首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The macroscopic curvature induced in the double helical B-DNA by regularly repeated adenine tracts (A-tracts) plays an exceptional role in structural studies of DNA because this effect presents the most well documented example of sequence specific conformational modulations. Recently, a new hypothesis of its physical origin has been put forward. According to it, the intrinsic bends in B-DNA may represent one of the consequences of the compressed frustrated state of its backbone. The compressed backbone hypothesis agrees with many data and explains some controversial experimental observations. The original arguments of this theory came out from MD simulations of a DNA fragment with a strong bending propensity. Its sequence, however, was not experimental. It was constructed empirically so as to maximize the magnitude of bending in calculations. To make sure that our computations reproduce the experimental effect we carried out similar simulations with an A-tract repeat of a natural base pair sequence found in a bent locus of a minicircle DNA. We demonstrate spontaneous development of static curvature in the course of MD simulations excluding any initial bias except the base pair sequence. Its direction and magnitude agree with experimental estimates. The results confirm earlier qualitative conclusions and agree with the hypothesis of a compressed backbone as the origin of static bending in B-DNA.  相似文献   

2.
Molecular dynamics (MD) simulations have been performed on the A6 containing DNA dodecamers d(GGCAAAAAACGG) solved by NMR and d(CGCAAAAAAGCG) solved by crystallography. The experimental structures differ in the direction of axis bending and in other small but important aspects relevant to the DNA curvature problem. Five nanosecond MD simulations of each sequence have been performed, beginning with both the NMR and crystal forms as well as canonical B-form DNA. The results show that all simulations converge to a common form in close proximity to the observed NMR structure, indicating that the structure obtained in the crystal is likely a strained form due to packing effects. A-tracts in the MD model are essentially straight. The origin of axis curvature is found at pyrimidine-purine steps in the flanking sequences.  相似文献   

3.
The origin of DNA axis curvature in complexes of the catabolite activator protein with DNA is studied using multiple molecular dynamics (MD) simulations of the free and protein-bound forms of the DNA. The results are compared to available solution and crystal structure data. The MD simulations reproduce the experimentally observed bend in DNA and indicate that ∼40% of the bending observed in the complex is intrinsic to the DNA sequence, whereas ∼60% is induced on protein binding. The MD provides a model for the dynamical structure of the DNA free in solution and for ligand-induced bending.  相似文献   

4.
The development and assessment of a prediction method for gel retardation and sequence dependent curvature of DNA based on dinulcleotide step parameters are described. The method is formulated using the Babcock-Olson equations for base pair step geometry (1) and employs Monte Carlo simulated annealing for parameter optimization against experimental data. The refined base pair step parameters define a stuctural construct which, when the width of observed parameter distributions is taken into account, is consistent with the results of DNA oligonucleotide crystal structures. The predictive power of the method is demonstrated and tested via comparisons with DNA bending data on sets of sequences not included in the training set, including A-tracts with and without periodic helix phasing, phased A4T4 and T4A4 motifs, a sequence with a phased GGGCCC motif, some "unconventional" helix phasing sequences, and three short fragments of kinetoplast DNA from Crithidia fasiculata that exhibit significantly different behavior on non-denaturing polyacrylamide gels. The nature of the structural construct produced by the methodology is discussed with respect to static and dynamic models of structure and representations of bending and bendability. An independent theoretical account of sequence dependent chemical footprinting results is provided. Detailed analysis of sequences with A-tract induced axis bending forms the basis for a critical discussion of the applicability of wedge models,junction models and non A-tract, general sequence models for understanding the origin of DNA curvature at the molecular level.  相似文献   

