首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The protein Ser/Thr kinase CK2 (former name: casein kinase II) exists predominantly as a heterotetrameric holoenzyme composed of two catalytic subunits (CK2α) bound to a dimer of noncatalytic subunits (CK2β). We undertook a study to further understand how these subunits interact to form the tetramer. To this end, we used recombinant, C-terminal truncated forms of human CK2 subunits that are able to form the holoenzyme. We analyzed the interaction thermodynamics between the binding of CK2α and CK2β as well as the impact of changes in temperature, pH, and the ionization enthalpy of the buffer using isothermal titration calorimetry (ITC). With structure-guided alanine scanning mutagenesis we truncated individual side chains in the hydrophobic amino acid cluster located within the CK2α interface to identify experimentally the amino acids that dominate affinity. The ITC results indicate that Leu41 or Phe54 single mutations were most disruptive to binding of CK2β. Additionally, these CK2α mutants retained their kinase activity. Furthermore, the substitution of Leu41 in combination with Phe54 showed that the individual mutations were not additive, suggesting that the cooperative action of both residues played a role. Interestingly, the replacement of Ile69, which has a central position in the interaction surface of CK2α, only had modest effects. The differences between Leu41, Phe54, and Ile69 in interaction relevance correlate with solvent accessibility changes during the transition from unbound to CK2β-bound CK2α. Identifying residues on CK2α that play a key role in CK2α/CK2β interactions is important for the future generation of small molecule drug design.  相似文献   

2.
The Ser/Thr kinase casein kinase 2 (CK2) is a heterotetrameric enzyme composed of two catalytic chains (CK2α, catalytic subunit of CK2) attached to a dimer of two noncatalytic subunits (CK2β, noncatalytic subunit of CK2). CK2α belongs to the superfamily of eukaryotic protein kinases (EPKs). To function as regulatory key components, EPKs normally exist in inactive ground states and are activated only upon specific signals. Typically, this activation is accompanied by large conformational changes in helix αC and in the activation segment, leading to a characteristic arrangement of catalytic key elements. For CK2α, however, no strict physiological control of activity is known. Accordingly, CK2α was found so far exclusively in the characteristic conformation of active EPKs, which is, in this case, additionally stabilized by a unique intramolecular contact between the N-terminal segment on one side, and helix αC and the activation segment on the other side. We report here the structure of a C-terminally truncated variant of human CK2α in which the enzyme adopts a decidedly inactive conformation for the first time. In this CK2α structure, those regulatory key regions still are in their active positions. Yet the glycine-rich ATP-binding loop, which is normally part of the canonical anti-parallel β-sheet, has collapsed into the ATP-binding site so that ATP is excluded from binding; specifically, the side chain of Arg47 occupies the ribose region of the ATP site and Tyr50, the space required by the triphospho moiety. We discuss some factors that may support or disfavor this inactive conformation, among them coordination of small molecules at a remote cavity at the CK2α/CK2β interaction region and binding of a CK2β dimer. The latter stabilizes the glycine-rich loop in the extended active conformation known from the majority of CK2α structures. Thus, the novel inactive conformation for the first time provides a structural basis for the stimulatory impact of CK2β on CK2α.  相似文献   

3.
Lin KY  Tai C  Hsu JC  Li CF  Fang CL  Lai HC  Hseu YC  Lin YF  Uen YH 《PloS one》2011,6(2):e17193

Background

Colorectal cancer (CRC) is one of the most common malignancies but the current therapeutic approaches for advanced CRC are less efficient. Thus, novel therapeutic approaches are badly needed. The purpose of this study is to investigate the involvement of nuclear protein kinase CK2 α subunit (CK2α) in tumor progression, and in the prognosis of human CRC.

Methodology/Principal Findings

Expression levels of nuclear CK2α were analyzed in 245 colorectal tissues from patients with CRC by immunohistochemistry, quantitative real-time PCR and Western blot. We correlated the expression levels with clinicopathologic parameters and prognosis in human CRC patients. Overexpression of nuclear CK2α was significantly correlated with depth of invasion, nodal status, American Joint Committee on Cancer (AJCC) staging, degree of differentiation, and perineural invasion. Patients with high expression levels of nuclear CK2α had a significantly poorer overall survival rate compared with patients with low expression levels of nuclear CK2α. In multi-variate Cox regression analysis, overexpression of nuclear CK2α was proven to be an independent prognostic marker for CRC. In addition, DLD-1 human colon cancer cells were employed as a cellular model to study the role of CK2α on cell growth, and the expression of CK2α in DLD-1 cells was inhibited by using siRNA technology. The data indicated that CK2α-specific siRNA treatment resulted in growth inhibition.

