首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bovine chromaffin secretory granules were purified by isopycnic Metrizamide gradient centrifugation and their Ca2+ sequestration pathways were characterized. The rate of Ca2+ sequestration at 37°C was first order, with a maximal uptake of 26.9 ±0.46 (mean ± S.D., n = 3) nmol Ca2+/mg protein and a first order rate constant (k) of 0.046 ± 0.002 min–1. At 4°C the rate of uptake was substantially attenuated, with only 2.47 ± 0.2 (mean ± S.D, n = 3) nmol Ca2+/mg protein sequestered in 60 min. Ca2+ sequestration was 93% inhibited by 180 mM NaCl [I50% of 78.7 ± 9.3 mM NaCl (mean ± S.D., n = 11)] but only slightly inhibited by KCl or MgCl2. Ca 2+ sequestration was not stimulated by incubation with MgATP but was inhibited by 57% after incubation with 30 M monensin. Ca 2+ sequestration was dependent on extravesicular Ca 2+ with half-maximal sequestration at pCa2+ 6.81 ± 0.028 (mean ± S.D., n = 3). Sequestered Ca2+ could be exchanged with external 45Ca2+, the exchange rate was first order (k of 0.042 ± 0.004: mean ± S.D., n = 3) and saturated at 27.7 ± 1.1 nmol Ca2+/mg (mean ± S.D., n = 3). The Ca2+/Ca2+ exchange system was totally inhibited by NaCl or KCl but only slightly by MgCl2. About 75% of sequestered 45Ca2+ could be released by incubation with NaCl, but only 8% was released by incubation with KCI. Half-maximal release of sequestered 45Ca2+ required 69.3 ± 12.2 mM NaCl (mean ± S.D., n = 3). The Na+-induced release of sequestered 45Ca2+ was rapid, t0.5 of 2.80 ± 0.63 min (mean ± S.D., n = 3) and inhibited at 4°C. The concurrent incubation of chromaffin granules with 45Ca2+ and either annexin proteins V or VI resulted in attenuated uptake of 45Ca2+. These results suggest that Ca2+ uptake in adrenal chromaffin granules is regulated by Na+ and Ca2+ gradients and also possibly by annexins V and VI.Abbreviations EGTA ethylene glycol bis (-aminoethyl ether)-N,-N,N,N-tetraacetic acid - SDS Sodium dodecyl sulphate - PAGE Polyacrylamide gel electrophoresis - BSA bovine serum albumin - AI Annexin I - AIIt Annexin II tetramer - AIII Annexin III - AIV Annexin IV - AV Annexin V - AVI Annexin VI - k first order rate constant - AT total extent of Ca2+ uptake (nmol) - BufferA 300 mM sucrose, 10 mM potassium phosphate (pH 7.0), 5 mM EGTA - Buffer B 300 mM sucrose, 10 mM potassium phosphate (pH 7.0) and 1 mM EGTA - Buffer C 300 mM sucrose, 10 mM potassium phosphate (pH 7.0) - Buffer D 300 mM sucrose, 10 mM potassium phosphate (pH 7.0), 0.5 mM EGTA and 0.65 MM CaCl2 - Buffer E 300 mM sucrose, 10 mM potassium phosphate (pH 7.0), 0.25 mM EGTA and 0.325 mM CaCl2  相似文献   

2.
Summary Several different fixation procedures and incubation media were used in order to demonstrate the ultrastructural localisation of Ca2+-activated adenosinetriphosphatase (ATPase) in the hamster adrenal medulla. Fixation by perfusion with 2.5% glutaraldehyde gave the best preservation of fine structure without markedly inhibiting the enzymic activity. The localisation of Ca2+-activated ATPase was different from that of Mg2+-activated ATPase: the Mg2+-dependent enzyme was confined to plasma membranes. Ca2+-dependent ATPase also occurred on the plasma membranes of neurons and of some chromaffin cells, but the most prominent site of this enzyme was in the Golgi apparatus of chromaffin cells. Most of the reaction product was localised between Golgi lamellae, but some was found in Golgi vesicles and in prosecretory granules. The nucleus, mature chromaffin granules, roughsurfaced endoplasmic reticulum and mitochondria were usually free of reaction product. Rarely, some precipitate was found in the matrix of mitochondria and in lysosomes.Wellcome Research Fellow.J. H. Burn Research Scholar.This work was supported by a grant from the Medical Research Council.  相似文献   

