from ScCu/ZnSOD and ScMnSOD in the roots and leaves of tolerant Petkus and sensitive Riodeva rye. These genes are mainly expressed in roots in both ryes, their repression being induced by Al. The tolerant cultivar has more of both mRNAs than the sensitive line, indicating that they are probably involved in Al tolerance.  相似文献   

20.
Bermudagrass (Cynodon dactylon) is a widely used warm-season turfgrass and one of the most drought tolerant species. Dissecting the natural variation in drought tolerance and physiological responses will bring us powerful basis and novel insight for plant breeding. In the present study, we evaluated the natural variation of drought tolerance among nine bermudagrass varieties by measuring physiological responses after drought stress treatment through withholding water. Three groups differing in drought tolerance were identified, including two tolerant, five moderately tolerant and two susceptible varieties. Under drought stress condition, drought sensitive variety (Yukon) showed relative higher water loss, more severe cell membrane damage (EL), and more accumulation of hydrogen peroxide (H2O2) and malondialdehyde (MDA), while drought tolerant variety (Tifgreen) exhibited significantly higher antioxidant enzymes activities. Further results indicated that drought induced cell injury in different varieties (Yukon, SR9554 and Tifgreen) exhibited liner correlation with leaf water content (LWC), H2O2 content, MDA content and antioxidant enzyme activities. Additionally, Tifgreen plants had significantly higher levels of osmolytes (proline level and soluble sugars) when compared with Yukon and SR9554 under drought stress condition. Taken together, our results indicated that natural variation of drought stress tolerance in bermudagrass varieties might be largely related to the induced changes of water status, osmolyte accumulation and antioxidant defense system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号