Conclusions/Significance

Taken together, overexpression of nuclear CK2α can be a useful marker for predicting the outcome of patients with CRC.  相似文献   

4.
CK2 is a heterotetrameric ubiquitous kinase consisting of two catalytic subunits and two regulatory subunits. The two catalytic subunits, α and α', are highly homologous but differ in their C-terminal regions. It is not known whether CK2α and α' have distinctive substrate specificity, since no α- or α'-specific substrate has been identified. Thus, it is assumed that the two kinase isoforms overlap in their substrate specificity. CK2 protein levels and activity were found to be elevated in the brain when compared to other organs. Here we have studied the protein levels of CK2α and α' isoforms in nine major brain regions. We found that both, CK2α and α', are expressed in all brain regions tested. Whereas CK2α levels do not vary strongly across the regions, CK2α' levels are slightly higher in the cortex and hippocampus than in other regions. Furthermore, we show that CK2α protein levels in the striatum are relatively high when compared to CK2α'. The approximate stoichiometry ratio of CK2α:CK2α' is 8:1. Therefore, one can consider that CK2α levels are predominant in comparison to CK2α' levels throughout the mammalian brain.  相似文献   

5.
6.
Increased activity of protein kinase CK2 is associated with various types of cancer, neurodegenerative diseases, and chronic inflammation. In the search for CK2 inhibitors, attention has expanded toward compounds disturbing the interaction between CK2α and CK2β in addition to established active site-directed approaches. The current article describes the development of a fluorescence anisotropy-based assay that mimics the principle of CK2 subunit interaction by using CK2α1–335 and the fluorescent probe CF-Ahx-Pc as a CK2β analog. In addition, we identified new inhibitors able to displace the fluorescent probe from the subunit interface on CK2α1–335. Both CF-Ahx-Pc and the inhibitors I-Pc and Cl-Pc were derived from the cyclic peptide Pc, a mimetic of the C-terminal CK2α-binding motif of CK2β. The design of the two inhibitors was based on docking studies using the known crystal structure of the Pc/CK2α1–335 complex. The dissociation constants obtained in the fluorescence anisotropy assay for binding of all compounds to human CK2α1–335 were validated by isothermal titration calorimetry. I-Pc was identified as the tightest binding ligand with a KD value of 240 nM and was shown to inhibit the CK2 holoenzyme-dependent phosphorylation of PDX-1, a substrate requiring the presence of CK2β, with an IC50 value of 92 μM.  相似文献   

7.
Synthetic peptides reproducing the amino and carboxyl terminal region of CK2 subunit have been analyzed for their ability to mimic different properties of full length subunit. Peptide [1-77], containing both the autophosphorylation site and the down-regulatory domain 55-64, is readily phosphorylated by a subunit whose activity is concomitantly inhibited. Such inhibition is accompanied by a weak interaction detectable by BIAcore sensograms but not by far Western blots, and is not reversed by polylysine which conversely overcome inhibition of calmodulin phosphorylation by full length subunit. A strong interaction with is observed with [155-215] but not with its shorter derivative [170-215] as judged from far Western blotting and sucrose gradient ultracentrifugation analysis. Both peptides, however, affect the regular interaction between and subunits altering the autophosphorylation pattern and responsiveness to salt. [155-215], unlike [170-215] tends to aggregate more readily than full length subunit. This behaviour which is reminiscent of the homodimerization of full length subunit, would indicate that tight self-association of [155-215] crucially depends on residues in the 155-170 sequence. Failure of [1-77] fragment to mediate responsiveness to polybasic peptides and accentuated self-association propensity of [155-215] suggest that other structural elements between the sequences 1-77 and 155-215 are required in order to confer optimal functionality to the subunit.  相似文献   

