首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Airborne sound signals emitted by dancing honeybees (Apis mellifera) contain information about the locations of food sources. Honeybees can perceive these near field sounds and rely on them to decode the messages of the dance language. The dance sound is characterized by rhythmical air particle movement of high velocity amplitudes. The aim of the present study was to identify the sensory structures used to detect near field sound signals. In an operant conditioning experiment, bees were trained to respond to sound. Ablation experiments with these trained bees revealed that neither mechanosensory hairs on the antennae or head nor bristle fields at the joints of the antenna, but Johnston's organ, a chordotonal organ in the pedicel of the antenna, is used to detect near field sound in honeybees.  相似文献   

2.
Summary In the dance language of the western honeybee,Apis mellifera, airborne near field sound signals and a sense of hearing are used to communicate the locations of food sources. In the Asian honeybeeApis dorsata similar acoustical signals have been found recently, whereasApis florea does not emit dance sounds to transfer information about the location of food sources. The aim of the present study was to investigate the sense of hearing in these two species. Operant conditioning experiments reveal that both species are able to detect such near field sounds. The results support the hypothesis of acoustical communication inApis dorsata. The auditory sense ofApis florea, which does not use acoustical signals in the dance language, is discussed as a preadaptation for the evolution of an acoustical dance communication in ancestral honeybees.  相似文献   

3.
Auditory evoked potentials (AEP) were used to measure the hearing range and auditory sensitivity of the American sand lance Ammodytes americanus. Responses to amplitude‐modulated tone pips indicated that the hearing range extended from 50 to 400 Hz. Sound pressure thresholds were lowest between 200 and 400 Hz. Particle acceleration thresholds showed an improved sensitivity notch at 200 Hz but not substantial differences between frequencies and only a slight improvement in hearing abilities at lower frequencies. The hearing range was similar to Pacific sand lance Ammodytes personatus and variations between species may be due to differences in threshold evaluation methods. AEPs were also recorded in response to pulsed sounds simulating humpback whale Megaptera novaeangliae foraging vocalizations termed megapclicks. Responses were generated with pulses containing significant energy below 400 Hz. No responses were recorded using pulses with peak energy above 400 Hz. These results show that A. americanus can detect the particle motion component of low‐frequency tones and pulse sounds, including those similar to the low‐frequency components of megapclicks. Ammodytes americanus hearing may be used to detect environmental cues and the pulsed signals of mysticete predators.  相似文献   

4.
Recent studies have shown that some clupeid fishes, including shad and menhaden, can detect ultrasound (sound with frequencies higher than 20 kHz) and actively avoid it. However, other clupeids, including sardines and anchovies, do not detect ultrasound. The hearing abilities of herring are of particular interest because of their commercial importance, our reliance on acoustics to monitor their populations and behavioural evidence of responses to high-frequency sound by some clupeid species. We measured the hearing sensitivity of Pacific herring (Clupea pallasii) using the auditory brainstem response and found that they were unable to detect ultrasonic signals at received levels up to 185 dB re 1 microPa. Herring had hearing thresholds at lower frequencies (100-5000 Hz) that were typical of other non-ultrasound-detecting clupeids. This lower-frequency hearing sensitivity could explain the results of several earlier studies showing responses to broadband sounds.  相似文献   

5.
In the dance language, honeybees use airborne near field sound signals to inform their nestmates of the location of food sources. In behavioral experiments it has recently been shown that Johnston's organ, a chordotonal organ located in the pedicel of the antenna, is used to perceive these sound signals. In the present study the mechanical response of the antennal flagellum to stimulation with near field sound signals was investigated using laser vibrometry. The absolute amplitudes of antennal deflection with acoustical stimulation, the response to sounds of different displacement and velocity amplitudes, the shape of movement of the flagellum, the mechanical frequency response and the mechanical directional sensitivity of the auditory sense organ of the honeybee are described. Using pulsed stimuli simulating the dance sounds it is shown that the temporal pattern of the dance sound is resolved on the level of antennal vibrations.  相似文献   