3.
P S Yoon  R R Sharp 《Biochemistry》1985,24(25):7269-7273
High-resolution proton NMR spectroscopy has been used to monitor the internal pH of chromaffin granule ghosts during Ca2+ influx through the membrane. For this purpose, ghosts were prepared by lysing and resealing chromaffin granules in a medium containing the disodium-ethylenediaminetetraacetic acid complex (Na2.EDTA). Uncomplexed EDTA and Ca.EDTA give rise to distinct sets of methylene peaks in the proton NMR spectrum. Free EDTA titrates with a pK near 6.6 in deuterated media; the chemical shifts that accompany titration have been used to monitor intravesicular pH changes which occur inside chromaffin granule ghosts as a result of ATPase activity and deprotonation of EDTA during Ca2+ influx and complex formation. ATPase activity results in an NMR-detectable proton gradient which is dissipated by nigericin. Experiments monitoring Ca2+ uptake showed that protons which are liberated inside ghosts as a result of Ca.EDTA complex formation are not extruded from the ghosts via a process coupled to Ca2+ entry. This suggests that the Ca2+ transport system of the chromaffin granule membrane occurs without concurrent proton antiport and is not directly coupled energetically to the transmembrane pH gradient.  相似文献   

4.
Calcium Homeostasis in Digitonin-Permeabilized Bovine Chromaffin Cells   总被引:6,自引:6,他引:0  
The regulation of cytosolic calcium was studied in digitonin-permeabilized chromaffin cells. Accumulation of 45Ca2+ by permeabilized cells was measured at various Ca2+ concentrations in the incubation solutions. In the absence of ATP, there was a small (10–15% of total uptake) but significant increase in accumulation of Ca2+ into both the vesicular and nonvesicular pools. In the presence of ATP, the permeabilized cells accumulated Ca2+ into carbonyl cyanide m-chlorophenyl hydrazone (CCCP)-sensitive and -insensitive pools. The CCCP-sensitive pool—mainly mitochondria—was active when the calcium concentration was > 1 μM and was not saturated at 25 μM. The Ca2+ sequestered by the CCCP-insensitive pool could be inhibited by vanadate and released by inositol trisphosphate, a combination suggesting that this pool was the endoplasmic reticulum. The CCCP-insensitive pool had a high affinity for calcium, with an EC50 of ~1 μM. When the Ca2+ concentration was adjusted to the level in the cytoplasm of resting cells (0.1 μM), the presumed endoplasmic reticulum pool was responsible for ~90% of the ATP-stimulated calcium uptake. At a calcium level similar to the acetylcholine-stimulated level in intact cells (5–10 μM), most of the Ca2+ (>95%) went into the CCCP-sensitive pool.  相似文献   

5.
The structure and function of chromaffin granulles of human phoechromocytoma was extensively investigated in a highly purified granule fraction obtained from a single specimen of human pheochromocytoma tissue. Pheochromocytoma chromaffin granules were analyzed for catecholamine, ATP, enkephalin, phospholipid, cytochrome and ion content. Using a variety of techniques it was found that the membrane of these granules is highly impermeable to Na+, K+, and H+, and that the intragranular pH was maintained at 5.1 irrespective of suspending media. The presence of MgATP induces a transmembrane potential (ΔΨ) across the membrane of these granules which is positive inside and which corresponds to 90 mV. Both ΔpH and ΔΨ are coupled to biogenic amine accumulation into the granules in a process which is reserpine sensitive. These properties are compared with those of chromaffin granules isolated from normal human tissue or from other animal species and are discussed in terms of possible explanation at a biochemical or subcellular level of the clinical manifestation of the pheochromocytoma.  相似文献   

