首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Myostatin (growth and differentiation factor-8) is a member of the transforming growth factor-beta superfamily, is expressed mainly in skeletal muscle and acts as a negative growth regulator. Mature myostatin (C-terminal) is a homodimer that is cleaved post-translationally from the precursor myostatin, also yielding the N-terminal prodomain. We expressed in Escherichia coli three forms of fish myostatin: precursor, prodomain and mature. The three forms were over-expressed as inclusion bodies. Highly purified inclusion bodies were solubilized in a solution containing guanidine hydrochloride and the reducing agent DTT. Refolding (indicated by a dimer formation) of precursor myostatin, mature myostatin or a mixture of prodomain and mature myostatin was compared under identical refolding conditions, performed in a solution containing sodium chloride, arginine, a low concentration of guanidine hydrochloride and reduced and oxidized glutathione at 4 degrees C for 14 days. While precursor myostatin formed a reversible disulfide bond with no apparent precipitation, mature myostatin precipitated in the same refolding solution, unless CHAPS was included, and only a small proportion formed a disulfide bond. The trans presence of the prodomain in the refolding solution prevented precipitation of mature myostatin but did not promote formation of a dimer. Proteolytic cleavage of purified, refolded precursor myostatin with furin yielded a monomeric prodomain and a disulfide-linked, homodimeric mature myostatin, which remained as a latent complex. Activation of the latent complex was achieved by acidic or thermal treatments. These results demonstrate that the cis presence of the prodomain is essential for the proper refolding of fish myostatin and that the cleaved mature dimer exists as a latent form.  相似文献   

2.
Myostatin, also known as growth and differentiation factor 8, is a member of the transforming growth factor beta superfamily that negatively regulates skeletal muscle mass (1). Recent experiments have shown that myostatin activity is detected in serum by a reporter gene assay only after activation by acid, suggesting that native myostatin circulates as a latent complex (2). We have used a monoclonal myostatin antibody, JA16, to isolate the native myostatin complex from normal mouse and human serum. Analysis by mass spectrometry and Western blot shows that circulating myostatin is bound to at least two major proteins, the myostatin propeptide and the follistatin-related gene (FLRG). The myostatin propeptide is known to bind and inhibit myostatin in vitro (3). Here we show that this interaction is relevant in vivo, with a majority (>70%) of myostatin in serum bound to its propeptide. Studies with recombinant V5-His-tagged FLRG protein confirm a direct interaction between mature myostatin and FLRG. Functional studies show that FLRG inhibits myostatin activity in a reporter gene assay. These experiments suggest that the myostatin propeptide and FLRG are major negative regulators of myostatin in vivo.  相似文献   

3.
The tumor necrosis factor alpha converting enzyme (TACE) activity is required for the shedding of a variety of biologically active membrane bound precursors. The activation of TACE necessitates the proteolytic cleavage of its prodomain, a process that was suggested to be catalyzed by the proprotein convertase furin. However, the involvement of furin in this activation process has never been experimentally demonstrated. We have shown that the furinlike cleavage site (R-V-K-R(214)) localized between the prodomain and the metalloprotease domain of TACE is the sole site that can be in vitro cleaved by furin. In Cos7 cells, the release of TACE-processed substrates was reduced by the overexpression of the furin-specific proprotein convertase inhibitor Portland alpha1-antitrypsin inhibitor, but the release of TACE-processed substrates was increased by overexpression of furin in LoVo cells (deficient in furin activity) in which a mature form of TACE was identified. The immature form of TACE was detected at the surface of LoVo cells and at the surface of Cos7 and HT29 cells upon proprotein convertase inhibition. These results suggest that furin is the major proprotein convertase involved in the maturation/activation of TACE which is not a prerequisite for its cell-surface expression.  相似文献   

