首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bemisia tabaci (Gennadius) is considered to be the most economically important pest insect worldwide. The invasive variant, the Q biotype of B. tabaci was first identified in 2004, and has caused significant crop yield losses in Japan. The distribution and molecular characterization of the different biotypes of B. tabaci in Japan have been little investigated. In this study, B. tabaci populations were sampled from the Japanese Archipelago, the Amami Archipelago and the Ryukyu Islands between 2004 and 2008, and the nucleotide sequences of their mitochondrial cytochrome oxidase I genes were determined. Bayesian phylogenetic relationship analysis provided the first molecular evidence that the indigenous Japanese populations could be separated into four distinct genetic groups. One major native population from the Japanese Archipelago, given the genetic group name Lonicera japonica, was separated into an independent group, distinct from the other genetic groups. The second major population, the Nauru biotype in the Asia II genetic group, was identified in the Amami Archipelago and the Ryukyu Islands. Two distinct minor genetic groups, the Asia I and the China, were also identified. One invasive B‐related population belonging to the Mediterranean/Asia Minor/Africa genetic group has been identified in Honshu. All lineages generated by the phylogenetic analyses were supported by high posterior probabilities. These distinct indigenous B. tabaci populations developed in Japan under geographical and/or biological isolation, prior to recent invasions of the B and Q biotypes.  相似文献   

2.
Xiao Y  Zhang Y  Yanagimoto T  Li J  Xiao Z  Gao T  Xu S  Ma D 《Genetica》2011,139(2):187-198
Intraspecific phylogenies can provide useful insights into how populations have been shaped by historical and contemporary processes. To determine the population genetic structure and the demographic and colonization history of Cleisthenes herzensteini in the Northwestern Pacific, one hundred and twenty-one individuals were sampled from six localities along the coastal regions of Japan and the Yellow Sea of China. Mitochondrial DNA variation was analyzed using DNA sequence data from the 5′ end of control region. High levels of haplotype diversity (>0.96) were found for all populations, indicating a high level of genetic diversity. No pattern of isolation by distance was detected among the population differentiation throughout the examined range. Analyses of molecular variance (AMOVA) and the conventional population statistic Fst revealed no significant population genetic structure among populations. According to the exact test of differentiation among populations, the null hypothesis that C. herzensteini within the examined range constituted a non-differential mtDNA gene pool was accepted. The demographic history of C. herzensteini was examined using neutrality test and mismatch distribution analyses and results indicated Pleistocene population expansion (about 94–376 kya) in the species, which was consistent with the inference result of nested clade phylogeographical analysis (NCPA) showing contiguous range expansion for C. herzensteini. The lack of phylogeographical structure for the species may reflect a recent range expansion after the glacial maximum and insufficient time to attain migration-drift equilibrium.  相似文献   

3.
Phylogeographical patterns of marine and diadromous organisms are often influenced by dynamic ocean histories. For example, the marine realm around the Japanese Archipelago is an interesting area for phylogeographical research because of the wide variation in the environments driven by repeated shifts in sea level in the Quaternary. We analysed mitochondrial cyt b gene and nuclear myh6 gene sequences for individuals collected from throughout the range of the anadromous fish Leucopsarion petersii to assess the lineage divergence, phylogeographical pattern and historical demography in relation to geological history and oceanographic features around the archipelago. Leucopsarion petersii has two major lineages (the Japan Sea and Pacific Ocean lineages), which diverged during the late-early to middle Pleistocene. Geographical distributions of the two lineages were closely related to the pathways of the two warm currents, the Tsushima Current and the Kuroshio Current, that flow past the archipelago. Evidence of introgressive hybridization between these lineages was found at two secondary contact zones. Demographic tests suggested that the Japan Sea and Pacific Ocean lineages carried the genetic signal of different historical demographic processes, and these signals are probably associated with differences in habitat stability during recent glacial periods. The Japan Sea lineage has a larger body-size and more vertebrae, probably in relation to severe habitat conditions through Pleistocene climatic oscillations. Thus, the two lineages have long independent evolutionary histories, and the phylogeographical structure and demography of this species have been influenced both by historical events and the present-day oceanography around the Japanese Archipelago.  相似文献   