6.
The effect of regucalcin, which is a regulatory protein of Ca2+ signaling, on Ca2+‐ATPase activity in isolated rat renal cortex mitochondria was investigated. The presence of regucalcin (50, 100, and 250 nM) in the enzyme reaction mixture led to a significant increase in Ca2+‐ATPase activity. Regucalcin significantly stimulated ATP‐dependent 45Ca2+ uptake by the mitochondria. Ruthenium red (10−6 M) or lanthunum chloride (10−6 M), an inhibitor of mitochondrial Ca2+ uptake, markedly inhibited regucalcin (100 nM)‐increased mitochondrial Ca2+‐ATPase activity and 45Ca2+ uptake. The effect of regucalcin (100 nM) in elevating Ca2+‐ATPase activity was completely prevented by the presence of digitonin (10−2%), a solubilizing reagent of membranous lipids, vanadate, an inhibitor of phosphorylation of ATPase, or dithiothreitol (50 mM), a protecting reagent of the sulfhydryl (SH) group of the enzyme. The activating effect of regucalcin (100 nM) on Ca2+‐ATPase activity was not further enhanced by calmodulin (0.30 μM) or dibutyryl cyclic AMP (10−4 M), which could increase Ca2+‐ATPase activity. Trifluoperazine (TFP; 50 μM), an antagonist of calmodulin, significantly decreased Ca2+‐ATPase activity. The activating effect of regucalcin on the enzyme was also seen in the presence of TFP, indicating that regucalcin's effect is not involved in mitochondrial calmodulin. The present study demonstrates that regucalcin can stimulate Ca2+‐pump activity in rat renal cortex mitochondria, and that the protein may act on an active site (SH group) related to phosphorylation of mitochondrial Ca2+‐ATPase. J. Cell. Biochem. 80:285–292, 2000. © 2000 Wiley‐Liss, Inc.  相似文献   

7.
Kimber A  Sze H 《Plant physiology》1984,74(4):804-809
The effects of purified Helminthosporium maydis T (HmT) toxin on active Ca2+ transport into isolated mitochondria and microsomal vesicles were compared for a susceptible (T) and a resistant (N) strain of corn (Zea mays). ATP, malate, NADH, or succinate could drive 45Ca2+ transport into mitochondria of corn roots. Ca2+ uptake was dependent on the proton electrochemical gradient generated by the redox substrates or the reversible ATP synthetase, as oligomycin inhibited ATP-driven Ca2+ uptake while KCN inhibited transport driven by the redox substrates. Purified native HmT toxin completely inhibited Ca2+ transport into T mitochondria at 5 to 10 nanograms per milliliter while transport into N mitochondria was decreased slightly by 100 nanograms per milliliter toxin. Malate-driven Ca2+ transport in T mitochondria was frequently more inhibited by 5 nanograms per milliliter toxin than succinate or ATP-driven Ca2+ uptake. However, ATP-dependent Ca2+ uptake into microsomal vesicles from either N or T corn was not inhibited by 100 nanograms per milliliter toxin. Similarly, toxin had no effect on proton gradient formation ([14C]methylamine accumulation) in microsomal vesicles. These results show that mitochondrial and not microsomal membrane is a primary site of HmT toxin action. HmT toxin may inhibit formation of or dissipate the electrochemical proton gradient generated by substrate-driven electron transport or the mitochondrial ATPase, after interacting with a component(s) of the mitochondrial membrane in susceptible corn.  相似文献   

8.
Both oxalate-supported Ca2+ uptake and Ca2+-stimulated ATPase activity of the sarcoplasmic reticulum are sensitive to the pH of the assay medium. Ca2+ uptake is optimal at relatively acidic pH (6.2–6.6); whereas, Ca2+-stimulated ATPase activity is optimal at a more alkaline pH (7.4–8.0). Following the addition of ATP, Ca2+ uptake demonstrates a time-dependent resistance to the inhibition by an alkaline pH. Once the linear phase of Ca2+ uptake is reached, alkalinization thereafter does not alter the rate established at the acidic pH. A similar time-dependent resistance is observed to the inhibition of Ca2+ uptake by the cation ionophore, X537A. In contrast, acidification of the alkaline medium after Ca2+ uptake is initiated by ATP has no such resistance to change. Acidification results in a prompt acceleration of the rate of Ca2+ uptake identical to that observed under control conditions at the acidic pH. Ca2+-stimulated ATPase activity, however, increases with alkalinization and decreased with acidification, regardless of time, in a manner expected from the rates observed under conditions when the pH is constant from the time of ATP addition. The results suggest that there is a time-dependent, pH-sensitive factor of oxalate-supported Ca2+ uptake. This factor can be activated by acidification at any time after ATP addition and, thus, does not represent a destruction of membrane function. In contrast, Ca2+-stimulated ATPase activity demonstrates no time-dependent resistance to pH change.  相似文献   