5.
Recent studies of DNA axis curvature and flexibility based on molecular dynamics (MD) simulations on DNA are reviewed. The MD simulations are on DNA sequences up to 25 base pairs in length, including explicit consideration of counterions and waters in the computational model. MD studies are described for ApA steps, A-tracts, for sequences of A-tracts with helix phasing. In MD modeling, ApA steps and A-tracts in aqueous solution are essentially straight, relatively rigid, and exhibit the characteristic features associated with the B'-form of DNA. The results of MD modeling of A-tract oligonucleotides are validated by close accord with corresponding crystal structure results and nuclear magnetic resonance (NMR) nuclear Overhauser effect (NOE) and residual dipolar coupling (RDC) structures of d(CGCGAATTCGCG) and d(GGCAAAAAACGG). MD simulation successfully accounts for enhanced axis curvature in a set of three sequences with phased A-tracts studied to date. The primary origin of the axis curvature in the MD model is found at those pyrimidine/purine YpR "flexible hinge points" in a high roll, open hinge conformational substate. In the MD model of axis curvature in a DNA sequence with both phased A-tracts and YpR steps, the A-tracts appear to act as positioning elements that make the helix phasing more precise, and key YpR steps in the open hinge state serve as curvature elements. Our simulations on a phased A-tract sequence as a function of temperature show that the MD simulations exhibit a premelting transition in close accord with experiment, and predict that the mechanism involves a B'-to-B transition within A-tracts coupled with the prediction of a transition in key YpR steps from the high roll, open hinge, to a low roll, closed hinge substate. Diverse experimental observations on DNA curvature phenomena are examined in light of the MD model with no serious discrepancies. The collected MD results provide independent support for the "non-A-tract model" of DNA curvature. The "junction model" is indicated to be a special case of the non-A-tract model when there is a Y base at the 5' end of an A-tract. In accord with crystallography, the "ApA wedge model" is not supported by MD.  相似文献   

6.
Kamashev DE  Mazur AK 《Biochemistry》2004,43(25):8160-8168
The recent hypothesis of a compressed backbone state as the origin of the intrinsic curvature in DNA suggested that it could result from a geometric mismatch between the partial specific backbone length and optimal base stacking. It predicted that the long-known phenomenon of static curvature in A-tract repeats may be affected by single-stranded breaks (nicks) that should relax it in a position-dependent manner. To check the aforementioned prediction, a special series of nicked DNA fragments was prepared from two mother sequences, one including phased A-tract repeats and the other being random, and the curvature was probed experimentally by gel mobility assays. In agreement with earlier reports, single-stranded breaks produce virtually no effect upon the gel mobility of the random sequence DNA. In contrast, for nicked A-tract fragments, the curvature exhibits regular periodical behavior depending upon the position of the strand break with respect to the overall bend. The modulations are rather strong, with the maximal increase in gel mobility exceeding 30% of the initial difference with respect to the reference straight DNA. This effect has not been encountered before, and it is opposite the usual nonspecific retardation caused by single-stranded breaks. The amplitude of the observed modulation is increased for phosphorylated nicks and in the presence of Mg(2+) ions.  相似文献   

7.
Abstract

The development and assessment of a prediction method for gel retardation and sequence dependent curvature of DNA based on dinucleotide step parameters are described. The method is formulated using the Babcock-Olson equations for base pair step geometry (1) and employs Monte Carlo simulated annealing for parameter optimization against experimental data. The refined base pair step parameters define a structural construct which, when the width of observed parameter distributions is taken into account, is consistent with the results of DNA oligonucleotide crystal structures. The predictive power of the method is demonstrated and tested via comparisons with DNA bending data on sets of sequences not included in the training set, including A-tracts with and without periodic helix phasing, phased A4T4 and T4A4 motifs, a sequence with a phased GGGCCC motif, some “unconventional” helix phasing sequences, and three short fragments of kinetoplast DNA from Crithidia fasiculata that exhibit significantly different behavior on non-denaturing polyacrylamide gels. The nature of the structural construct produced by the methodology is discussed with respect to static and dynamic models of structure and representations of bending and bendability. An independent theoretical account of sequence dependent chemical footprinting results is provided. Detailed analysis of sequences with A-tract induced axis bending forms the basis for a critical discussion of the applicability of wedge models, junction models and non A-tract, general sequence models for understanding the origin of DNA curvature at the molecular level.  相似文献   