4.
Aim Alternative hypotheses concerning genetic structuring of the widespread endemic New Guinean forest pademelons (Thylogale) based on current taxonomy and zoogeography (northern, southern and montane species groupings) and preliminary genetic findings (western and eastern regional groupings) are investigated using mitochondrial sequence data. We examine the relationship between the observed phylogeographical structure and known or inferred geological and historical environmental change during the late Tertiary and Quaternary. Location New Guinea and associated islands. Methods We used primarily museum specimen collections to sample representatives from Thylogale populations across New Guinea and three associated islands. Mitochondrial cytochrome b and control region sequence data were used to construct phylogenies and estimate the timing of population divergence. Results Phylogenetic analyses indicated subdivision of pademelons into ‘eastern’ and ‘western’ regional clades. This was largely due to the genetic distinctiveness of north‐eastern and eastern peninsula populations, as the ‘western’ clade included samples from the northern, southern and central regions of New Guinea. Two tested island groups were closely related to populations north of the Central Cordillera; low genetic differentiation of pademelon populations between north‐eastern New Guinea and islands of the Bismarck Archipelago is consistent with late Pleistocene human‐mediated translocations, while the Aru Islands population showed divergence consistent with cessation of gene flow in the mid Pleistocene. There was relatively limited genetic divergence between currently geographically isolated populations in subalpine and nearby mid‐montane or lowland regions. Main conclusions Phylogeographical structuring does not conform to zoogeographical expectations of a north/south division across the cordillera, nor to current species designations, for this generalist forest species complex. Instead, the observed genetic structuring of Thylogale populations has probably been influenced by geological changes and Pleistocene climatic changes, in particular the recent uplift of the north‐eastern Huon Peninsula and the lowering of tree lines during glacial periods. Low sea levels during glacial maxima also allowed gene flow between the continental Aru Island group and New Guinea. More work is needed, particularly multi‐taxon comparative studies, to further develop and test phylogeographical hypotheses in New Guinea.  相似文献   

5.
The presence of the pale chub Zacco platypus (Japanese name, Oikawa) in Taiwan has been suggested to be a result of its inadvertent introduction from Lake Biwa in Japan in the 1980s in conjunction with the Japanese Ayu, Plecoglossus altivelis altivelis, which was released several times into the Tamsui River to restock the extinct Ayu population of Taiwan. However, it is also possible that Z. platypus is native to Taiwan and has not been previously described for reasons of its narrow range. Knowledge of the colonizing history of Z. platypus is of considerable importance because it provides insight into the evolutionary process and, hence, impacts management decisions regarding this species in Taiwan. A portion of the mitochondrial D-loop was sequenced for 77 specimens from five populations of Z. platypus from Japan and Taiwan. A total of 22 haplotypes were identified, and nucleotide divergence among haplotypes ranged from 0.20% to 2.82%. Haplotype diversity was high in all populations examined, with a range from 0.718 in the Tagiri River population to 0.909 in the Lake Biwa population. Phylogenetic and statistical parsimony analyses of the molecular data revealed a close genetic relationship between Taiwanese and Japanese Z. platypus and supported the previous report that the Taiwanese Z. platypus originated in Lake Biwa in Japan.  相似文献   