9.
Abstract: Carbachol or elevated K+ stimulated 45Ca2+ uptake into chromaffin cells two- to fourfold. The uptake was stimulated by cholinergic drugs with nicotinic activity, but not by those with only muscarinic activity. Ca2+ uptake and catecholamine secretion induced by the mixed nicotinic-muscarinic agonist carbachol were inhibited by the nicotinic antagonist mecamylamine, but not by the muscarinic antagonist atropine. Significant Ca2+ uptake occurred within 15 s of stimulation by carbachol or elevated K+ at a time before catecholamine secretion was readily detected. At later times the time course of secretion induced by carbachol or elevated K+ was similar to that of Ca2+ uptake. There was a close correlation between Ca2+ uptake and catecholamine secretion at various concentrations of Ca2+. The concentration dependencies for inhibition of both processes by Mg2+ or Cd2+ were similar. Ca2+ uptake saturated with increasing Ca2+ concentrations, with an apparent Km for both carbachol-induced and elevated K+-induced Ca2+ uptake of approximately 2 mM. The Ca2+ dependency, however, was different for the two stimuli. The studies provide strong support for the notion that Ca2+ entry and a presumed increase in cytosolic Ca2+ concentration respectively initiates and maintains secretion. They also provide evidence for the existence of saturable, intracellular, Ca2+- dependent processes associated with catecholamine secretion. Ca2+ entry may, in addition, enhance nicotinic receptor desensitization and may cause inactivation of voltage-sensitive Ca2+ channels.  相似文献   

10.
Right-side-out plasma membrane vesicles isolated from Zea mays roots were used to study membrane potential (ΔΨ)-dependent Ca2+ transport. Membrane potentials were imposed on the vesicles using either K+ concentration gradients and valinomycin or SCN concentration gradients, and the size of the imposed ΔΨ was measured with [14C]tetraphenylphosphonium. Uptake of 45Ca2+ into the vesicles was stimulated by inside-negative ΔΨ. The rate of transport increased to a maximum at a ΔΨ of about -80 mV and then declined at more negative ΔΨ. When extravesicular Ca2+ concentration was varied, uptake was maximal in the range 100–200 μM Ca2+. Neither dihydropyridine nor phenylalkylamine Ca2+ channel blockers had any effect on Ca2+ uptake but 30 μM ruthenium red was completely inhibitory with half maximal inhibition at 10–15 μM ruthenium red. Calcium transport was also inhibited by inorganic cations. Zn2+, Gd3+ and Mg2+ inhibited by a maximum of 30% while La3+, Nd3+ and Mn2+ inhibited by 70%. The inhibitory effects of La3+ and Gd3+ were additive. Lanthanum-insensitive Ca2+ five Ca2+ transport was totally inhibited by 80 μM Gd3+ and showed maximum activity at a ΔΨ of -60 mV, with less uptake at both higher and lower ΔΨ. Lanthanum and Gd3+ also inhibited Ca2+ uptake into protoplasts isolated from Zea roots and their individual and combined effects were similar in extent to those observed with plasma membrane vesicles. It is concluded that maize root plasma membrane contains two Ca2+-permeable channels that can be distinguished by their susceptibility to inhibition by La3+ and Gd3+. Both are inhibited by ruthenium red but not by other organic Ca2+ channel blockers.  相似文献   

11.
ATP-stimulated release of epinephrine and protein from isolated chromaffin granules of the bovine adrenal medulla has been characterized with respect to pH optimum, substrate requirements, and temperature. Chromaffin granules incubated at 37 °C under optimal conditions released virtually all of their epinephrine and soluble protein within 10 min. ATP-stimulated epinephrine release was optimal at pH 5.8–6.2 and was five times greater than at pH 7.0–7.4. Magnesium and chloride were absolutely required for this process. Magnesium stimulated release at concentrations up to 1.0 mm; however, it was moderately inhibitory at higher concentrations. The dependence of release on Cl? exhibited positive cooperativity and was nonsaturable. At 90 mm Cl? and 1.0 mm Mg2+, ATP-stimulated epinephrine release followed Michaelis-Menten kinetics with a K12 of 0.2 mm. The release of soluble chromaffin granule proteins closely paralleled epinephrine release under all conditions tested, while membrane components were not released. Analogs of ATP substituted at the β-γ position with methylene or imino groups were also capable of stimulating release from granules. These ATP analogs had reduced affinity and lower activity than ATP itself. ATP analogs substituted at the α-β position were essentially inactive but were potent inhibitors of ATP-stimulated release. We conclude that the regulation of release from granules by ATP is rapid and specific and may not depend on hydrolysis of ATP at the β-γ position. This ATP-dependent reaction may be involved in the cellular process of exocytosis.  相似文献   

