首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
A series of strains of the homozygous speciesOenothera grandiflora (characterized by the genome BB and plastome III) were combined with plastome IV fromO. parviflora (BC-IV) by means of appropriate crosses. An incompatibility between genome B and plastome IV is expressed in the haplo- and diplophase: (1) B-IV pollen, though normally developed, is largely inactive. The extent of the inactivation varies between different strains and shows a seasonal fluctuation as determined by seed set in outcrossing and selfing experiments. (2) In most of the strains lethality of BB-IV embryos is the rule, leading to empty seeds. This can be ameliorated by including another plastome in the zygotes and developing embryos on account of the biparental plastid transmission inOenothera. It can best be demonstrated in crosses with a seed parent having normal green plastids of plastome IV and mutated chlorophyll deficient plastids from a different plastome in the pollen parent, leading to variegated progeny as well as a remainder of empty seeds. (3) In about one-half of the strains the BB-IV plants exhibit a temporary bleaching of thevirescens type. The incompatibily between genome B and plastome IV does not support the earlier assumption that plastome IV is the ancestor of plastomes II, III, and V. Instead, a precursor plastome is postulated from which plastomes II, III, and IV are descended. While plastome I can be derived from II, only plastome V can be descended from plastome IV.Deceased August 28, 1998.  相似文献   

2.
The genetic basis of multiple phenotypic alterations was studied in cell-engineered cybrids Nicotiana tabacum (+ Hyoscyamus niger) combining the nuclear genome of N. tabacum, plastome of H. niger and recombinant mitochondria. The plants possess a complex, maternally inheritable syndrome of nucleo-cytoplasmic incompatibility, severely affecting growth, metabolism and development. In vivo, the syndrome was manifested as: late germination of seeds; dramatic decrease of chlorophyll and carotenoids in cotyledons and leaves; altered morphology of cotyledons, leaves and flowers; and dwarfism. The leaf phenotype depended on light intensity. In 'green flowers' (an extreme phenotype), homeotic function B was downregulated. In vitro, the incompatibility syndrome was restricted to the pigment deficiency of cotyledons. Electron microscopy revealed perturbations in the differentiation of chloroplasts and palisade parenchyma cells in bleached leaves. The pigment deficiency accompanied by retarded growth is discussed as a result of plastome-genome incompatibility, whereas other features are likely to be due to nucleo-mitochondrial incompatibilities.  相似文献   

3.
Nonphotosynthetic retardation of chloroplast senescence by light   总被引:1,自引:3,他引:1       下载免费PDF全文
Haber AH  Thompson PJ  Walne PL  Triplett LL 《Plant physiology》1969,44(11):1619-1625,1627-1628
Excised apical portions of green wheat leaf sections were treated with aminotriazole to prevent formation of new chloroplasts. Illumination retarded the decline in chlorophyll content per leaf section, the disintegration of chloroplast ultrastructure, and the loss of capacity for photosynthetic carbon fixation. We interpret these 3 effects of illumination as facets of a single light effect in retarding chloroplast senescence. This light effect in retarding chloroplast senescence has features differing from characteristics of photosynthetic carbon fixation. For example, A) application of the photosynthetic inhibitor 3-(3,4-dichlorophenyl)-1, 1-dimethylurea did not decrease, and may have even slightly increased, the effectiveness of light; B) although the action spectrum contains peaks in the blue and red regions, it differs from the action spectrum for photosynthetic CO2 assimilation in wheat; C) in nonphotosynthesizing tissue, application of sugars did not retard chloroplast senescence; D) light saturation was achieved by only a few hundred microwatts/cm2. Considered together with the well-known light requirement for chloroplast formation, our results indicate that light has a dual, photomorphogenetic control in maintaining the green status of the plant by also exerting a second effect: retarding of senescence of chloroplasts already present.  相似文献   

4.
Abstract San 9789 (norflurazone) blocks carotenoid synthesis which allows chlorophyll bleaching in the light, and has been used recently as a tool to study phytochrome responses without interference from photosynthetic pigments. By using this herbicide, we have found that nitrate reductase activity and light dependent nitrite reduction were lost simultaneously from achlorophyllous areas of barley leaves, with the green areas of the leaf tip still showing high activities. By contrast nitrate reductase is still present in the roots of herbicide treated plants. We suggest that intact chloroplasts are required for the presence of nitrate reductase in barley leaves.  相似文献   

