首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We assessed the importance of glycosaminoglycans and sulfur-mediated bonds for the mechanical properties of lens capsules by comparing the stress-strain responses from control and treated pairs of bovine source. No significant change in mechanical properties was observed upon reduction of disulfide bonds. However, removal of glycosaminoglycan chains resulted in a significantly stiffer lens capsule, whereas high concentrations of reducing agent, which is expected to reduce the recently reported sulfilimine bond of collagen IV, resulted in a significantly less stiff lens capsule. A comparison of the diffraction patterns of the control and strongly reduced lens capsules indicated structural rearrangements on a nanometer scale.  相似文献   

2.
Encapsulation of glucose oxidase (GOD) in polyelectrolyte complex capsules and its influence on properties of the enzyme is reported. The immobilization of GOD in the capsules made of sodium alginate (SA), cellulose sulfate (CS), poly(methylene-co-guanidine) (PMCG), CaCl2 and NaCl (GOD–SA–CS/PMCG capsules) was achieved using a one-step highly reproducible encapsulation protocol which was monitored by a Electrospray Ionization-Mass Spectrometry (ESI-MS). A leakage of the enzyme from the capsules was negligible. Encapsulated GOD exhibited higher thermostability, wider range of pH optimum and improved storage stability in comparison with free GOD. The 92% retained activity by the encapsulated GOD after 45 biooxidation cycles was markedly higher than that of the GOD entrapped in calcium pectate gel beads showing no activity after 12 cycles. Optimization of conditions of oxygen supplementation resulted in increased oxygen availability within the GOD–SA–CS/PMCG capsules. Oxygen supplementation was accompanied with a mild decrease in the mechanical resistance of the SA–CS/PMCG capsules.  相似文献   

3.
Encapsulation of glucose oxidase (GOD) in polyelectrolyte complex capsules and its influence on properties of the enzyme is reported. The immobilization of GOD in the capsules made of sodium alginate (SA), cellulose sulfate (CS), poly(methylene-co-guanidine) (PMCG), CaCl2 and NaCl (GOD–SA–CS/PMCG capsules) was achieved using a one-step highly reproducible encapsulation protocol which was monitored by a Electrospray Ionization-Mass Spectrometry (ESI-MS). A leakage of the enzyme from the capsules was negligible. Encapsulated GOD exhibited higher thermostability, wider range of pH optimum and improved storage stability in comparison with free GOD. The 92% retained activity by the encapsulated GOD after 45 biooxidation cycles was markedly higher than that of the GOD entrapped in calcium pectate gel beads showing no activity after 12 cycles. Optimization of conditions of oxygen supplementation resulted in increased oxygen availability within the GOD–SA–CS/PMCG capsules. Oxygen supplementation was accompanied with a mild decrease in the mechanical resistance of the SA–CS/PMCG capsules.  相似文献   

4.
Baruch L  Machluf M 《Biopolymers》2006,82(6):570-579
The use of chitosan in complexation with alginate appears to be a promising strategy for cell microencapsulation, due to the biocompatibility of both polymers and the high mechanical properties attributed by the use of chitosan. The present work focuses on the optimization and characterization of the alginate-chitosan system to achieve long-term cell encapsulation. Microcapsules were prepared from four types of chitosan using one- and two-stage encapsulation procedures. The effect of reaction time and pH on long-term cell viability and mechanical properties of the microcapsules was evaluated. Using the single-stage encapsulation procedure led to increase of at least fourfold in viability compared with the two-stage procedure. Among the four types of chitosan, the use of high molecular weight (MW) chitosan glutamate and low MW chitosan chloride provided high viability levels as well as good mechanical properties, i.e., more than 93% intact capsules. The high viability levels were found to be independent of the reaction conditions when using high MW chitosan. However, when using low MW chitosan, better viability levels (195%) were obtained when using a pH of 6 and a reaction time of 30 min. An alginate-chitosan cell encapsulation system was devised to achieve high cell viability levels as well as to improve mechanical properties, thus holding great potential for future clinical application.  相似文献   