6.
Vocalizations have been elucidated in previous songbird studies, whereas less attention has been paid to non-vocal sounds. In the blue-capped cordon-bleu (Uraeginthus cyanocephalus), both sexes perform courtship displays that are accompanied by singing and distinct body movements (i.e. dance). Our previous study revealed that their courtship bobbing includes multiple rapid steps. This behaviour is quite similar to human tap dancing, because it can function as both visual and acoustic signals. To examine the acoustic signal value of such steps, we tested if their high-speed step movements produce non-vocal sounds that have amplitudes similar to vocal sounds. We found that step behaviour affected step sound amplitude. Additionally, the dancing step sounds were substantially louder than feet movement sounds in a non-courtship context, and the amplitude range overlapped with that of song notes. These results support the idea that in addition to song cordon-bleus produce acoustic signals with their feet.  相似文献   

7.
The hearing thresholds of the nurse shark, Ginglymostoma cirratum, and the yellow stingray, Urobatis jamaicensis, were measured using auditory evoked potentials (AEP). Stimuli were calibrated using a pressure-velocity probe so that the acoustic field could be completely characterized. The results show similar hearing thresholds for both species and similar hearing thresholds to previously measured audiograms for the lemon shark, Negaprion brevirostris, and the horn shark, Heterodontis francisi. All of these audiograms suggest poor hearing abilities, raising questions about field studies showing attraction of sharks to acoustic signals. By extrapolating the particle acceleration thresholds into estimates of their equivalent far-field sound pressure levels, it appears that these sharks cannot likely detect most of the sounds that have attracted sharks in the field.  相似文献   

8.
The anabantoid fish Trichopsis vittata starts vocalizing as 8-week-old juveniles. In order to determine whether juveniles are able to detect conspecific sounds, hearing sensitivities were measured in six size groups utilizing the auditory brainstem response-recording technique. Results were compared to sound pressure levels and spectra of sounds recorded during fighting. Auditory evoked potentials were present in all size groups and complete audiograms were obtained starting with 0.18 to 0.30 g juveniles. Auditory sensitivity during development primarily increased between 0.8 kHz and 3.0 kHz. The most sensitive frequency within this range shifted from 2.5 kHz to 1.5 kHz, whereas thresholds decreased by 14 dB. Sound production, on the other hand, started at 0.1 g and sound power spectra at dominant frequencies increased by 43 dB, while dominant frequencies shifted from 3 kHz to 1.5 kHz. Comparisons between audiograms and sound power spectra in similar-sized juveniles revealed no clear match between most sensitive frequencies and dominant frequencies of sounds. This also revealed that juveniles cannot detect conspecific sounds below the 0.31 to 0.65 g size class. These results indicate that auditory sensitivity develops prior to the ability to vocalize and that vocalization occurs prior to the ability to communicate acoustically.  相似文献   

9.
Two freshwater gobies Padogobius martensii and Gobius nigricans live in shallow (5-70 cm) stony streams, and males of both species produce courtship sounds. A previous study demonstrated high noise levels near waterfalls, a quiet window in the noise around 100 Hz at noisy locations, and extremely short-range propagation of noise and goby signals. To investigate the relationship of this acoustic environment to communication, we determined audiograms for both species and measured parameters of courtship sounds produced in the streams. We also deflated the swimbladder in P. martensii to determine its effect on frequency utilization in sound production and hearing. Both species are maximally sensitive at 100 Hz and produce low-frequency sounds with main energy from 70 to 100-150 Hz. Swimbladder deflation does not affect auditory threshold or dominant frequency of courtship sounds and has no or minor effects on sound amplitude. Therefore, both species utilize frequencies for hearing and sound production that fall within the low-frequency quiet region, and the equivalent relationship between auditory sensitivity and maximum ambient noise levels in both species further suggests that ambient noise shapes hearing sensitivity.  相似文献   