6.
Japanese horse chestnut (Aesculus turbinata: Hippocastanaceae) is one of the typical woody plants that grow in temperate riparian forests in the Japanese Archipelago. To analyze the phylogeography of this plant in the Japanese Archipelago, we determined cpDNA haplotypes for 337 samples from 55 populations covering the entire distribution range. Based on 1,313 bp of two spacers, we determined ten haplotypes that are distinguished from adjacent haplotypes by one or two steps. Most of the populations had a single haplotype, suggesting low diversity. Spatial analysis of molecular variance suggested three obvious phylogeographic structures in western Japan, where Japanese horse chestnut is scattered and isolated in mountainous areas. Conversely, no clear phylogeographic structure was observed from the northern to the southern limit of this species, including eastern Japan, where this plant is more common. Rare and private haplotypes were also found in southwestern Japan, where Japanese horse chestnuts are distributed sparsely. These findings imply that western Japan might have maintained a relatively large habitat for A. turbinata during the Quaternary climatic oscillations, while northerly regions could not.  相似文献   

7.
Lacustrine sockeye salmon (Oncorhynchus nerka) are listed as an endangered species in Japan despite little genetic information on their population structure. In order to clarify the genetic diversity and structure of Japanese populations for evaluating on the bottleneck effect and an endangered species, we analyzed the ND5 region of mitochondrial DNA (mtDNA) and 45 single nucleotide polymorphisms (SNPs) in 640 lacustrine sockeye salmon in Japan and 80 anadromous sockeye salmon in Iliamna Lake of Alaska. The genetic diversity of the Japanese population in both mtDNA and SNPs was significantly less than that of the Iliamna Lake population. Moreover, all Japanese populations had SNP loci deviating from the HWE. In spite of low genetic diversity, the SNP analyses resulted that the Japanese population was significantly divided into three groups. These suggest that Japanese sockeye salmon populations should be protected as an endangered species and genetically disturbed by the hatchery program and transplantations.  相似文献   

8.
Genetic differentiation among 34 populations of the fluvial land-locked goby,Rhinogobius flumineus, endemic to southwestern Japan, was investigated by electrophoretic methods. Twenty-three loci, which were presumed to correspond to 15 enzymes and one non-enzymatic protein, were scored. Genetic differentiation within the species was high compared with other amphidromous or peripheral fishes, probably due to more restricted gene exchanges between adjacent populations. From the allelic constitution, 5 population groups could be recognized. The largest group, distributed in the western part of Japan, included 21 populations with low genetic differentiation (mean genetic distance; 0.04). Six populations distributed in the eastern part of Japan, bounded by the Suzuka Mountains, constituted the second largest group (mean genetic distance; 0.02). The most divergent group, distributed at the eastern edge of the species’ range, had a unique allelic constitution, not only when compared with other groups but also within populations of the group itself. The geographical patterns of the genetic groups were discussed in relation to the geological history of the Japanese Archipelago since the Pleistocene.  相似文献   

9.
Recent molecular studies have indicated that phylogeographical history of Japanese biota is likely shaped by geohistory along with biological events, such as distribution shifts, isolation, and divergence of populations. However, the genetic structure and phylogeographical history of terrestrial Annelida species, including leech species, are poorly understood. Therefore, we aimed to understand the genetic structure and phylogeographical history across the natural range of Haemadipsa japonica, a sanguivorous land leech species endemic to Japan, by using nine polymorphic nuclear microsatellites (nSSR) and cytochrome oxidase subunit one (COI) sequences of mitochondrial DNA (mtDNA). Analyses using nSSR revealed that H. japonica exhibited a stronger regional genetic differentiation among populations (G'ST = 0.77) than other animal species, probably because of the low mobility of land leech. Analyses using mtDNA indicated that H. japonica exhibited two distinct lineages (A and B), which were estimated to have diverged in the middle Pleistocene and probably because of range fragmentation resulting from climatic change and glacial and interglacial cycles. Lineage A was widely distributed across Japan, and lineage B was found in southwestern Japan. Analyses using nSSR revealed that lineage A was roughly divided into two population groups (i.e., northeastern and southwestern Japan); these analyses also revealed a gradual decrease in genetic diversity with increasing latitude in lineage A and a strong genetic drift in populations of northeastern Japan. Combined with the largely unresolved shallow polytomies from the mtDNA phylogeny, these results implied that lineage A may have undergone a rapid northward migration, probably during the Holocene. Then, the regional genetic structure with local unique gene pools may have been formed within each lineage because of the low mobility of this leech species.  相似文献   