8.
A series of potential energy calculations have been carried out to estimate base sequence dependent structural differences in B-DNA. Attention has been focused on the simplest dimeric fragments that can be used to build long chains, computing the energy as a function of the orientation and displacement of the 16 possible base pair combinations within the double helix. Calculations have been performed, for simplicity, on free base pairs rather than complete nucleotide units. Conformational preferences and relative flexibilities are reported for various combinations of the roll, tilt, twist, lateral displacement, and propeller twist of individual residues. The predictions are compared with relevant experimental measures of conformation and flexibility, where available. The energy surfaces are found to fit into two distinct categories, some dimer duplexes preferring to bend in a symmetric fashion and others in a skewed manner. The effects of common chemical substitutions (uracil for thymine, 5-methyl cytosine for cytosine, and hypoxanthine for guanine) on the preferred arrangements of neighboring residues are also examined, and the interactions of the sugar-phosphate backbone are included in selected cases. As a first approximation, long range interactions between more distant neighbors, which may affect the local chain configuration, are ignored. A rotational isomeric state scheme is developed to describe the average configurations of individual dimers and is used to develop a static picture of overall double helical structure. The ability of the energetic scheme to account for documented examples of intrinsic B-DNA curvature is presented, and some new predictions of sequence directed chain bending are offered.  相似文献   

9.
Abstract

A series of potential energy calculations have been carried out to estimate base sequence dependent structural differences in B-DNA. Attention has been focused on the simplest dimeric fragments that can be used to build long chains, computing the energy as a function of the orientation and displacement of the 16 possible base pair combinations within the double helix. Calculations have been performed, for simplicity, on free base pairs rather than complete nucleotide units. Conformational preferences and relative flexibilities are reported for various combinations of the roll, tilt, twist, lateral displacement, and propeller twist of individual residues. The predictions are compared with relevant experimental measures of conformation and flexibility, where available. The energy surfaces are found to fit into two distinct categories, some dimer duplexes preferring to bend in a symmetric fashion and others in a skewed manner. The effects of common chemical substitutions (uracil for thymine, 5-methyl cytosine for cytosine, and hypoxanthine for guanine) on the preferred arrangements of neighboring residues are also examined, and the interactions of the sugar-phosphate backbone are included in selected cases. As a first approximation, long range interactions between more distant neighbors, which may affect the local chain configuration, are ignored. A rotational isomeric state scheme is developed to describe the average configurations of individual dimers and is used to develop a static picture of overall double helical structure. The ability of the energetic scheme to account for documented examples of intrinsic B-DNA curvature is presented, and some new predictions of sequence directed chain bending are offered.  相似文献   

10.
11.
Molecular dynamic (MD) simulations using the BMS nucleic acid force field produce environment and sequence dependent DNA conformations that closely mimic experimentally derived structures. The parameters were initially developed to reproduce the potential energy surface, as defined by quantum mechanics, for a set of small molecules that can be used as the building blocks for nucleic acid macromolecules (dimethyl phosphate, cyclopentane, tetrahydrofuran, etc.). Then the dihedral parameters were fine tuned using a series of condensed phase MD simulations of DNA and RNA (in zero added salt, 4M NaCl, and 75% ethanol solutions). In the tuning process the free energy surface for each dihedral was derived from the MD ensemble and fitted to the conformational distributions and populations observed in 87 A- and B-DNA x-ray and 17 B-DNA NMR structures. Over 41 nanoseconds of MD simulations are presented which demonstrate that the force field is capable of producing stable trajectories, in the correct environments, of A-DNA, double stranded A-form RNA, B-DNA, Z-DNA, and a netropsin-DNA complex that closely reproduce the experimentally determined and/or canonical DNA conformations. Frequently the MD averaged structure is closer to the experimentally determined structure than to the canonical DNA conformation. MD simulations of A- to B- and B- to A-DNA transitions are also shown. A-DNA simulations in a low salt environment cleanly convert into the B-DNA conformation and converge into the RMS space sampled by a low salt simulation of the same sequence starting from B-DNA. In MD simulations using the BMS force field the B-form of d(GGGCCC)2 in a 75% ethanol solution converts into the A-form. Using the same methodology, parameters, and conditions the A-form of d(AAATTT)2 correctly converts into the B-DNA conformation. These studies demonstrate that the force field is capable of reproducing both environment and sequence dependent DNA structures. The 41 nanoseconds (nsec) of MD simulations presented in this paper paint a global picture which suggests that the DNA structures observed in low salt solutions are largely due to the favorable internal energy brought about by the nearly uniform screening of the DNA electrostatics. While the conformations sampled in high salt or mixed solvent environments occur from selective and asymmetric screening of the phosphate groups and DNA grooves, respectively, brought about by sequence induced ion and solvent packing.  相似文献   