8.
DNA-PKcs is the catalytic subunit of DNA-dependent protein kinase, an enzyme necessary for non-homologous end-joining (NHEJ) and hence repair of DNA double strand breaks. Characterization of two isogenic cell lines, M059K and M059J, which are DNA-PKcs-proficient and -deficient, respectively, revealed that lack of DNA-PKcs is accompanied by an increase in the protein level of one of the catalytic isozymes of protein kinase CK2, i.e., CK2α' and a concomitant increase in CK2 activity. The increase was also detectable at the mRNA level as measured by quantitative real time PCR. However, no increase at the DNA level was observed either by comparative PCR or fluorescent in situ hybridization indicating that gene amplification is not involved. Interestingly, only CK2α' was increased and not the other two subunits of CK2, i.e., CK2β or CK2α. In addition, the increase in CK2α' protein level was also observed in a DNA-PKcs-deficient mouse cell line.  相似文献   

9.
蛋白激酶CK2   总被引:2,自引:0,他引:2  
蛋白激酶CK2是一种高度保守的真核细胞中普遍存在的信使非依赖性丝氨酸/苏氨酸蛋白激酶,它是由两个催化亚基(α和/或α')和两个调节亚基β构成的不均一四聚体。其基本结构,基本性质及其功能的研究表明它在细胞功能调节中具有极其独特和重要的地位。  相似文献   

10.
Protein kinase CK2 is a highly pleiotropic Ser/Thr kinase ubiquituous in eukaryotic organisms. CK2 is organized as a heterotetrameric enzyme composed of two types of subunits: the catalytic (CK2α) and the regulatory (CK2β). The CK2β subunits enhance the stability, activity and specificity of the holoenzyme, but they can also perform functions independently of the CK2 tetramer. CK2β regulatory subunits in plants differ from their animal or yeast counterparts, since they present an additional specific N-terminal extension of about 90 aminoacids that shares no homology with any previously characterized functional domain. Sequence analysis of the N-terminal domain of land plant CK2β subunit sequences reveals its arrangement through short, conserved motifs, some of them including CK2 autophosphorylation sites. By using maize CK2β1 and a deleted version (ΔNCK2β1) lacking the N-terminal domain, we have demonstrated that CK2β1 is autophosphorylated within the N-terminal domain. Moreover, the holoenzyme composed with CK2α1/ΔNCK2β1 is able to phosphorylate different substrates more efficiently than CK2α1/CK2β1 or CK2α alone. Transient overexpression of CK2β1 and ΔNCK2β1 fused to GFP in different plant systems show that the presence of N-terminal domain enhances aggregation in nuclear speckles and stabilizes the protein against proteasome degradation. Finally, bimolecular fluorescence complementation (BiFC) assays show the nuclear and cytoplasmic location of the plant CK2 holoenzyme, in contrast to the individual CK2α/β subunits mainly observed in the nucleus. All together, our results support the hypothesis that the plant-specific N-terminal domain of CK2β subunits is involved in the down-regulation of the CK2 holoenzyme activity and in the stabilization of CK2β1 protein. In summary, the whole amount of data shown in this work suggests that this domain was acquired by plants for regulatory purposes.  相似文献   

11.
Protein kinase CK2 predominantly exists as a heterotetrameric holoenyzme consisting of two catalytic subunits (CK2α) and two non-catalytic subunits (CK2β). Early investigations which we review here had revealed the presence of two types of contacts between CK2α and CK2β: a primary interaction responsible for the stability of the CK2 holoenzyme and stimulatory for the catalytic activity, and a secondary interaction which is inhibitory and in which the acidic loop of CK2β associates with the basic stretch and the (p+1)-loop of CK2α. At the end of the last decade both types of interactions were assumed to occur within the same tetrameric complex. The CK2 holoenyzme structure, however, suggested that the secondary interactions must happen between different CK2 tetramers. Such a behaviour should lead to higher-ordered aggregates consistent with several previous reports about a distinct aggregation propensity of CK2. We demonstrate here that in the CK2 holoenzyme crystals contacts between different CK2 tetramers exists which provide structural details of the secondary CK2α/CK2β interactions. These mainly ionic interactions lead to trimeric rings of CK2 holoenzymes in the crystal. In these rings each CK2 tetramer possesses one CK2α subunit open for substrate binding and another one whose active site is blocked by a secondary contact with CK2β from a neighbouring tetramer. This observation fits to previous findings that salt-sensitive ring-like aggregates of CK2 holoenzymes can exist which possess significant catalytic activity. Furthermore it suggests that earlier ideas about a regulatory role of the enzyme’s aggregation propensity may be worth to be revitalised.  相似文献   