4.
The LTBPs (or latent transforming growth factor β binding proteins) are important components of the extracellular matrix (ECM) that interact with fibrillin microfibrils and have a number of different roles in microfibril biology. There are four LTBPs isoforms in the human genome (LTBP-1, − 2, − 3, and − 4), all of which appear to associate with fibrillin and the biology of each isoform is reviewed here.The LTBPs were first identified as forming latent complexes with TGFβ by covalently binding the TGFβ propeptide (LAP) via disulfide bonds in the endoplasmic reticulum. LAP in turn is cleaved from the mature TGFβ precursor in the trans-golgi network but LAP and TGFβ remain strongly bound through non-covalent interactions. LAP, TGFβ, and LTBP together form the large latent complex (LLC). LTBPs were originally thought to primarily play a role in maintaining TGFβ latency and targeting the latent growth factor to the extracellular matrix (ECM), but it has also been shown that LTBP-1 participates in TGFβ activation by integrins and may also regulate activation by proteases and other factors. LTBP-3 appears to have a role in skeletal formation including tooth development. As well as having important functions in TGFβ regulation, TGFβ-independent activities have recently been identified for LTBP-2 and LTBP-4 in stabilizing microfibril bundles and regulating elastic fiber assembly.  相似文献   

5.
Latent TGF-beta1 activation by platelets   总被引:7,自引:0,他引:7  
Platelets are a major source of transforming growth factor-beta1 (TGF-beta1) in the circulation as they release latent growth factor in response to activation. We report here that human platelets, when stimulated with thrombin, activated a significant proportion of the latent TGF-beta released. Latent TGF-beta activation was independent of cytokine release, since activation was delayed compared to platelet degranulation. Activation occured in releasates and did not require the continuous presence of platelets. Classical mechanisms of latent TGF-beta activation were not involved, since activation was not affected by gene deletion and/or inhibitors of the known TGF-beta activators/co-factors, thrombospondin-1 (TSP-1), mannose 6-phosphate/insulin-like growth factor-II receptor (M6P/IGF-IIR), plasminogen/plasmin, or several other candidate proteases. In contrast, latent TGF-beta activation was significantly inhibited by the furin inhibitors, decanoyl-Arg-Val-Lys-Arg-chloromethyl ketone and L-hexaarginine. We show that platelets contain a furin-like enzyme which is released upon platelet activation. We conclude that, following activation, platelets release and activate latent TGF-beta1 via mechanisms involving the release and activity of a furin-like proprotein convertase. This novel mechanism of latent TGF-beta activation might represent an important mediator and therapeutic target of platelet TGF-beta1 functions, for example, in early wound repair, fibrosis, or arteriosclerosis.  相似文献   

6.
Myostatin, a key regulator of muscle mass in vertebrates, is biosynthesised as a latent precursor in muscle and is activated by sequential proteolysis of the pro‐domain. To investigate the molecular mechanism by which pro‐myostatin remains latent, we have determined the structure of unprocessed pro‐myostatin and analysed the properties of the protein in its different forms. Crystal structures and SAXS analyses show that pro‐myostatin adopts an open, V‐shaped structure with a domain‐swapped arrangement. The pro‐mature complex, after cleavage of the furin site, has significantly reduced activity compared with the mature growth factor and persists as a stable complex that is resistant to the natural antagonist follistatin. The latency appears to be conferred by a number of distinct features that collectively stabilise the interaction of the pro‐domains with the mature growth factor, enabling a regulated stepwise activation process, distinct from the prototypical pro‐TGF‐β1. These results provide a basis for understanding the effect of missense mutations in pro‐myostatin and pave the way for the design of novel myostatin inhibitors.  相似文献   