12.
Towards a molecular dynamics consensus view of B-DNA flexibility   总被引:1,自引:1,他引:0       下载免费PDF全文
We present a systematic study of B-DNA flexibility in aqueous solution using long-scale molecular dynamics simulations with the two more recent versions of nucleic acids force fields (CHARMM27 and parmbsc0) using four long duplexes designed to contain several copies of each individual base pair step. Our study highlights some differences between pambsc0 and CHARMM27 families of simulations, but also extensive agreement in the representation of DNA flexibility. We also performed additional simulations with the older AMBER force fields parm94 and parm99, corrected for non-canonical backbone flips. Taken together, the results allow us to draw for the first time a consensus molecular dynamics picture of B-DNA flexibility.  相似文献   

13.
DNA-bending flexibility is central for its many biological functions. A new bending restraining method for use in molecular mechanics calculations and molecular dynamics simulations was developed. It is based on an average screw rotation axis definition for DNA segments and allows inducing continuous and smooth bending deformations of a DNA oligonucleotide. In addition to controlling the magnitude of induced bending it is also possible to control the bending direction so that the calculation of a complete (2-dimensional) directional DNA-bending map is now possible. The method was applied to several DNA oligonucleotides including A(adenine)-tract containing sequences known to form stable bent structures and to DNA containing mismatches or an abasic site. In case of G:A and C:C mismatches a greater variety of conformations bent in various directions compared to regular B-DNA was found. For comparison, a molecular dynamics implementation of the approach was also applied to calculate the free energy change associated with bending of A-tract containing DNA, including deformations significantly beyond the optimal curvature. Good agreement with available experimental data was obtained offering an atomic level explanation for stable bending of A-tract containing DNA molecules. The DNA-bending persistence length estimated from the explicit solvent simulations is also in good agreement with experiment whereas the adiabatic mapping calculations with a GB solvent model predict a bending rigidity roughly two times larger.  相似文献   

14.
R C Maroun  W K Olson 《Biopolymers》1988,27(4):561-584
Matrix generator techniques have been adapted to account for precise structural features of the nucleotide repeating unit and to translate the primary sequence of DNA base pairs into three-dimensional structures. Chains have been constructed to reflect the local sequence-dependent differences of bending and twisting of adjacent residues and various overall chain properties, including the average unperturbed moments of the end-to-end vector r and the mean angular orientation (〈γ〉 between base pair normals, 〈?1〉 between long axes, and 〈?2〉 between short axes) of terminal chain residues, have been computed. The chain backbone is treated implicitly in terms of the spatial fluctuations of successive base pairs. Motions are limited to low-energy perturbations of the standard B-DNA helix. Approximate potential energy schemes are used to represent the rules governing the patterns of local base–base morphology and flexibility. Theoretical predictions are compared with experimental observations at both the local and the macro-molecular level. Initial applications are limited to the rodlike poly(dA) · poly(dT) and poly(dG) · poly(dC) helices. The former duplex is found to be more compressed and the latter more extended than random-sequence DNA of the same chain length. The flexibility of the duplexes as a whole is described in terms of the average higher moments of the displacement vector ρ = r - 〈r〉 and the likelihood of chain cyclization is estimated from the three-dimensional Hermite series expansions of the displacement tensors. Emphasis is placed on theoretical methodology and the practical relevance of the calculated chain moments to observed physical properties.  相似文献   