12.
Protein kinase CK2 (formerly “casein kinase 2”) is composed of a central dimer of noncatalytic subunits (CK2β) binding two catalytic subunits. In humans, there are two isoforms of the catalytic subunit (and an additional splicing variant), one of which (CK2α) is well characterized. To supplement the limited biochemical knowledge about the second paralog (CK2α′), we developed a well-soluble catalytically active full-length mutant of human CK2α′, characterized it by Michaelis-Menten kinetics and isothermal titration calorimetry, and determined its crystal structure to a resolution of 2 Å. The affinity of CK2α′ for CK2β is about 12 times lower than that of CK2α and is less driven by enthalpy. This result fits the observation that the β4/β5 loop, a key element of the CK2α/CK2β interface, adopts an open conformation in CK2α′, while in CK2α, it opens only after assembly with CK2β. The open β4/β5 loop in CK2α′ is stabilized by two elements that are absent in CK2α: (1) the extension of the N-terminal β-sheet by an additional β-strand, and (2) the filling of a conserved hydrophobic cavity between the β4/β5 loop and helix αC by a tryptophan residue. Moreover, the interdomain hinge region of CK2α′ adopts a fully functional conformation, while unbound CK2α is often found with a nonproductive hinge conformation that is overcome only by CK2β binding. Taken together, CK2α′ exhibits a significantly lower affinity for CK2β than CK2α; moreover, in functionally critical regions, it is less dependent on CK2β to obtain a fully functional conformation.  相似文献   

13.
In all eukaryotes, the typical CK2 holoenzyme is an heterotetramer composed of two catalytic (CK2α and CK2α') and two regulatory (CK2β) subunits. One of the distinctive traits of plant CK2 is that they present a greater number of genes encoding for CK2α/β subunits than animals or yeasts, for instance, in Arabidopsis and maize both CK2α/β subunits belong to multigenic families composed by up to four genes. Here, we conducted a genome-wide survey examining 34 different plant genomes in order to investigate if the multigenic property of CK2β genes is a common feature through the entire plant kingdom. Also, at the level of structure, the plant CK2β regulatory subunits present distinctive features as (i) they lack about 20 aminoacids in the C-terminal domain, (ii) they present a specific N-terminal extension of about 90 aminoacids that shares no homology with any previously characterized functional domain, and (iii) the acidic loop region is poorly conserved at the aminoacid level. Since there is no data about CK2β or holoenzyme structure in plants, in this study, we use human CK2β as a template to predict a structure for Zea mays CK2β1 by homology modeling and we discuss about possible structural changes in the acidic loop region that could affect the enzyme regulation.  相似文献   

14.
15.
The purpose of this study was to analyse the frequency and type of mutations in the coding region of androgen receptor (AR) and to determine the role of polymorphisms in the intron 1 of ERalpha, exon 5 of ERbeta, intron 7 of progesterone, exon 7 of the aromatase (CYP19) and exon 9 of VDR genes in the risk of prostate cancer. PCR-RFLP analysis of all above the genes was on 100 prostate cancer patients and an equal number of matching controls. The study also included PCR-SSCP analyses of exons 2-8 of AR gene. The genotype containing -/- allele of ERalpha gene was statistically significant for the risk of prostate cancer pose (OR, 2.70; 95% CI, 1.08-6.70, P = 0.032) Rr genotype of ERbeta gene also have a higher risk (OR, 1.65; 95% CI, 0.52-5.23) for prostate cancer. The Cys allele of CYP19 gene was also associated with statistically significant increased risk of prostate cancer (OR; 2.28, 95% CI, 1.20-4.35, P = 0.012). tt genotype of codon 352 of VDR gene showed an OR of 0.43 for (95% CI, 0.13-1.39) and an OR for Tt genotype was 0.65 (95% CI, 0.36-1.16). Taken together, the results showed that in North Indian population, ERalpha and CYP19 genes may be playing a role in the risk of prostate cancer.  相似文献   