5.
Alginate–chitosan shell–core (AC) capsules doped with carbon nanotubes (CNTs) were prepared for lactate dehydrogenase (LDH, EC 1.1.1.27) encapsulation to convert pyruvic acid to lactic acid coupling with the oxidation of NADH to NAD+. LDH was entrapped within the liquid core of the capsules and the CNTs were incorporated in the alginate or chitosan matrices or both. The physical properties of the capsules and the immobilized LDH activity were investigated. The AC capsules doped with CNTs showed better mechanical strength than that without CNTs. The LDH loading efficiency of the AC capsules with CNTs (10 mg/mL) doped in both the shell and the core was 30.7% higher than that without CNTs. The optimal pH value for the bioconversion catalyzed by immobilized LDH was 7.0, lower than that by free LDH (7.5). The optimal temperature was 35 °C for both immobilized and free LDH. Operational stability of the immobilized LDH was greatly improved by doping CNTs in AC capsules. The results showed that this method was efficient for enzyme encapsulation in the biotechnology applications.  相似文献   

6.
In order to protect implanted glucose sensors from biofouling, novel hydrogels (146-217% water by mass) were developed based on a copolymer of hydroxyethyl methacrylate (HEMA) and 2,3-dihydroxypropyl methacrylate (DHPMA). The porosity and mechanical properties of the hydrogels were improved using N-vinyl-2-pyrrolidinone (VP) and ethyleneglycol dimethacrylate (EGDMA). The results of SEM and DSC FT-IT analyses showed that the hydrogel (VP30) produced from a monomeric mixture of 34.5% HEMA, 34.5% DHPMA, 30% VP and 1% EDGMA (mol%) had an excellent pore structure, high water content at swelling equilibrium (W eq=166% by mass) and acceptable mechanical properties. Two kinds of VP30-coated sensors, Pt/GOx/VP30 and Pt/GOx/epoxy-polyurethane (EPU)/VP30 sensors were examined in glucose solutions during a period of 4 weeks. The Pt/GOx/VP30 sensors produced large response currents but the response linearity was poor. Therefore, further studies were focused on the Pt/GOx/EPU/VP30 sensors. With a diffusion-limiting epoxy-polyurethane membrane, the linearity was improved (2-30 mM) and the response time was within 5 min. Eight Pt/GOx/EPU/VP30 sensors were subcutaneously implanted in rats and tested once per week over 4 weeks. All of the implanted sensors kept functioning for at least 21 days and 3 out of 8 sensors still functioned at day 28. Histology revealed that the fibrous capsules surrounding hydrogel-coated sensors were thinner than those surrounding Pt/GOx/EPU sensors after 28 days of implantation.  相似文献   

7.
Increased protein kinase C (PKC) activity has been implicated in the pathogenesis of a number of diabetic complications, and high concentrations of glucose have been shown to increase PKC activity. The present study was designed to examine the role of PKC in diabetes-induced (and glucose-induced) cardiomyocyte dysfunction and insulin resistance (measured by glucose uptake). Adult rat ventricular myocytes were isolated from nondiabetic and type 1 diabetic animals (4-5 days post-streptozotocin treatment), and maintained overnight, with/without the nonspecific PKC inhibitor chelerythrine (CHEL = 1 microM). Myocyte mechanical properties were evaluated using a video edge-detection system. Basal and insulin-stimulated glucose uptake was measured with [3H]-2-deoxyglucose. Blunted insulin-stimulated glucose uptake was apparent in diabetic myocytes, and both mechanical dysfunctions (e.g., slowed shortening/relengthening) and insulin resistance were maintained in culture, and normalized by CHEL. Cardiomyocytes isolated from nondiabetic animals were cultured in a high concentration of glucose (HG = 25.5 mM) medium, with/without CHEL. HG myocytes exhibited slowed shortening/relengthening and impaired insulin-stimulated glucose uptake compared to myocytes cultured in normal glucose (5.5 mM), and both impairments were prevented by culturing cells in CHEL. Our data support the view that PKC activation contributes to both diabetes-induced abnormal cardiomyocyte mechanics and insulin resistance, and that elevated glucose is sufficient to induce these effects.  相似文献   

8.
Mechanical load influences embryonic ventricular growth, morphogenesis, and function. However, little is known about changes in regional passive ventricular properties during the development of altered mechanical loading conditions in the embryo. We tested the hypothesis that regional mechanical loads are a critical determinant of embryonic ventricular passive properties. We measured biaxial passive right and left ventricular (RV and LV, respectively) stress-strain relations in chick embryos at Hamburger-Hamilton stages 21 and 27 after conotruncal banding (CTB) to increase biventricular pressure load or left atrial ligation (LAL) to reduce LV volume load and increase RV volume load. In the RV, wall strains at end-diastolic (ED) pressure normalized whereas ED stresses increased after either CTB or LAL during development. In the left ventricle, both ED strain and stress normalized after CTB, whereas both remained reduced with significantly increased myocardial stiffness after LAL. These results suggest that the embryonic ventricle adapts to chronically altered mechanical loading conditions by changing specific RV and LV passive properties. Thus regional mechanical load has a critical role during cardiogenesis.  相似文献   