10.
Several anabantoid species produce broad-band sounds with high-pitched dominant frequencies (0.8–2.5 kHz), which contrast with generally low-frequency hearing abilities in (perciform) fishes. Utilizing a recently developed auditory brainstem response recording-technique, auditory sensitivities of the gouramis Trichopsis vittata, T. pumila, Colisa lalia, Macropodus opercularis and Trichogaster trichopterus were investigated and compared with the sound characteristics of the respective species. All five species exhibited enhanced sound-detecting abilities and perceived tone bursts up to 5 kHz, which qualifies this group as hearing specialists. All fishes possessed a high-frequency sensitivity maximum between 800 Hz and 1500 Hz. Lowest hearing thresholds were found in T. trichopterus (76 dB re 1 μPa at 800 Hz). Dominant frequencies of sounds correspond with the best hearing bandwidth in T. vittata (1–2 kHz) and C. lalia (0.8–1 kHz). In the smallest species, T. pumila, dominant frequencies of acoustic signals (1.5–2.5 kHz) do not match lowest thresholds, which were below 1.5 kHz. However, of all species studied, T. pumila had best hearing sensitivity at frequencies above 2 kHz. The association between high-pitched sounds and hearing may be caused by the suprabranchial air-breathing chamber, which, lying close to the hearing and sonic organs, enhances both sound perception and emission at its resonant frequency. Accepted: 26 November 1997  相似文献   

11.
Early tetrapods faced an auditory challenge from the impedance mismatch between air and tissue in the transition from aquatic to terrestrial lifestyles during the Early Carboniferous (350 Ma). Consequently, tetrapods may have been deaf to airborne sounds for up to 100 Myr until tympanic middle ears evolved during the Triassic. The middle ear morphology of recent urodeles is similar to that of early ‘lepospondyl’ microsaur tetrapods, and experimental studies on their hearing capabilities are therefore useful to understand the evolutionary and functional drivers behind the shift from aquatic to aerial hearing in early tetrapods. Here, we combine imaging techniques with neurophysiological measurements to resolve how the change from aquatic larvae to terrestrial adult affects the ear morphology and sensory capabilities of salamanders. We show that air-induced pressure detection enhances underwater hearing sensitivity of salamanders at frequencies above 120 Hz, and that both terrestrial adults and fully aquatic juvenile salamanders can detect airborne sound. Collectively, these findings suggest that early atympanic tetrapods may have been pre-equipped to aerial hearing and are able to hear airborne sound better than fish on land. When selected for, this rudimentary hearing could have led to the evolution of tympanic middle ears.  相似文献   

12.
褐菖鲉的听觉阈值研究   总被引:1,自引:0,他引:1  
利用听觉诱发电位记录技术研究了褐菖鲉(Sebasticus marmoratus)的听觉阈值。通过采用听觉生理系统记录和分析了8尾褐菖鲉对频率范围在100—1000 Hz的7种不同频率的声音刺激的诱发电位反应。结果表明, 褐菖鲉的听觉阈值在整体上随着频率增加而增加, 对100—300 Hz的低频声音信号敏感, 最敏感频率为150 Hz, 对应的听觉阈值为70 dB re 1 μPa。褐菖鲉的听觉敏感区间与其发声频率具有较高的匹配性, 表明其声讯交流的重要性。同时, 人为低频噪声可能对其声讯交流造成影响。  相似文献   

13.

Background

Data on sex-specific differences in sound production, acoustic behaviour and hearing abilities in fishes are rare. Representatives of numerous catfish families are known to produce sounds in agonistic contexts (intraspecific aggression and interspecific disturbance situations) using their pectoral fins. The present study investigates differences in agonistic behaviour, sound production and hearing abilities in males and females of a callichthyid catfish.