5.
Control of senescence in marchantia by phytochrome   总被引:1,自引:1,他引:0       下载免费PDF全文
Mature green tissue of Marchantia polymorpha L. bleaches markedly when placed in continuous darkness for 4 days but remains green when given daily 1-hour photoperiods of white light. The tissue, however, is induced to bleach when each daily 1-hour photoperiod is terminated with a brief irradiation with far red light. The bleaching does not occur when each irradiation with far red light is followed by a brief irradiation with red light. The bleaching is taken as an index of senescence since the loss of chlorophyll in the bleached tissue is accompanied by a breakdown of cell organelles and cytoplasm. Phytochrome is clearly implicated in the control of senescence by light. It was also found that 5 minutes of red light given once a day was as effective as the 1-hour photoperiods with white light in preventing the bleaching and that bleaching was induced when each daily 5-minute irradiation with red light was followed by a 10-minute irradiation with far red light.  相似文献   

6.
7.
During natural or dark-induced senescence, chlorophyll degradation causes leaf yellowing. Recent evidence indicates that chlorophyll catabolic enzymes (CCEs) interact with the photosynthetic apparatus; for example, five CCEs (NYC1, NOL, PPH, PAO and RCCR) interact with LHCII. STAY-GREEN (SGR) and CCEs interact with one another in senescing chloroplasts; this interaction may allow metabolic channeling of potentially phototoxic chlorophyll breakdown intermediates. 7-Hydroxymethyl chlorophyll a reductase (HCAR) also acts as a CCE, but HCAR functions during leaf senescence remain unclear. Here we show that in Arabidopsis, HCAR-overexpressing plants exhibited accelerated leaf yellowing and, conversely, hcar mutants stayed green during dark-induced senescence. Moreover, HCAR interacted with LHCII in in vivo pull-down assays, and with SGR, NYC1, NOL and RCCR in yeast two-hybrid assays, indicating that HCAR is a component of the proposed SGR-CCE-LHCII complex, which acts in chlorophyll breakdown. Notably, HCAR and NOL are expressed throughout leaf development and are drastically down-regulated during dark-induced senescence, in contrast with SGR, NYC1, PPH and PAO, which are up-regulated during dark-induced senescence. Moreover, HCAR and NOL are highly up-regulated during greening of etiolated seedlings, strongly suggesting a major role for NOL and HCAR in the chlorophyll cycle during vegetative stages, possibly in chlorophyll turnover.  相似文献   

8.
Senescence is a phase of leaf ontogeny marked by declining photosynthetic activity that is paralleled by a decline in chloroplast function. The photosystem II in a plant is considered to be the primary site where delayed fluorescence (DF) is produced. We report here a simple, rapid, and non-invasive technique for detecting plants senescence based on quantitative measurements of DF. In the experimental study, various senescence symptoms induced by age or hormones were examined in the Catharanthus roseus L. G. Don plants. Detecting the DF emissions from leaves with a home-made DF biosensor enables DF parameters of C. roseus to be produced in a short time. Meanwhile, evaluations of leaves senescence were made from measurements of chlorophyll content, ion leakage, and net photosynthesis rate (Pn) based on the consumption of CO2 in the tested plants. The results of our investigation demonstrate that the changes in DF intensity of green plants can truly reflect the changes in photosynthetic capacity and chlorophyll content during age-dependent and hormone-modulated senescence. Moreover, the DF intensity negatively correlates with ion leakage in both types of senescence. With proper calibration, DF may provide an important approach for monitoring senescence process in vivo and quantitatively evaluating senescence extent. Therefore, a DF technique could be potentially useful for less time-consuming and automated screening of the interesting mutants with genetic modifications that change the plant senescence progress.  相似文献   

9.
以设施延迟栽培条件下叶片衰老速度不同的意大利和无核白鸡心2个葡萄品种为试材,分别进行补充红光和蓝光处理,研究不同光质对叶片衰老过程中叶绿素含量、净光合速率和内源激素含量的影响.结果表明: 与未补光对照相比,红光能够显著提高叶片的叶绿素含量和净光合速率,降低了内源赤霉素(GA3)含量,但明显减缓了脱落酸(ABA)含量的增加和玉米素核苷(ZR)总含量的减少,从而显著提高了(GA3+ZR)/ABA值,延缓叶片衰老.叶片衰老前期,蓝光处理叶片叶绿素含量、净光合速率和(GA3+ZR)/ABA值均低于对照,加速了植株的衰老进程;但在叶片衰老后期,蓝光处理叶绿素含量、净光合速率和(GA3+ZR)/ABA值逐渐高于对照,在一定程度上延缓了叶片衰老.植物内源激素生长素(IAA)则表现出叶片衰老前期促进叶片生长发育、叶片衰老后期加速衰老的双重作用.意大利叶片衰老速度较无核白鸡心慢.在本试验条件下,红光处理效果最好,有效延缓了叶片衰老进程,延长了叶片的生理功能期.  相似文献   