9.
Egg capsule material serves as a putative protection mechanism for developing snail embryos facing the perils of the marine environment. We conducted the first quantitative study of this acellular structural protein with the goals of characterizing its chemical and mechanical properties and the relationship of these properties to its biological protective function. We have found that this protein polymer exhibits long-range elasticity with an interesting recoverable yield evidenced by an order of magnitude decrease in elastic modulus (apparent failure) that begins at 3%-5% strain. This material differs significantly from other common structural proteins such as collagen and elastin in mechanical response to strain. Qualitative similarities in stress/strain behavior to keratin, another common structural protein, are more than coincidental when composition and detailed mechanical quantification are considered. This suggests the possibility of alpha-helical structure and matrix organization that might be similar in these two proteins. Indeed, the egg capsule protein may be closely related to vertebrate keratins such as intermediate filaments. We conclude that while this material's bimodal tensile properties may serve as useful protection against the impact loading egg capsules encounter in the intertidal zone, the full biological importance of these capsules is not known.  相似文献   

10.
We studied the effects of acute and streptozotocin-induced chronic hyperglycemia on regional brain blood flow and perfusion characteristics, and on the regional transport of glucose across the blood-brain barrier in awake rats. We found (1) a generalized decrease in regional brain blood flow in both acute and chronic hyperglycemia; (2) that chronic, but not acute, hyperglycemia is associated with a marked and diffuse decrease in brain L-glucose space; and (3) that chronic hyperglycemia does not alter blood-to-brain glucose transport. Taken together, these results suggest that in streptozotocin-induced chronic hyperglycemia, there is a reduction in the proportion of perfused brain capillaries and/or an alteration in brain endothelial membrane properties resulting in decreased noncarrier diffusion of glucose.  相似文献   

11.
Microencapsulation of desired mammalian cell phenotypes in biocompatible polymer matrices represents a powerful technology for cell-based therapies and biopharmaceutical manufacturing of protein therapeutics. We have pioneered a novel jet break-up-compatible process for encapsulation of mammalian cells in cellulose sulfate (CS)/poly-diallyl-dimethyl-ammoniumchloride (pDADMAC) (CellMAC) capsules. CS and pDADMAC polymerize on a transient ad hoc co-assembled Ca2+/alginate scaffold and form homogenous capsules following dissolution of the alginate core by Ca2+ chelating agents. CellMAC capsules exhibited excellent mechanical properties and showed a molecular weight cut-off between 43 and 77kDa. Chinese hamster ovary cells engineered for constitutive production of the glycohormone erythropoietin reached high viable cell densities when grown inside CellMAC capsules, while specific erythropoietin (EPO) productivities matched those of conventional non-encapsulated control cultures. CellMAC-encapsulated EPO-production cell lines induced increased EPO serum levels when implanted intraperitoneally into mice and provided robust glycoprotein production during standard stirred-tank bioreactor operation. We expect the CellMAC technology to foster advances in therapeutic encapsulation of engineered cell lines as well as manufacturing of protein pharmaceuticals.  相似文献   

12.
Multilayer biogenic capsules with a micrometer scale were fabricated by self-assembly of proteins and lipids at the interface of emulsion droplets. The optical microscopy images demonstrate that spherical capsules at a fluid interface have uniform walls and the dried capsules possess a high mechanical strength. The hollow shells obtained provide a novel class of assembly with encapsulating drug molecules based on the layer-by-layer technique.  相似文献   