10.
Li T  Zhang M  Qu Y  Ren Z  Zhang J  Guo Y  Heong KL  Villareal B  Zhong Y  Ma E 《Genetica》2011,139(4):511-524
The rice grasshopper, Oxya hyla intricata, is a rice pest in Southeast Asia. In this study, population genetic diversity and structure of this Oxya species was examined using both DNA sequences and AFLP technology. The samples of 12 populations were collected from four Southeast Asian countries, among which 175 individuals were analysed using mitochondrial DNA cytochrome c oxidase subunit I (COI) sequences, and 232 individuals were examined using amplified fragment length polymorphisms (AFLP) to test whether the phylogeographical pattern and population genetics of this species are related to past geological events and/or climatic oscillations. No obvious trend of genetic diversity was found along a latitude/longitude gradient among different geographical groups. Phylogenetic analysis indicated three deep monophyletic clades that approximately correspond to three geographical regions separated by high mountains and a deep strait, and TCS analysis also revealed three disconnected networks, suggesting that spatial and temporal separations by vicariance, which were also supported by AMOVA as a source of the molecular variance presented among groups. Gene flow analysis showed that there had been frequent historical gene flow among local populations in different regions, but the networks exhibited no shared haplotype among populations. In conclusion, the past geological events and climatic fluctuations are the most important factor on the phylogeographical structure and genetic patterns of O. hyla intricata in Southeast Asia. Habitat, vegetation, and anthropogenic effect may also contribute to gene flow and introgression of this species. Moreover, temperature, abundant rainfall and a diversity of graminaceous species are beneficial for the migration of O. hyla intricata. High haplotype diversity, deep phylogenetic division, negative Fu’s F s values and unimodal and multimodal distribution shapes all suggest a complicated demographic expansion pattern of these O. hyla intricata populations, which might have been caused by climatic oscillations during glacial periods in the Quaternary.  相似文献   

11.
Betula maximowicziana is an ecologically and economically important tree species in Japan. In order to examine the phylogeographical pattern of the species in detail, maternally inherited chloroplast (cp) DNA variations of 25 natural populations of Betula maximowicziana and a total of 12 populations of three related species were evaluated by PCR-RFLP analysis. Two main haplotypic groups of B. maximowicziana populations (northern and southern) were detected, with the main boundary passing through the Tohoku region in northeastern Japan; in addition there was high genetic differentiation among the 25 populations studied (G ST = 0.950, G\textST = 0. 9 7 7 G_{\text{ST}}^{\prime } = 0. 9 7 7 ). The phylogeographical pattern exhibited by B. maximowicziana was much more similar to that of alpine plants than to that of beech and oak. Comparison of the patterns of genetic structure obtained from the cpDNA with previously and newly acquired data on bi-parentally inherited nuclear DNA indicates that the nuclear genome was transferred via pollen from the northern haplotypic group to the southern group more frequently than it moved in the opposite direction. Although common haplotypes were detected among B. maximowicziana and the two related species examined, these haplotypes were not shared sympatrically, suggesting very rare hybridization among the species currently occurring in their natural populations.  相似文献   