10.
To determine the role of ethylene during tomato (Lycopersicon esculentum Mill. cv. Alisa Craig) leaf senescence, transgenic ACC oxidase antisense plants were analysed. Northern analysis of wild-type plants indicated that ACC oxidase mRNA accumulation normally begins in pre-senescent green leaves but was severely reduced in the antisense plants. Although the levels of ethylene evolved by wild-type and transgenic leaves increased during the progression of senescence, levels were extremely low in transgenic leaves. Leaf senescence, as assessed by colour change from green to yellow, was clearly delayed by 10–14 days in the antisense plants when compared with wild-type plants. Northern analysis of the photosynthesis-associated genes, cab and rbcS, indicated that levels of the corresponding mRNAs were higher in transgenic leaves which were not yet senescing compared with senescing wild-type leaves of exactly the same age. Northern analysis using probes for tomato fruit ripening-related genes expressed during leaf senescence indicated that once senescence was initiated the expression pattern of these mRNAs was similar in transgenic and wild-type leaves. In the antisense plants chlorophyll levels, photosynthetic capacity and chlorophyll fluorescence were higher when compared with senescing wild-type plants of the same age. Photosynthetic capacity and the quantum efficiency of photosystem II were maintained for longer in the transformed plants at values close to those observed in wild-type leaves prior to the visible onset of senescence. These results indicate that inhibiting ACC oxidase expression and ethylene synthesis results in delayed leaf senescence, rather than inducing a stay-green phenotype. Once senescence begins, it progresses normally. Onset of senescence is not, therefore, related to a critical level of ethylene. The correlation between higher levels prior to senescence and early onset, however, suggests that ethylene experienced by the plant may be a significant contributing factor in the timing of senescence.  相似文献   

11.
选取自然条件下生长的雌雄银杏植株为实验材料,测定了银杏叶片在衰老过程中部分光合生理指标及叶绿体超微结构的变化。检测结果表明:银杏叶片在衰老过程中净光合速率、叶绿素含量均呈下降趋势,SOD、CAT、APX活性均先上升后下降,MDA含量则一直呈现上升趋势。叶片衰老过程中叶绿体类囊体膜片层逐渐松散,直至膜结构逐渐解体,叶绿体内油脂颗粒增大增多,最终解体。雌雄银杏植株在各项生理指标上差异不显著。  相似文献   

12.
Anatomical and physiological characteristics of leaves of triazinesusceptible and -resistant biotypes of common groundsel (Senecio vulgaris L.) were studied in order to explain the differences in light-saturated photosynthetic rates previously reported. Leaves were of uniform leaf plastochron index from greenhouse-grown plants. Susceptible plants had greater leaf fresh and dry weights and leaf areas, while resistant plants had greater specific leaf mass (mg fresh weight/cm2). Susceptible plants had greater amounts of total chlorophyll per unit leaf weight and a higher chlorophyll a/b ratio. Soluble protein in leaves was higher in susceptible chloroplasts on a weight and area basis, but similar to resistant chloroplasts on a unit chlorophyll basis. Activity of ribulose 1,5-bisphosphate carboxylase was higher in resistant plants on a fresh weight, leaf area, and milligram chlorophyll basis. Stomatal frequency, length, and arrangement were similar between biotypes, as were transpiration and conductance. Resistant leaves had less air space (v/v), more cells in palisade and spongy mesophyll, and a greater volume of palisade tissue than spongy, when compared to susceptible leaves. Differences in leaf structure and function between biotypes are probably due to a complex of developmental adaptations which may be only indirectly related to modified photosystem II in resistant plants. These results indicate that the consistently lower rates of net photosynthesis and yield in resistant plants cannot be explained solely on the basis of these leaf characteristics. Several possible mechanisms to account for reduced productivity are suggested.  相似文献   