13.
Fracture risk in type 2 diabetes is increased despite normal or high bone mineral density, implicating poor bone quality as a risk factor. Raloxifene improves bone material and mechanical properties independent of bone mineral density. This study aimed to determine if raloxifene prevents the negative effects of diabetes on skeletal fragility in diabetes-prone rats. Adult Zucker Diabetic Sprague-Dawley (ZDSD) female rats (20-week-old, n = 24) were fed a diabetogenic high-fat diet and were randomized to receive daily subcutaneous injections of raloxifene or vehicle for 12 weeks. Blood glucose was measured weekly and glycated hemoglobin was measured at baseline and 12 weeks. At sacrifice, femora and lumbar vertebrae were harvested for imaging and mechanical testing. Raloxifene-treated rats had a lower incidence of type 2 diabetes compared with vehicle-treated rats. In addition, raloxifene-treated rats had blood glucose levels significantly lower than both diabetic vehicle-treated rats as well as vehicle-treated rats that did not become diabetic. Femoral toughness was greater in raloxifene-treated rats compared with both diabetic and non-diabetic vehicle-treated ZDSD rats, due to greater energy absorption in the post-yield region of the stress-strain curve. Similar differences between groups were observed for the structural (extrinsic) mechanical properties of energy-to-failure, post-yield energy-to-failure, and post-yield displacement. These results show that raloxifene is beneficial in preventing the onset of diabetes and improving bone material properties in the diabetes-prone ZDSD rat. This presents unique therapeutic potential for raloxifene in preserving bone quality in diabetes as well as in diabetes prevention, if these results can be supported by future experimental and clinical studies.  相似文献   

14.
Measurement of the rate of glucose diffusion from EUDGRAGIT RL and HEMA-MMA microcapsules coupled with a Thiele modulus/Biot number analysis of the glucose utilization rate suggests that pancreatic islets and CHO (Chinese hamster ovary) cells (at moderate to high cell densities) should not be adversely affected by the diffusion restrictions associated with these capsule membranes. The mass transfer coefficients for glucose at 20 degrees C were of the same order of magnitude for both capsules, based on release measurements: approximately 5 x 10(-6) cm/s for EUDRAGIT RL and approximately 2 x 10(-6) for HEMA-MMA. Inulin release from EUDRAGIT RL was slower than for glucose (mass transfer coefficient 14 +/- 4 x 10(-8) cm/s). The Thiele moduli were much less than 1, either for a single islet at the center of a capsule or CHO cells uniformly distributed throughout a capsule at 10(-6) cells/ mL, so that diffusion restrictions within the cells in EUDRAGIT RL or 800 mum HEMA-MMA capsules should be negligible. The ratio of external to internal diffusion resistance (Biot number) was less than 1, so that at most, only a small diffusion effect on glucose utilization should be expected (i.e., the overall effectiveness factors were greater than 0.8). These calculations were consistent with experimental observation of encapsulated islet behavior but not fully with CHO cell behavior. Permeability restricted cell viability and growth is potentially a major limitation of encapsulated cells; further analysis is warranted.  相似文献   

15.
A series of copolymers of trimethylene carbonate (TMC) and L-lactide (LLA) were synthesized and evaluated as scaffolds for the production of artificial blood vessels. The polymers were end-functionalized with acrylate, cast into films, and cross-linked using UV light. The mechanical, degradation, and biocompatibility properties were evaluated. High TMC polymers showed mechanical properties comparable to human arteries (Young's moduli of 1.2-1.8 MPa and high elasticity with repeated cycling at 10% strain). Over 84 days degradation in PBS, the modulus and material strength decreased gradually. The polymers were nontoxic and showed good cell adhesion and proliferation over 7 days using human mesenchymal stem cells. When implanted into the rat peritoneal cavity, the polymers elicited formation of tissue capsules composed of myofibroblasts, resembling immature vascular smooth muscle cells. Thus, these polymers showed properties which were tunable and favorable for vascular tissue engineering, specifically, the growth of artificial blood vessels in vivo.  相似文献   

16.
A novel chemistry has been developed for the production of capsules composed of a hydrophobic liquid core surrounded by a cross-linked polyacrylamide/alginate membrane. These liquid-core capsules may be used in capsular perstraction for the removal of inhibitory products from bioprocesses and bioconversions. They have the advantage of having a high surface area to promote rapid mass transfer, while separation of the organic core phase from the aqueous environment by the capsule membrane prevents the formation of stable emulsions and potential problems associated with toxicity of the organic phase for microbial cells or enzymes. Monodisperse spherical liquid-core capsules of between 800 microm and 1.6 mm diameter, with high mechanical resistance, have been prepared by co-extrusion, using the jet break-up technique. Capsules produced from a solution of MBA/total monomer (5%) were found to be more elastic and have a higher burst force when exposed to chelating agents such as phosphate or citrate. The mechanical resistance was unaffected by buffer solutions in the pH range 4-9 and after sterilization at 121 degrees C for 20 min. Capsules having membranes composed of a copolymer of acrylamide and N-hydroxymethylacrylamide exhibited even higher mechanical stability toward chelating agents.  相似文献   