16.
Multiple myeloma (MM) is a malignant tumor of transformed plasma cells. MM pathogenesis is a multistep process. This cancer can occur de novo (rarely) or it can develop from monoclonal gammopathy of undetermined significance (most of the cases). MM can be asymptomatic (smoldering myeloma) or clinically active. Malignant plasma cells exploit intrinsic and extrinsic bone marrow microenvironment-derived growth signals. Upregulation of stress-coping pathways is also instrumental to maintain MM cell growth. The phylogenetically related Ser/Thr kinases CSNK1A1 (CK1α) and CSNK2 (CK2) have recently gained a growing importance in hematologic malignancies arising both from precursors and from mature blood cells. In multiple myeloma, CK1α or CK2 sustain oncogenic cascades, such as the PI3K/AKT, JAK/STAT, and NF-κB, as well as propel stress-related signaling that help in coping with different noxae. Data also suggest that these kinases modulate the delivery of growth factors and cytokines from the bone marrow stroma. The “non-oncogene addiction” phenotype generated by the increased activity of CK1α and CK2 in multiple myeloma contributes to malignant plasma cell proliferation and survival and represents an Achilles’ heel for the activity of small ATP competitive CK1α or CK2 inhibitors.  相似文献   

17.
蛋白激酶CK2的研究进展   总被引:14,自引:0,他引:14  
蛋白激酶CK2是一种真核细胞中普遍存在的信使非依赖性丝/苏氨酸蛋白激酶。近年来,对蛋白激酶CK2的研究也取得了一些重要进展,尤其是蛋白激酶CK2的结构及其作用底物,蛋白激酶CK2与肿瘤及细胞凋亡的关系,越来越引起人们的关注。  相似文献   

18.
The Wee1 protein kinase plays a prominent role in keeping cyclin dependent kinase 1 (CDK1) inactive during the G2 phase of the cell cycle. At the onset of mitosis, Wee1 is ubiquitinated by the E3 ubiquitin ligase SCF(beta-TrCP) and subsequently degraded by the proteasome machinery. Previously, it has been reported that although Wee1 lacks the conserved binding motif recognised by beta-TrCP, the CDK-catalysed phosphorylation of Wee1 at Ser123 creates a phosphodegron and primes phosphorylation of two other protein kinases, polo-like kinase 1 (PLK1) and protein kinase CK2, which create two additional phosphodegrons recognised by beta-TrCP. These events contribute to destabilise Wee1 at the onset of mitosis (Watanabe et al. Proc Natl Acad Sci USA 101:4419-4424, 2004). We show here that in addition to the ability of CK2 to phosphorylate Wee1 as reported earlier, the regulatory beta-subunit of protein kinase CK2 can interact with Wee1 in high molecular mass complexes. Indirect immunofluorescence microscopy revealled subcellular co-localisation of CK2beta and Wee1 in the nucleus. Moreover, in vitro phosphorylation assays showed that CK2beta indirectly up-regulates the activity of CDK1 with respect to histone H1 phosphorylation by inhibiting Wee1 kinase. These findings support the view that CK2beta regulates various intracellular processes by modulating the activity of protein kinases that are distinct from CK2 and that protein kinase CK2 plays an important role in events related to the regulation of cell cycle progression as a tetrameric enzyme but also through the individual subunits.  相似文献   

19.
20.
《Inorganica chimica acta》1989,156(2):251-256
The title compounds (1, X=F; 2, X=Cl) were obtained in quantitative yield by refluxing together (NBu4)2[Pd2(μ-Br)2(C6X5)4] and (NBu4)2[Pd2(μ-Br)2Br4]. Treatment of 1 or 2 with AgClO4 (Pd:Ag= 1:1) gave solutions which behaved as containing ‘Pd(C6X5)Br’. 1, 2 and the ‘Pd(C6X5)Br’ solutions were checked as precursors of mono-pentahalophenyl derivatives, yielding a variety of complexes [Pd(C6X5)Br(L-L)] (L-L=bipy, tmen, dpe, COD), [Pd(C6X5)BrL2] (L=p-TolNH2, py, PPh3, AsPh3, SbPh3), [Pd2(μ-Br)2(C6X5)2L2] (X=F, L=AsPh3; X=Cl, L=SbPh3) and (NBu4)[Pd(C6X5)Br2L] (X=F, L= py, AsPh3, SbPh3; X=Cl, L=p-TolNH2, py, PPh3, AsPh3, SbPh3). The solutions of ‘Pd(C6X5)Br’ proved to be the best general precursors of complexes [Pd(C6X5)BrL2] although complexes with OPPh3 could not be obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号