Methodology/Principal Findings

Eight males and nine females of the armoured catfish Megalechis thoracata were investigated. Agonistic behaviour displayed during male-male and female-female dyadic contests and sounds emitted were recorded, sound characteristics analysed and hearing thresholds measured using the auditory evoked potential (AEP) recording technique. Male pectoral spines were on average 1.7-fold longer than those of same-sized females. Visual and acoustic threat displays differed between sexes. Males produced low-frequency harmonic barks at longer distances and thumps at close distances, whereas females emitted broad-band pulsed crackles when close to each other. Female aggressive sounds were significantly shorter than those of males (167 ms versus 219 to 240 ms) and of higher dominant frequency (562 Hz versus 132 to 403 Hz). Sound duration and sound level were positively correlated with body and pectoral spine length, but dominant frequency was inversely correlated only to spine length. Both sexes showed a similar U-shaped hearing curve with lowest thresholds between 0.2 and 1 kHz and a drop in sensitivity above 1 kHz. The main energies of sounds were located at the most sensitive frequencies.

Conclusions/Significance

Current data demonstrate that both male and female M. thoracata produce aggressive sounds, but the behavioural contexts and sound characteristics differ between sexes. Sexes do not differ in hearing, but it remains to be clarified if this is a general pattern among fish. This is the first study to describe sex-specific differences in agonistic behaviour in fishes.  相似文献   

14.
In this study we recorded auditory brainstem responses to airborne sounds to determine the hearing sensitivity of Xenopus laevis frogs and correlated their hearing profiles with middle ear characteristics. In newly metamorphosed frogs (body mass 0.5–0.76 gm, snout-vent length 17–20 mm) best hearing sensitivities were measured in the 2.4–2.8 kHz range, whereas optimal hearing sensitivity of older adults (body mass 18–90 gm; snout-vent length 57–100 mm) ranged from 1.0 to 1.2 kHz. Middle ear volumes reconstructed from serial sections showed approximate volume of 0.002 cc and 0.04–0.07 cc in newly metamorphosed and older frogs, respectively. This inverse frequency–volume relationship is consistent with the properties of an acoustic resonator indicating that differences in best hearing sensitivity are at least in part correlated to variation in middle ear volumes for airborne sounds. These results are consistent with peak frequency vibrational velocity profiles of Xenopus tympanic disk that have been shown to be dependent on underlying middle ear volumes and corroborate the occurrence of peak amplitudes of otoacoustic emissions in the 1.0–1.2 kHz region in adult Xenopus frogs.  相似文献   

15.
Many laboratory animals are known to be sensitive to sounds (ultrasounds) beyond the nominal upper limit (20 kHz) of the human hearing range. Sources of sound in laboratories and animal houses were examined to determine the extent of ambient ultrasound. Of 39 sources monitored, 24 were found to emit ultrasonic sounds. Many of these (e.g. cage washers and hoses) also produced sound in the audible range. Running taps, squeaky chairs and rotating glass stoppers created particularly high sound pressure levels and contained frequencies to over 100 kHz. The oscilloscopes and visual display units investigated provided particular cause for concern as they emitted sounds that were entirely ultrasonic and therefore were apparently silent. Ambient ultrasound therefore appears to be common in laboratories and animal houses. It is suggested that its effect on laboratory animals should be investigated and guidelines on acceptable levels be formulated.  相似文献   

16.
Babushina ES 《Biofizika》1999,44(6):1101-1108
The interaction of complex sounds with the body tissues of Black Sea dolphin (Tursiops truncatus) was studied by the method of instrumental conditioned reflexes with food reinforcement. The thresholds of detecting underwater acoustic signals of different frequencies for dolphin and northern fur seal (Callorhinus ursinus) were measured as a function of pulse duration under conditions of full and partial (head above water) submergence of animals into water. It was found that sound conduction through dolphin tissues was more effective than that in a northern fur seal in a wide frequency range. Presumably, the process of sound propagation in dolphin is accompanied by changes in the amplitude-frequency structure of broad-band sounds. The temporal summation in dolphin hearing was observed at all frequencies under conditions of full and partial submergence, whereas in northern fur seal it was nearly absent at a frequency of 5 kHz under the conditions of head lifting above water.  相似文献   