7.
The TGF-beta family members are generated as latent pre-pro-polypeptides. The active mature peptides are cleaved from the latent forms by cellular proteases. TGF-beta 1, for instance, is predominantly processed by a substilisin-like proprotein convertase, furin. TGF-beta 2 has a consensus cleavage site for furin and therefore has been presumed to be cleaved by furin. However, TGF-beta 2 is often secreted as the latent form, which appears to be inconsistent with its postulated sensitivity to furin. We report here that both the regular (short) form of TGF-beta2 and its spliced variant with an additional exon (long form) are insensitive to furin. NIH 3T3 and CHO cells were transfected with expression vectors containing the short or long form of TGF-beta 2 or a chimeric TGF-beta consisting of the TGF-beta1 LAP region, the TGF-beta 2 cleavage site and the TGF-beta 2 mature peptide. The constructs included a c-myc epitope tag in the N-terminal region of the mature peptide. The TGF-betas produced by the transfected cells were analyzed with Western blots and immunocytochemistry. The intracellular proteins harvested from these cells were incubated with furin. Furin only inefficiently cleaved both the long and short forms of TGF-beta 2, but efficiently processed the chimeric TGF-beta. This indicates that the insensitivity of both forms of TGF-beta 2 to furin is a consequence of the tertiary structure of their LAP regions rather than their cleavage site. This differential processing of TGF-beta1 and -beta 2 may be part of the mechanism that generates isoform-specific functions of the TGF-betas.  相似文献   

8.
The latent transforming growth factor-beta-binding protein-1 (LTBP-1) belongs to a family of extracellular glycoproteins that includes three additional isoforms (LTBP-2, -3, and -4) and the matrix proteins fibrillin-1 and -2. Originally described as a TGF-beta-masking protein, LTBP-1 is involved both in the sequestration of latent TGF-beta in the extracellular matrix and the regulation of its activation in the extracellular environment. Whereas the expression of LTBP-1 has been analyzed in normal and malignant cells and rodent and human tissues, little is known about LTBP-1 in embryonic development. To address this question, we used murine embryonic stem (ES) cells to analyze the appearance and role of LTBP-1 during ES cell differentiation. In vitro, ES cells aggregate to form embryoid bodies (EBs), which differentiate into multiple cell lineages. We analyzed LTBP-1 gene expression and LTBP-1 fiber appearance with respect to the emergence and distribution of cell types in differentiating EBs. LTBP-1 expression increased during the first 12 d in culture, appeared to remain constant between d 12 and 24, and declined thereafter. By immunostaining, fibrillar LTBP-1 was observed in those regions of the culture containing endothelial, smooth muscle, and epithelial cells. We found that inclusion of a polyclonal antibody to LTBP-1 during EB differentiation suppressed the expression of the endothelial specific genes ICAM-2 and von Willebrand factor and delayed the organization of differentiated endothelial cells into cord-like structures within the growing EBs. The same effect was observed when cultures were treated with either antibodies to TGF-beta or the latency associated peptide, which neutralize TGF-beta. Conversely, the organization of endothelial cells was enhanced by incubation with TGF-beta 1. These results suggest that during differentiation of ES cells LTBP-1 facilitates endothelial cell organization via a TGF-beta-dependent mechanism.  相似文献   

9.
10.
Proteolytic degradation of the major cartilage macromolecules, aggrecan and type II collagen, is a key pathological event in osteoarthritis (OA). ADAMTS-4 and ADAMTS-5, the primary aggrecanases capable of cartilage aggrecan cleavage, are synthesized as latent enzymes and require prodomain removal for activity. The N-termini of the mature proteases suggest that activation involves a proprotein convertase, but the specific family member responsible for aggrecanase activation in cartilage in situ has not been identified. Here we describe purification of a proprotein convertase activity from human OA cartilage. Through biochemical characterization and the use of siRNA, PACE4 was identified as a proprotein convertase responsible for activation of aggrecanases in osteoarthritic and cytokine-stimulated cartilage. Posttranslational activation of ADAMTS-4 and ADAMTS-5 was observed in the extracellular milieu of cartilage, resulting in aggrecan degradation. These findings suggest that PACE4 represents a novel target for the development of OA therapeutics.  相似文献   