13.
The abundances of chloroplasts in leaves on the main stems ofChenopodium album at different height levels were investigatedin relation to the photosynthetic capacity and light environmentof the leaves. (1) The number of chloroplasts per mesophyllcell decreased with descending position of leaves, except foryoung developing leaves at the top of plants that had smallerchloroplast numbers per cell than matured leaves beneath them.Contents of chlorophyll and ribulose-1,5-bisphosphate carboxylase/oxygenaseper leaf area that were highest in the topmost young leavesand decreased with decreasing height level indicate that thereis a vertical gradient of chloroplast abundance per leaf areadecreasing from the top of the leaf canopy with depth. (2) Light-saturatingrate of photosynthetic oxygen evolution per leaf area of maturedleaves decreased more steeply with decreasing leaf positionthan the chloroplast number per cell. Gradients of chlorophylland the enzyme protein contents were also steeper than thatof the chloroplast number. Loss of photosynthesis in lower leavesis, therefore, ascribed partly to loss of whole chloroplastsand partly to reduced photosynthetic capacities of the remainingchloroplasts. (3) The chloroplast number per cell in newly expandedsecond leaves was comparable to those in leaves that have developedat later stages of the plant growth but decreased graduallyduring leaf senescence both in the dark and light. The formationof the vertical gradient of chloroplast abundance is, therefore,ascribed to loss of whole chloroplasts during senescence ofleaves. (4) Irradiance a leaf receives decreased sharply fromthe top of the canopy with depth. The physiological or ecophysiologicalsignificance of the vertical distribution of chloroplasts amongleaves was discussed taking light environments of leaves intoconsideration. (Received July 31, 1995; Accepted October 20, 1995)  相似文献   

14.
Chloroplasts have been isolated in high yield from several gymnosperms and from two deciduous trees. The organization of chlorophyll in the chloroplasts of these woody species is basically similar to that in angiosperm crop plants and green algae. The tree chloroplasts contain two chlorophyll proteins, the P700-chlorophyll a-protein and the major light-harvesting chlorophyll a/b-protein, the size, spectral characteristics, and function of which are the same as the equivalent complexes previously isolated from other classes of green plants. All the gymnosperms have chlorophyll/P700 ratios (photosynthetic unit sizes) 1.6 to 3.8 times larger than that typically found in crop plants; the deciduous trees have units of intermediary size. The presence of fewer but larger photosynthetic units in the woody species can partially account for their lower photosynthetic rate and explains why their photosynthetic processes saturate at lower light intensities. Chloroplasts of shade needles have large units containing a greater proportion of the light-harvesting chlorophyll a/b-protein than those of sun needles.  相似文献   

15.
In this report we examine the factors that regulate photosynthesis during leaf ontogeny in y3y3 and Y11y11, two chlorophyll-deficient mutants of soybean. Photosynthetic rates were similar during wild type and Y11y11 leaf development, but the senescence decline in photosynthesis was accelerated in y3y3. Photosynthetic rates fell more rapidly than chlorophyll concentrations during senescence in wild type leaves, indicating that light harvesting is not strongly limiting for photosynthesis during this phase of leaf development. Chlorophyll concentrations in Y11y11, though significantly lower than normal, were able to support normal photosynthetic rates throughout leaf ontogeny. Chlorophyll a/b ratios were constant during leaf development in the wild type, but in the mutants they progressively increased (y3y3) or decreased (Y11y11). In all three sets of plants, photosynthetic rates were directly proportional to Rubisco contents and activities, suggesting that Rubisco plays a dominant role in regulating photosynthesis throughout leaf ontogeny in these plants. The expression of some photosynthetic proteins, such as Rubisco activase, was coordinately regulated with that of Rubisco in all three genotypes, i.e. an early increase, coincident with leaf expansion, followed by a senescence decline in the fully-expanded leaf. On the other hand, the light harvesting chlorophyll a/b-binding proteins of PS II (the CAB proteins), while they showed a profile similar to that of Rubisco in the wild type and y3y3, progressively increased in amount during Y11y11 leaf development. We conclude that Y11y11 may be defective in the accumulation of a component required for LHC II assembly or function, while y3y3 has more global effects and may be a regulatory factor that controls the duration of senescence.  相似文献   

16.
Physiological characterization of 'stay green' mutants in durum wheat   总被引:18,自引:0,他引:18  
Four mutants with delayed leaf senescence were selected from seed of durum wheat mutagenized with ethylmethane sulphonate. Changes in net photosynthetic rate, efficiency of photosystem II and chlorophyll concentration during the maturation and senescence of the flag leaves of both mutant and parental plants were determined under glasshouse conditions. The four mutant lines maintained photosynthetic competence for longer than the parental line and are therefore functionally 'stay green'. The mutant lines also had higher seed weights and grain yields per plant than the parental line.  相似文献   