15.
The conformational pathways and the free energy variations for base opening into the major and minor grooves of a B-DNA duplex are studied using umbrella sampling molecular dynamics simulations. We compare both GC and AT base pair opening within a double-stranded d(GAGAGAGAGAGAG)· d(CTCTCTCTCTCTC) oligomer, and we are also able to study the impact of opening on the conformational and dynamic properties of DNA and on the surrounding solvent. The results indicate a two-stage opening process with an initial coupling of the movements of the bases within the perturbed base pair. Major and minor groove pathways are energetically comparable in the case of the pyrimidine bases, but the major groove pathway is favored for the larger purine bases. Base opening is coupled to changes in specific backbone dihedrals and certain helical distortions, including untwisting and bending, although all these effects are dependent on the particular base involved. Partial opening also leads to well defined water bridging sites, which may play a role in stabilizing the perturbed base pairs.  相似文献   

16.
Feig M  Pettitt BM 《Biopolymers》1998,48(4):199-209
Recent results from molecular dynamics (MD) simulations on hydration of DNA with respect to conformation are reviewed and compared with experimental data. MD simulations of explicit solvent around DNA can now give a detailed model of DNA that not only matches well with the experimental data but provides additional insight beyond current experimental limitations. Such simulation results are analyzed with a focus on differential hydration properties between A- and B-DNA and between C/G and A/T base pairs. The extent of hydration is determined from the number of waters in the primary shell and compared to experimental numbers from different measurements. High-resolution hydration patterns around the whole DNA are shown and correlated with the conformations. The role of ions associating with DNA is discussed with respect to changes in the hydration structure correlating with DNA conformation.  相似文献   

17.
Sugar phosphate backbone conformations are a structural element inextricably involved in a complete understanding of specific recognition nucleic acid ligand interactions, from early stage discrimination of the correct target to complexation per se, including any structural adaptation on binding. The collective results of high resolution DNA, RNA and protein/DNA crystal structures provide an opportunity for an improved and enhanced statistical analysis of standard and unusual sugar-phosphate backbone conformations together with corresponding dinucleotide sequence effects as a basis for further exploration of conformational effects on binding. In this study, we have analyzed the conformations of all relevant crystal structures in the nucleic acids data base, determined the frequency distribution of all possible epsilon, zeta, alpha, beta and gamma backbone angle arrangements within four nucleic acid categories (A-RNA and A-DNA, free and bound B-DNA) and explored the relationships between backbone angles, sugar puckers and selected helical parameters. The trends in the correlations are found to be similar regardless of the nucleic acid category. It is interesting that specific structural effects exhibited by the different unusual backbone sub-states are in some cases contravariant. Certain alpha/gamma changes are accompanied by C3' endo (north) sugars, small twist angles and positive values of base pair roll, and favor a displacement of nucleotide bases towards the minor groove compared to that of canonical B form structures. Unusual epsilon/zeta combinations occur with C2' (south) sugars, high twist angles, negative values of base pair roll, and base displacements towards the major groove. Furthermore, any unusual backbone correlates with a reduced dispersion of equilibrium structural parameters of the whole double helix, as evidenced by the reduced standard deviations of almost all conformational parameters. Finally, a strong sequence effect is displayed in the free oligomers, but reduced somewhat in the ligand bound forms. The most variable steps are GpA and CpA, and, to a lesser extent, their partners TpC and TpG. The results provide a basis for considering if the variable and non-variable steps within a biological active sequence precisely determine morphological structural features as the curvature direction, the groove depth, and the accessibility of base pair for non covalent associations.  相似文献   