11.
Recent studies have shown that myostatin, first identified as a negative regulator of skeletal muscle growth, may also be involved in the formation of fibrosis within skeletal muscle. In this study, we further explored the potential role of myostatin in skeletal muscle fibrosis, as well as its interaction with both transforming growth factor-beta1 and decorin. We discovered that myostatin stimulated fibroblast proliferation in vitro and induced its differentiation into myofibroblasts. We further found that transforming growth factor-beta1 stimulated myostatin expression, and conversely, myostatin stimulated transforming growth factor-beta1 secretion in C2C12 myoblasts. Decorin, a small leucine-rich proteoglycan, was found to neutralize the effects of myostatin in both fibroblasts and myoblasts. Moreover, decorin up-regulated the expression of follistatin, an antagonist of myostatin. The results of in vivo experiments showed that myostatin knock-out mice developed significantly less fibrosis and displayed better skeletal muscle regeneration when compared with wild-type mice at 2 and 4 weeks following gastrocnemius muscle laceration injury. In wild-type mice, we found that transforming growth factor-beta1 and myostatin co-localize in myofibers in the early stages of injury. Recombinant myostatin protein stimulated myofibers to express transforming growth factor-beta1 in skeletal muscles at early time points following injection. In summary, these findings define a fibrogenic property of myostatin and suggest the existence of co-regulatory relationships between transforming growth factor-beta1, myostatin, and decorin.  相似文献   

12.
13.
14.
The basic amino acid-specific proprotein convertase 5/6 (PC5/6) is an essential secretory protease, as knock-out mice die at birth and exhibit multiple homeotic transformation defects, including impaired bone morphogenesis and lung structure. Some of the observed defects were attributed to impaired processing of the TGFβ-like growth differentiating factor 11 precursor (proGdf11). In this work we present evidence that the latent TGFβ-binding proteins 2 and 3 (LTBP-2 and -3) inhibit the extracellular processing of proGdf11 by PC5/6A. This is partly due to the binding of LTBPs in the endoplasmic reticulum to the zymogen proPC5/6A, thus allowing the complex to exit the endoplasmic reticulum and be sequestered as an inactive zymogen in the extracellular matrix but not at the cell surface. This results in lower levels of PC5/6A in the media, without affecting those of PACE4, Furin, or a soluble form of PC7. The secreted soluble protease-specific activity of PC5/6A or a variant lacking the C-terminal Cys-rich domain (PC5/6-ΔCRD) is significantly decreased when co-expressed with LTBPs in cells. A similar enzymatic inhibition seems to apply to PACE4 and Furin. In situ hybridization analyses revealed extensive co-localization of PC5/6 and LTBP-3 mRNAs in mice at embryonic day 15.5 and post partum day 1. In conclusion, this is the first time that a zymogen of the proprotein convertases was shown to exit the endoplasmic reticulum in the presence of LTBPs, representing a potential novel mechanism for the regulation of PC5/6A activity, e.g. in tissues such as bone and lung where LTBP-3 and PC5/6 co-localize.  相似文献   

15.
Myostatin, a member of the TGFbeta superfamily, is a potent and specific negative regulator of skeletal muscle mass. In serum, myostatin circulates as part of a latent complex containing myostatin propeptide and/or follistatin-related gene (FLRG). Here, we report the identification of an additional protein associated with endogenous myostatin in normal mouse and human serum, discovered by affinity purification and mass spectrometry. This protein, which we have named growth and differentiation factor-associated serum protein-1 (GASP-1), contains multiple domains associated with protease-inhibitory proteins, including a whey acidic protein domain, a Kazal domain, two Kunitz domains, and a netrin domain. GASP-1 also contains a domain homologous to the 10-cysteine repeat found in follistatin, a protein that binds and inhibits activin, another member of the TGFbeta superfamily. We have cloned mouse GASP-1 and shown that it inhibits the biological activity of mature myostatin, but not activin, in a luciferase reporter gene assay. Surprisingly, recombinant GASP-1 binds directly not only to mature myostatin, but also to the myostatin propeptide. Thus, GASP-1 represents a novel class of inhibitory TGFbeta binding proteins.  相似文献   