12.
Calmodulin stimulated 45Ca2+ uptake into a plasma membrane enriched fraction from ox neurohypophysial nerve endings and into a microsome fraction. The 45Ca2+ uptake and the (Ca2+-Mg2+) ATPase activity in the plasma membrane fraction exhibited similar pCa and calmodulin sensitivities, suggesting that the enzyme activity is the biochemical expression of a high affinity Ca2+ pump. Calmodulin thus seems to play a role in regulation of the intracellular free Ca2+ concentration in the neurohypophysis.  相似文献   

13.
Effects of N-(6-aminohexyl)-5-chloro-1-naph-thalenesulfonamide (W-7), a calmodulin antagonist, on catecholamine (CA) release and 45Ca2+ uptake were studied using cultured bovine adrenal chromaffin cells. W-7 inhibited the carbamylcholine (CCh)-evoked CA release and 45Ca2+ uptake in a concentration-dependent manner. The inhibitory effect of W-7 on CCh-evoked CA release was not overcome either by an increase in extracellular calcium or CCh concentration. Although W-7 inhibited the high K+-evoked CA release and 45Ca2+ uptake, potency of the drug was approximately 50–100 fold less than when inhibiting the CCh-evoked CA release and 45Ca2+ uptake. The inhibitory effects of W-7 were observed both in norepinephrine release and epinephrine release. Moreover, W-7 inhibited the CCh-evoked 45Ca2+ efflux. These results suggest that the inhibition of CA release by W-7 in adrenal chromaffin cells is mainly due to its inhibition of calcium uptake. W-7 may influence the linkage between acetylcholine-receptor and calcium uptake with higher potency than depolarization-dependent calcium entry.  相似文献   

14.
Abstract: The chromaffin granule membrane in vitro is impermeable to protons as well as to Mg2+; however, when granules are incubated in the presence of the proton ionophore carbonyl cyanide p -trifluoromethoxy-phenylhydrazone or an inhibitor of the granule membrane Mg2+-dependent ATPase, the metal ion is accumulated inside the granules. This accumulation is dependent upon the granule transmembrane potential. The simultaneous presence of the ATPase inhibitor and the proton ionophore markedly increases metal ion incorporation. Mg2+ incorporation is also promoted by nigericin in the presence of potassium or sodium ions, indicating that Mg2+ accumulation is also dependent upon the transmembrane pH gradient. Concomitant with the Mg2+ accumulation, there is a significant loss of endogenous catecholamines. It is concluded that Mg2+ accumulation is determined by the electrochemical gradient maintained across the membrane. Once the metal ion has accumulated into the granules it displaces catecholamines from their storage sites.  相似文献   

15.
The ATP-supported Ca2+ uptake of heart and liver mitochondria preincubated in conditions in which electron transport had either been prevented by rotenone or antimycin, or induced by oxidizable substrates, has been studied. Mitochondria preincubated with respiratory inhibitors accumulate Ca2+ less efficiently than mitochondria preincubated with oxidizable substrates. The difference correlates with the degree of activation of the oligomycin-sensitive ATPase. The results indicate that the rate at which mitochondria take up Ca2+ in the ATP-supported system may be controlled by the reversible asociation of the inhibiting peptide (Pullman,. and Monroy, J. Biol. Chem., 238, 3762–3769) with the ATPase complex. Since this process appears to be modulated by the transmembrane electrochemical gradient, the latter may regulate the uptake of Ca2+ in a hitherto undescribed way.  相似文献   

16.
Channels selective for potassium or chloride ions are present in membranes of intracellular organelles such as sarcoplasmic (endoplasmic) reticulum, mitochondria, nucleus, synaptic vesicles, and chromaffin, and zymogen granules. They probably play an important role in cellular events such as compensation of electrical charges during transport of Ca2+, ΔpH formation in mitochondria or V-ATPase containing membrane granules, and regulation of volume changes, due to potassium and chloride transport into intracellular organelles. Intracellular potassium and chloride channels could also be the target for pharmacologically active compounds. This mini-review describes the basic properties, pharmacology, and current hypotheses concerning the functional role of intracellular potassium and chloride channels.  相似文献   