18.
DNA bending plays an important role in many biological processes, but its molecular and energetic details as a function of base sequence remain to be fully understood. Using a recently developed restraint, we have studied the controlled bending of four different B-DNA oligomers using molecular dynamics simulations. Umbrella sampling with the AMBER program and the recent parmbsc0 force field yield free energy curves for bending. Bending 15-base pair oligomers by 90° requires roughly 5kcalmol−1, while reaching 150° requires of the order of 12kcalmol−1. Moderate bending occurs mainly through coupled base pair step rolls. Strong bending generally leads to local kinks. The kinks we observe all involve two consecutive base pair steps, with disruption of the central base pair (termed Type II kinks in earlier work). A detailed analysis of each oligomer shows that the free energy of bending only varies quadratically with the bending angle for moderate bending. Beyond this point, in agreement with recent experiments, the variation becomes linear. An harmonic analysis of each base step yields force constants that not only vary with sequence, but also with the degree of bending. Both these observations suggest that DNA is mechanically more complex than simple elastic rod models would imply.  相似文献   

19.
We report the results of four new molecular dynamics (MD) simulations on the DNA duplex of sequence d(CGCGAATTCGCG)2, including explicit consideration of solvent water, and a sufficient number of Na+ counterions to provide electroneutrality to the system. Our simulations are configured particularly to characterize the latest MD models of DNA, and to provide a basis for examining the sensitivity of MD results to the treatment of boundary conditions, electrostatics, initial placement of solvent, and run lengths. The trajectories employ the AMBER 4.1 force field. The simulations use particle mesh Ewald summation for boundary conditions, and range in length from 500 ps to 5.0 ns. Analysis of the results is carried out by means of time series for conformationalm, helicoidal parameters, newly developed indices of DNA axis bending, and groove widths. The results support a dynamically stable model of B-DNA for d(CGCGAATTCGCG)2 over the entire length of the trajectory. The MD results are compared with corresponding crystallographic and NMR studies on the d(CGCGAATTCGCG)2 duplex, and placed in the context of observed behavior of B-DNA by comparisons with the complete crystallographic data base of B-form structures. The calculated distributions of mobile solvent molecules, both water and counterions, are displayed. The calculated solvent structure of the primary solvation shell is compared with the location of ordered solvent positions in the corresponding crystal structure. The results indicate that ordered solvent positions in crystals are roughly twice as structured as bulk water. Detailed analysis of the solvent dynamics reveals evidence of the incorporation of ions in the primary solvation of the minor groove B-form DNA. The idea of localized complexation of otherwise mobile counterions in electronegative pockets in the grooves of DNA helices introduces an additional source of sequence-dependent effects on local conformational, helicoidal, and morphological structure, and may have important implications for understanding the functional energetics and specificity of the interactions of DNA and RNA with regulatory proteins, pharmaceutical agents, and other ligands.  相似文献   

20.
DNA bending caused by introduction of carbocyclic sugars constrained to the north conformation was studied, using explicit solvent molecular dynamic (MD) simulations. The native Drew-Dickerson (DD) dodecamer and its three modifications containing north carbocyclic sugars in the 7th (T7*), 8th (T8*) or both 7th and 8th (T7T8*) nucleotide positions were examined. Introduction of the carbocyclic sugar results in A-form conformations for the alpha, beta, chi, zeta, and sugar pucker backbone parameters in the modified nucleotides. Increased steric repulsion between the sugar and its parent base in the modified oligonucleotides impacts the roll and cup dinucleotide step parameters, increasing the bending of the oligomer axis. Increased buckling of the substituted nucleotides disrupts the usual stabilizing base stacking interactions. The level of overall bending depends on the number and position of carbocyclic sugars introduced in the DNA sequence. Single sugar substitutions are unable to induce substantial bending due to the neighboring unmodified nucleotides counterbalancing the distortion. Significant bending can, however, be induced by two consecutive north sugars (T7T8*), which is in agreement with experimental results. The modified oligomers populate a wide range of bend angles, indicating that they maintain flexibility in the bent state. The present results suggest that insertion of carbocyclic sugars into DNA or RNA duplexes can be used to engineer bending of the duplexes without impacting the electrostatic or chemical properties of the phosphodiester backbone, thereby serving as excellent tools for experimental elucidation of nucleic acid structure-function relationships.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号