12.
Similar distribution ranges shared by closely related plant species may have been shaped through different migration histories if those species have differing habitat preference. To test this hypothesis, phylogeographical patterns and population genetic structures were compared between two sister Viola species: Viola eizanensis preferring woodland and V. chaerophylloides var. sieboldiana preferring grassland, both being native to the Japanese Archipelago. Amplified fragment length polymorphism (AFLP) was used for phylogenetic reconstruction, together with Bayesian ancestry analysis, AMOVA, analysis of genetic diversity statistics, and analysis of the relative contribution of each population to total diversity. The results indicated that V. eizanensis had two distinct lineages occurring in the western and eastern part of Japan, but such lineages are not distinct in V. chaerophylloides var. sieboldiana. Both species exhibited the low genetic diversity and high between-population differentiation typical of selfing plants. In V. chaerophylloides var. sieboldiana, one particular population made a significantly higher contribution to the total heterozygosity (H T), whereas in V. eizanensis, no population was identified as making a particularly higher contribution to H T. These findings suggest that V. eizanensis had been isolated in two large glacial refugia, whereas populations of V. chaerophylloides var. sieboldiana were restricted to a single small refuge. Different light requirements between these two closely related species probably caused these differing responses to climatic change during the last ice age. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
 CpDNA variation in Japanese beech, Fagus crenata (Fagaceae), was studied in 45 populations distributed throughout the species' range. Two cpDNA regions were sequenced: the non-coding region between the trnL (UAA) 5′exon and trnF (GAA), and the trnK region (including matK). Thirteen distinct cpDNA haplotypes were recognized and each haplotype was found to be geographically structured. Two major clades (I and II+III) were revealed in phylogenetic analyses among the haplotypes using F. sylvatica as an outgroup. The haplotypes of Clade I were distributed mainly along the Japan Sea side of the Japanese Archipelago, while those of Clade II+III occurred chiefly along the Pacific Ocean side. Consequently, the distribution of the two major cpDNA clades suggests that there were two migration routes in the history of F. crenata; one along the Japan Sea and the other along the Pacific Ocean side of the Japanese Islands. Received March 19, 2001 Accepted November 22, 2001  相似文献   

14.
Using sequence analyses of fragments of the small and large subunits of mitochondrial genes 12S and 16S rRNA, we studied the molecular identity of five Triops populations from the Baja California Peninsula, México. Additionally, we explored the phylogeny of the genus by comparing with sequence data from gonochoric T. longicaudatus (Zacatecas, México), commercial Triops kit (U.S.A.), T. `granarius' (Japan), T. cancriformis (Austria), T. australiensis (Australia) and Lepidurus lemmoni (U.S.A.). The 16S fragment was not useful to discriminate the American Triops forms because their sequences were more than 99% similar. Molecular and phylogenetic analyses using the 12S gene fragments, in agreement with previous allozyme studies, indicate that the nominal (morphological) species T. longicaudatus is a mixture of several species such that, of the seven Triops American populations studied, six phylogenetic species can be identified and two morphologically and reproductively highly divergent forms can be grouped into a single monophyletic clade. The molecular data, rather than supporting our previous proposal that the phylogenetic relationships of Triops species could be deduced by similarities in the number of total and legless rings, suggest that T. cancriformis may represent an independent group from the rest of the species in that genus. In spite of detectable differences among American populations, our analyses indicate these represent a single monophyletic group when compared to Triops from outside of the New World.  相似文献   

15.
Aim The post‐glacial range dynamics of many European plant species have been widely investigated, but information rapidly diminishes as one moves further back in time. Here we infer the historical range shifts of Laurus, a paradigmatic tree of the Tethyan flora that has covered southern Eurasia since the Oligo‐Miocene, by means of phylogenetic and phylogeographical analyses. Location Mediterranean Basin, Black Sea and Macaronesian archipelagos (Azores, Madeira, Canary Islands). Methods We analysed plastid DNA (cpDNA) sequence (trnK–matK, trnD–trnT) variation in 57 populations of Laurus and three Lauraceae genera. Phylogenetic methods (maximum parsimony and Bayesian inference) and statistical parsimony networks were used to reconstruct relationships among haplotypes. These results were contrasted with the fossil record and bioclimatic niche‐based model predictions of past distributions to infer the migration routes and location of refugia. Results The phylogenetic tree revealed monophyly for Laurus. Overall sequence variability was low within Laurus, but six different haplotypes were distinguished and a single network retrieved, portraying three lineages primarily related to geography. A strongly divergent eastern lineage occupied Turkey and the Near East, a second clade was located in the Aegean region and, lastly, a western clade grouped all Macaronesian and central and western Mediterranean populations. A close relationship was observed between the Macaronesian populations of L. azorica and the western populations of L. nobilis. Main conclusions The phylogeographical structure of Laurus preserves the imprints of an ancient contraction and break‐up of the range that resulted in the evolution of separate cpDNA lineages in its western‐ and easternmost extremes. Intense range dynamics in the western Mediterranean and multiple glacial refugia contributed to the generation and long‐term conservation of this phylogeographical pattern, as shown by the fit between the haplotype ranges and past suitable areas inferred from bioclimatic models. Finally, our results challenge the taxonomic separation of Laurus into two distinct species.  相似文献   