17.
We report the encapsulation of MIN6 cells, a pancreatic beta-cell line, using thermally induced gelable materials. This strategy uses aqueous solvent and mild temperatures during encapsulation, thereby minimizing adverse effects on cell function and viability. Using a 2:1 mixture of PNIPAAm-PEG-PNIPAAm tri-block copolymer and PNIPAAm homopolymer that exhibit reversible sol-to-gel transition at approximately 30 degrees C, gels were formed that exhibit mechanical integrity, and are stable in H(2)O, PBS and complete DMEM with negligible mass loss at 37 degrees C for 60 days. MTT assays showed undetectable cytotoxicity of the polymers towards MIN6 cells. A simple microencapsulation process was developed using vertical co-extrusion and a 37 degrees C capsule collection bath containing a paraffin layer above DMEM. Spherical capsules with diameters ranging from 500 to 900 microm were formed. SEM images of freeze-dried capsules with PBS as the core solution showed homogenous gel capsule membranes. Confocal microscopy revealed that the encapsulated cells tended to form small aggregates over 5 days, and staining for live and dead cells showed high viability post-encapsulation. A static glucose challenge with day-5 cultured microencapsulated cells exhibited glucose-dependent insulin secretion comparable to controls of free MIN6 cells grown in monolayers. These results demonstrate the potential use of these thermo-responsive polymers as cell encapsulation membranes.  相似文献   

18.
为了建立天麻胶囊中主要有效成分天麻素的快速鉴定方法,根据天麻素的理化特性,使用乙醇和甲醇提取天麻胶囊中的天麻素,使用薄层色谱法进行鉴定,并与高效液相色谱法的分析结果进行比较。结果表明,薄层色谱法的鉴定结果与高效液相色谱法的检测结果一致,能较准确地鉴别天麻胶囊的真伪。本研究结果表明薄层色谱法能快速简便、准确灵敏地检测天麻胶囊中的有效成分,可作为法定鉴定方法的补充,对天麻胶囊实施快速初筛。  相似文献   

19.
A biosorbent was prepared by immobilizing and culturing Zoogloea ramigera cells in calcium alginate capsules to high density. The biosorbent (the cell and its exopolysaccharide "Zooglan") along with the [calcium] alginate is known to be responsible for cadmium removal. The dry weight of the biosorbent reached 107 g/L after 3 days of cultivation and 220 g/L after 5 days based on the core volume of a 2.0-mm diameter capsule used. The biosorbents were completely contained in the core of the capsule where the cells grew preferentially near the shell of the capsules while the polymer distributed homogeneously in the core. The specific cadmium uptake by the capsule biosorbent was 1.9 mg/g adsorbent at an initial cadmium concentration of 3 mg/L. This is 1.24 times more than the specific cadmium uptake by the 1.8-mm beads prepared under a comparable condition. The capsules crosslinked with 1% triethylene tetramine and 1% glutamic dialdehyde solutions were superior to the uncrosslinked capsules in mechanical strength. The crosslinked capsules maintained their mechanical strength and adsorption/desorption capacity even after 30 cycles of repeated use. Copyright 1999 John Wiley & Sons, Inc.  相似文献   

20.
Over the past few years, many studies have been performed involving the application of the Layer-by-Layer (LbL) deposition of oppositely charged polyelectrolytes onto charged colloidal particles, followed by the dissolution of the templates, ultimately resulting in polyelectrolyte multilayer microcapsules. The ease of preparation of polyelectrolyte multilayer microcapsules afforded by the LbL self-assembly technique, as well as the advantages of accurate control over size, composition, and the thickness of the multilayer shell make these capsules very promising for a number of applications in materials and biomedical science. In this review, we describe the assembly and stimuli-responsive properties (“smart” capsules) of polyelectrolyte multilayer microcapsules, and also discuss the potential of this technique in regard to biomedical applications. In addition, we illustrate two measurement techniques for determining the mechanical properties of polyelectrolyte multilayer microcapsules—(i) osmotic swelling and (ii) AFM compression experiments. These capsules are believed to have great potential for future applications, including biosensors, bioreactors, and carriers for targeted drug delivery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号