17.
The effect of spermine on photochemical activity and polypeptide composition of chloroplasts from barley leaf discs during senescence in the dark was studied. Chloroplast membranes did not show photosystem II activity after spermine treatment when water was the electron donor, but in the presence of diphenylcarbazide, this activity was observed. The diphenylcarbazide-stimulated photoreduction of dichloroindophenol was 3-fold greater in leaf discs incubated for 72 hours in spermine than in water. Photosystem I activity was reduced by about 90% within the first 24 hours in the spermine-treated samples. This reduction, however, was not due to a decrease in the photosynthetic unit size. A preferential loss of polypeptides other than those associated with photosystem II was observed during senescence of the leaf discs in water, but this loss was reduced by spermine. Spermine treatment also prevented the appearance of several additional chlorophyll proteins found in the controls during senescence. The results have been interpreted on the basis of the interaction of spermine with thylakoid membranes resulting in stabilization of membrane function during senescence.  相似文献   

18.
To compare chloroplast development in a normally grown plant with etiochloroplast development, green maize plants (Zea mays), grown under a diurnal light regime (16-hour day) were harvested 7 days after sowing and chloroplast biogenesis within the leaf tissue was examined. Determination of total chlorophyll content, ratio of chlorophyll a to chlorophyll b, and O2-evolving capacity were made for intact leaf tissue. Plastids at different stages of development were isolated and the electron-transporting capacities of photosystem I and photosystem II measured. Light saturation curves were produced for O2-evolving capacity of intact leaf tissue and for photosystem I and photosystem II activities of isolated plastids. Structural studies were also made on the developing plastids. The results indicate that the light-harvesting apparatus becomes increasingly efficient during plastid development due to an increase in the photosynthetic unit size. Photosystem I development is completed before that of photosystem II. Increases in O2-evolving capacity during plastid development can be correlated with increased thylakoid fusion. The pattern of photosynthetic membrane development in the light-grown maize plastids is similar to that found in greening etiochloroplasts.  相似文献   

19.
Mesophyll protoplasts isolated from primary leaves of wheat seedlings were used to follow the localization of proteases and the breakdown of chloroplasts during dark-induced senescence. Protoplasts were readily obtained from leaf tissue, even after 80% of the chlorophyll and protein had been lost. Intact chloroplasts and vacuoles could be isolated from the protoplasts at all stages of senescence. All the proteolytic activity associated with the degradation of ribulose bisphosphate carboxylase in the protoplasts could be accounted for by that localized within the vacuole. Moreover, this localization was retained late into senescence. Protoplasts isolated during leaf senescence first showed a decline in photosynthesis, then a decline in ribulose bisphosphate carboxylase activity, followed by a decline in chloroplast number. There was a close correlation between the decline in chloroplast number and the loss of chlorophyll and soluble protein per protoplast, suggesting a sequential degradation of chloroplasts during senescence. Ultrastructural studies indicated a movement of chloroplasts in toward the center of the protoplasts during senescence. Thus, within senescing protoplasts, chloroplasts appeared either to move into invaginations of the vacuole or to be taken up into the vacuole.  相似文献   

20.
Summer leaf senescence in Pistacia lentiscus L. plants serves to remobilize nutrients from the oldest leaves to the youngest ones, and therefore contributes to plant survival during the adverse climatic conditions typical of Mediterranean summers, i.e. water deficit superimposed on high solar radiation and high temperatures. To evaluate the extent of photo- and antioxidative protection during leaf senescence of this species, changes in carotenoids, including xanthophyll cycle pigments, and in the levels of ascorbate and alpha-tocopherol were measured prior to and during summer leaf senescence in 3-year-old plants grown under Mediterranean field conditions. Although a chlorophyll loss of approx. 20% was observed during the first stages of leaf senescence, no damage to the photosynthetic apparatus occurred as indicated by constant maximum efficiencies of photosystem II photochemistry. During this period the de-epoxidation state of the xanthophyll cycle, and lutein, neoxanthin and ascorbate levels were kept constant. At the same time beta-carotene and alpha-tocopherol levels increased by approx. 9 and 70%, respectively, presumably conferring photo- and antioxidative protection to the photosynthetic apparatus. By contrast, during the later stages of leaf senescence, characterized by severe chlorophyll loss, carotenoids were moderately degraded (neoxanthin by approx. 20%, and both lutein and beta-carotene by approx. 35%), ascorbate decreased by approx. 80% and alpha-tocopherol was not detected in senescing leaves. This study demonstrates that mechanisms of photo- and antioxidative protection may play a major role in maintaining chloroplast function during the first stages of leaf senescence, while antioxidant defences are lost during the latest stages of senescence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号