16.
During the summer of 2008 and 2009, massive algal blooms repeatedly broke out in the Yellow Sea of China. These were undoubtedly caused by the accumulations of one or more species in the macroalgal genus Ulva. In previous reports, morphological observation indicated that the species involved in this phenomenon is Ulva prolifera but molecular analyses indicated that the species belongs to an Ulva linza–procera–prolifera (LPP) clade. Correct identification of the bloom species is required to understand and manage the blooms, but the taxonomic status of the bloom species remains unclear. In the current study, the taxonomic status of 22 selected specimens from the Yellow Sea was assessed by using both morphological and molecular (ITS and rbcL sequences) data. In addition, 5S rDNA analyses were performed for those samples clustering in the LPP clade, and phylogenetic tree and ribotype analyses were constructed for determining the possible origin of the bloom. Three free-floating and two attached Ulva species were distinguished and described: Ulva compressa Linnaeus and Ulva pertusa Kjellman were found in free-floating samples; U. linza Linnaeus was found on rocks; and U. prolifera O.F. Müller was found in both habitats. Diversity in free-floating Ulva of the Yellow Sea appears to be greater than previously thought. The dominant free-floating Ulva species, U. prolifera, was not closely related to local populations attached to rocks but was closely related to populations from Japan.  相似文献   

17.
The three chthamalids Chthamalus stellatus , C. montagui and Euraphia depressa are common inhabitants of the intertidal zone in the Eastern Atlantic, Mediterranean Sea and Black Sea. In this study, we investigated the occurrence of these barnacles in a wide range of their distribution. Population divergences of these two species have been inferred using three molecular markers — internal transcribed spacer (ITS), elongation factor 1α (EF-1α) and cytochrome oxidase subunit I (COI). ITS sequences of C. stellatus were identical throughout the species range, whereas ITS sequences of C. montagui indicated that the Black Sea and Mediterranean populations are isolated from the Atlantic population. The COI and EF-1α sequences were the most variable and informative. They indicated a high genetic divergence between Atlantic, Mediterranean and Black Sea populations for C. montagui . In addition significant genetic structure was found among the populations of C. stellatus based on EF-1α but not COI. Interestingly, our molecular dating analysis correlated the pattern of diversification in C. montagui to major geological changes that occurred in the Mediterranean during the end of the Messinian and Pleiocene periods. We suggest that palaeohistory shaped the divergences between Chthamalus populations that have probably been maintained by current hydrographic conditions. Finally, COI phylogenetic analysis placed the genus Euraphia within the Chthamalus clade, suggesting the need for a taxonomic revision of Euraphia . This study represents the most detailed phylogeographical analysis of intertidal Mediterranean species to date, and shows that geological events have strongly shaped the current diversity pattern of this fauna.  相似文献   