17.
Can plants sense natural airborne sounds and respond to them rapidly? We show that Oenothera drummondii flowers, exposed to playback sound of a flying bee or to synthetic sound signals at similar frequencies, produce sweeter nectar within 3 min, potentially increasing the chances of cross pollination. We found that the flowers vibrated mechanically in response to these sounds, suggesting a plausible mechanism where the flower serves as an auditory sensory organ. Both the vibration and the nectar response were frequency‐specific: the flowers responded and vibrated to pollinator sounds, but not to higher frequency sound. Our results document for the first time that plants can rapidly respond to pollinator sounds in an ecologically relevant way. Potential implications include plant resource allocation, the evolution of flower shape and the evolution of pollinators sound. Finally, our results suggest that plants may be affected by other sounds as well, including anthropogenic ones.  相似文献   

18.
Summary Cardioderma cor responded with head movements and flight toward speakers broadcasting calls of frogs and crickets which contained only sonic frequencies. Unlike the frog-eating bat,Trachops cirrhosus, they did not make contact with the speakers. Prey movements that generated sonic and ultrasonic sounds were both sufficient and necessary for the bats to localize and capture prey. Prey dragged across a glass sheet with a thin layer of water did not generate sounds and bats did not attempt to capture these prey, even with the availability of visual and echolocation cues. There was no evidence for the use of visual cues while hunting; bats did not localize prey more readily in light than darkness. Prey were presented such that their movements initially generated sounds, but then the prey moved onto the water layer of the glass sheet and sounds were eliminated. The bats emitted echolocation signals while hunting in this situation; however, the information from these signals was not utilized. The bats landed at the site that prey last made sound. These results demonstrate the importance of passive hearing for prey localization in this bat, and further suggest that when preygenerated sounds and echolocation signals offer conflicting information the bat's behavior is guided by the former.  相似文献   

19.
Banner-tailed kangaroo rats, Dipodomys spectabilis, footdrum to produce substrate-borne and airborne acoustic energy. Previous studies show that they communicate territorial ownership via airborne footdrumming signals. The research reported here used simulated footdrum patterns generated by an artificial `thumper' to address the question of whether kangaroo rats communicate through seismic components of these acoustic signals. With microphones suspended in sealed burrows, we found that airborne sounds were attenuated by approximately 40 dB as they passed through the burrow wall into the burrow chamber. The substrate-borne vibrations from the thumper yielded sound approximately 40 dB greater in peak amplitude than the attenuated airborne sound. Thus, 99.9% of the peak power of the thumper was transmitted directly through the substrate into the burrow. The rats in sealed burrows timed their responses to playbacks of footdrums from the thumper and a loudspeaker so they did not initiate a drumming sequence during either the seismic or airborne signals. When these signals were masked by loud noise, the rats continued to drum to the seismic signal but drummed randomly during the airborne playback. These results suggest that the sealed burrow provides a quiet place in which D. spectabilis can listen for substrate-borne communications from conspecifics. Accepted: 13 May 1997  相似文献   

20.
In this study we examine the auditory capabilities of the sea otter (Enhydra lutris), an amphibious marine mammal that remains virtually unstudied with respect to its sensory biology. We trained an adult male sea otter to perform a psychophysical task in an acoustic chamber and at an underwater apparatus. Aerial and underwater audiograms were constructed from detection thresholds for narrowband signals measured in quiet conditions at frequencies from 0.125–40 kHz. Aerial hearing thresholds were also measured in the presence of octave-band masking noise centered at eight signal frequencies (0.25–22.6 kHz) so that critical ratios could be determined. The aerial audiogram of the sea otter resembled that of sea lions and showed a reduction in low-frequency sensitivity relative to terrestrial mustelids. Best sensitivity was ?1 dB re 20 µPa at 8 kHz. Under water, hearing sensitivity was significantly reduced when compared to sea lions and other pinniped species, demonstrating that sea otter hearing is primarily adapted to receive airborne sounds. Critical ratios were more than 10 dB higher than those measured for pinnipeds, suggesting that sea otters are less efficient than other marine carnivores at extracting acoustic signals from background noise, especially at frequencies below 2 kHz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号