17.
Muscle uses Ca2+ as a messenger to control contraction and relies on ATP to maintain the intracellular Ca2+ homeostasis. Mitochondria are the major sub-cellular organelle of ATP production. With a negative inner membrane potential, mitochondria take up Ca2+ from their surroundings, a process called mitochondrial Ca2+ uptake. Under physiological conditions, Ca2+ uptake into mitochondria promotes ATP production. Excessive uptake causes mitochondrial Ca2+ overload, which activates downstream adverse responses leading to cell dysfunction. Moreover, mitochondrial Ca2+ uptake could shape spatio-temporal patterns of intracellular Ca2+ signaling. Malfunction of mitochondrial Ca2+ uptake is implicated in muscle degeneration. Unlike non-excitable cells, mitochondria in muscle cells experience dramatic changes of intracellular Ca2+ levels. Besides the sudden elevation of Ca2+ level induced by action potentials, Ca2+ transients in muscle cells can be as short as a few milliseconds during a single twitch or as long as minutes during tetanic contraction, which raises the question whether mitochondrial Ca2+ uptake is fast and big enough to shape intracellular Ca2+ signaling during excitation-contraction coupling and creates technical challenges for quantification of the dynamic changes of Ca2+ inside mitochondria. This review focuses on characterization of mitochondrial Ca2+ uptake in skeletal muscle and its role in muscle physiology and diseases.  相似文献   

18.
ATP stimulated the accumulation of 45Ca2+ by chromaffin granule ghosts which contained 5 mM oxalate to trap transported calcium within the lumen. Inasmuch as the ATP-dependent 45Ca2+ transport was resistant to 25 mM ammonium acetate as well as the proton ionophore, carbonylcyanide-m-chlorophenylhydrazone, the chromaffin granule proton translocating ATPase does not provide the energy for this process. Instead, we suggest that chromaffin granules contain a calcium translocating ATPase which catalyzes the 45Ca2+ uptake directly. The observation that chromaffin granules bind to a monoclonal antibody raised against a calcium pump from bovine brain supports this hypothesis.  相似文献   

19.
Ca2+ transport activity in synaptosomal membranes has been identified as having two major components: Ca2+-stimulated ATP hydrolysis and ATP-dependent CA2+ uptake. Both processes exhibit similar affinities for Ca2+ and operate maximally under identical buffer conditions. Subcellular fractionation studies revealed the Ca2+/Mg2+ ATPase and ATP-dependent CA2+ uptake activities to be highest in synaptic plasma membrane fractions 1 and 2, with lesser activity in synaptic vesicles and mitochondria. Progressive treatment with Triton X-100 activated, then decreased Ca2+/Mg2+ ATPase, Mg2+ ATPase and Ca2+ ATPase. ATP-dependent Ca2+ uptake was progressively decreased by similar treatment with Triton X-100. These studies illustrate that Ca2+ ATPase and ATP-dependent Ca2+ uptake may provide two important mechanisms for buffering of cytosolic Ca2+ at the nerve terminal. These systems may function to rapidly sequester cytosolic Ca2+ following a rise during depolarization and then extrude Ca2+ from the terminal against a concentration gradient. This regulation of cytosolic Ca2+, represented by two processes of the type seen in other plasma membranes, may play critical roles in calcium homeostasis in nerve cells.Footnote: Portions of this research were submitted by K. M. Garrett in partial fulfillment of requirements for the Doctor of Philosophy Degree in Pharmacology at the University of Texas Health Science Center.  相似文献   

20.
Abstract– The uptake of 45Ca2+ into cell suspensions prepared from a transplantable rat pheochromocytoma was measured. The uptake of Ca2+ into these cells is biphasic; there is a rapid, initial uptake of Ca+, followed by a slower uptake that proceeds at a linear rate for at least 10min at 37°C. The uptake of Ca2+ is a linear function of the external Ca2+ concentration over the range of 0.13-2.5 mm -Ca2+ Incubation of the cells in a medium containing 56mm -K+ results in a 2-3 fold increase in the uptake of Ca2+ into the cells; 56mm -K+ increases both phases of Ca2+ uptake. The cells apparently lack a mechanism to inactivate this 56 mm -K+-induced increase-in Ca2+ permeability. Two inhibitors of K+ stimulated catecholamine secretion, diphenylhydantoin and verapamil, both inhibit K +-stimulated Ca2+ uptake. These results provide a direct demonstration of the stimulus-coupled uptake of Ca2+ into chromaffin cells, and provide additional evidence for the correlation of Ca2+ uptake with catecholamine secretion by these cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号