18.
The tropical Indo-West Pacific is the biogeographic region with the highest diversity of marine shallow water species, with its centre in the Indo-Malay Archipelago. However, due to its high endemism, the Red Sea is also considered as an important centre of evolution. Currently, not much is known about exchange among the Red Sea, Indian Ocean and West Pacific, as well as connectivity within the Indo-Malay Archipelago, even though such information is important to illuminate ecological and evolutionary processes that shape marine biodiversity in these regions. In addition, the inference of connectivity among populations is important for conservation. This study aims to test the hypothesis that the Indo-Malay Archipelago and the Red Sea are important centres of evolution by studying the genetic population structure of the giant clam Tridacna maxima. This study is based on a 484-bp fragment of the cytochrome c oxidase I gene from 211 individuals collected at 14 localities in the Indo-West Pacific to infer lineage diversification and gene flow as a measure for connectivity. The analysis showed a significant genetic differentiation among sample sites in the Indo-West Pacific (Φst = 0.74, P < 0.001) and across the Indo-Malay Archipelago (Φst = 0.72, P < 0.001), indicating restricted gene flow. Hierarchical AMOVA revealed the highest fixation index (Φct = 0.8, P < 0.001) when sample sites were assigned to the following regions: (1) Red Sea, (2) Indian Ocean and Java Sea, (3) Indonesian throughflow and seas in the East of Sulawesi, and (4) Western Pacific. Geological history as well as oceanography are important factors that shape the genetic structure of T. maxima in the Indo-Malay Archipelago and Red Sea. The observed deep evolutionary lineages might include cryptic species and this result supports the notion that the Indo-Malay Archipelago and the Red Sea are important centres of evolution. Communicated by Biology Editor Dr. Ruth Gates  相似文献   

19.
Until recently, studies examining the geographical distribution of insects in the Tuscan Archipelago have focused on paleogeography as the primary influence on species distributions. However, for flying insects such as Hymenoptera that may be able to disperse over water, current geographical location is likely to be more important in determining present distributions within the Archipelago. Here we compare mainland and island wasp populations using genetic variation and cuticular hydrocarbon composition of the vespid wasp Polistes dominulus, and species composition of wasps in the family Pompilidae. Both chemical and genetic data result in similar clustering of P. dominulus populations that reflect present geographical location. Moreover, we found current geographical distance to be significantly correlated with P. dominulus population genetic differentiation and Pompilidae faunal composition. These data suggest that dispersal over present sea distances is more important in determining population differentiation and species distribution in the Tuscan Archipelago than paleogeography.  相似文献   

20.
Twenty‐two microsatellite DNA markers were developed for Japanese sea bass (Laterolabrax japonicus), of which 19 were independent from each other and at Hardy–Weinberg equilibrium across the three populations of Japanese sea bass inhabiting Chinese coasts (defined as China group) and the five populations inhabiting Japanese coasts (defined as Japan group). These 19 markers were used to determine the number of alleles and the expected heterozygosity across the eight populations. The majority of individuals (93.8–98.8%) of the three populations of the pre‐defined China group were assigned to an inferred cluster, and 90.9–94.6% of the individuals of the five populations of the pre‐defined Japan group were assigned to the other. The average number of alleles across the 19 loci was significantly lower in the China group than in the Japan group (10.3 vs 15.4), however, the average expected heterozygosity across the 19 loci of the China group was similar to that of the Japan group (0.743 vs 0.750). An effective population size reduction (i.e. bottleneck effect) was detected in the China group (P = 0.00357), which may have resulted from either over‐catching or glaciations or both. The pairwise FST among populations of the China group (0.019–0.029) and among populations of the Japan group (0.003–0.021) were lower than those between the populations of the China group and the populations of the Japan group (0.076–0.101). The average pair‐wise FST between the populations of the China group and those of the Japan group reached 0.075, and the variation between the China group and the Japan group accounted for 7.16% of the total. Nei’s original measures of genetic distances among the populations of the China group and the Japan group ranged from 0.123 to 0.145 and from 0.055 to 0.123, respectively, while that between the populations of the China group and the populations of the Japan group ranged from 0.326 to 0.450. Japanese sea bass is able to disperse over a long distance; however, our observations demonstrated that it cannot migrate across a possible barrier existing between Chinese and Japanese coasts. Most individuals of the Zhoushan population of the China group were assigned to two inferred clusters, and most individuals of Ariake Sea, Tokyo Bay and Ishikawa populations of the Japan group were assigned to three inferred clusters, indicating that these locations were the gathering grounds of Japanese sea bass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号