16.
Targeting of transforming growth factor beta (TGF-β) to the extracellular matrix (ECM) by latent TGF-β binding proteins (LTBPs) regulates the availability of TGF-β for interactions with endothelial cells during their quiescence and activation. However, the mechanisms which release TGF-β complexes from the ECM need elucidation. We find here that morphological activation of endothelial cells by phorbol 12-myristate 13-acetate (PMA) resulted in membrane-type 1 matrix metalloproteinase (MT1-MMP) -mediated solubilization of latent TGF-β complexes from the ECM by proteolytic processing of LTBP-1. These processes required the activities of PKC and ERK1/2 signaling pathways and were coupled with markedly increased MT1-MMP expression. The functional role of MT1-MMP in LTBP-1 release was demonstrated by gene silencing using lentiviral short-hairpin RNA as well as by the inhibition with tissue inhibitors of metalloproteinases, TIMP-2 and TIMP-3. Negligible effects of TIMP-1 and uPA/plasmin system inhibitors indicated that secreted MMPs or uPA/plasmin system did not contribute to the release of LTBP-1. Current results identify MT1-MMP-mediated proteolytic processing of ECM-bound LTBP-1 as a mechanism to release latent TGF-β from the subendothelial matrix.  相似文献   

17.
Lee SJ 《PloS one》2008,3(2):e1628
Myostatin is a secreted protein that normally acts to limit skeletal muscle growth. As a result, there is considerable interest in developing agents capable of blocking myostatin activity, as such agents could have widespread applications for the treatment of muscle degenerative and wasting conditions. Myostatin normally exists in an inactive state in which the mature C-terminal portion of the molecule is bound non-covalently to its N-terminal propeptide. We previously showed that this latent complex can be activated in vitro by cleavage of the propeptide with members of the bone morphogenetic protein-1/tolloid (BMP-1/TLD) family of metalloproteases. Here, I show that mice engineered to carry a germline point mutation rendering the propeptide protease-resistant exhibit increases in muscle mass approaching those seen in mice completely lacking myostatin. Mice homozygous for the point mutation have increased muscling even though their circulating levels of myostatin protein are dramatically increased, consistent with an inability of myostatin to be activated from its latent state. Furthermore, I show that a loss-of-function mutation in Tll2, which encodes one member of this protease family, has a small, but significant, effect on muscle mass, implying that its function is likely redundant with those of other family members. These findings provide genetic support for the hypothesis that proteolytic cleavage of the propeptide by BMP-1/TLD proteases plays a critical role in the activation of latent myostatin in vivo and suggest that targeting the activities of these proteases may be an effective therapeutic strategy for enhancing muscle growth in clinical settings of muscle loss and degeneration.  相似文献   

18.
Histone H1 and its C-terminal lysine rich fragments were recently found to be potent inhibitorsof furin,a mammalian proprotein convertase.However,its role in the regulation of furin-dependent proproteinprocessing remains unclear.Here we report that histone H1 efficiently blocks furin-dependent pro-yonWillebrand factor(pro-vWF)processing in a dose-dependent manner.Coimmunoprecipitation and immunof-luorescence studies confirmed that histone H1 could interact with furin,and the interaction mainly took placeon the cell surface.We noted that histone H1 was released from cells undergoing necrosis and apoptosisinduced by H_2O_2.Our findings suggested that histone H1 might be involved in extracellular and/or intracellu-lar furin regulation.  相似文献   

19.
20.
Growth differentiation factor 8 (GDF8)/myostatin is a latent TGF‐β family member that potently inhibits skeletal muscle growth. Here, we compared the conformation and dynamics of precursor, latent, and Tolloid‐cleaved GDF8 pro‐complexes to understand structural mechanisms underlying latency and activation of GDF8. Negative stain electron microscopy (EM) of precursor and latent pro‐complexes reveals a V‐shaped conformation that is unaltered by furin cleavage and sharply contrasts with the ring‐like, cross‐armed conformation of latent TGF‐β1. Surprisingly, Tolloid‐cleaved GDF8 does not immediately dissociate, but in EM exhibits structural heterogeneity consistent with partial dissociation. Hydrogen–deuterium exchange was not affected by furin cleavage. In contrast, Tolloid cleavage, in the absence of prodomain–growth factor dissociation, increased exchange in regions that correspond in pro‐TGF‐β1 to the α1‐helix, latency lasso, and β1‐strand in the prodomain and to the β6′‐ and β7′‐strands in the growth factor. Thus, these regions are important in maintaining GDF8 latency. Our results show that Tolloid cleavage activates latent GDF8 by destabilizing specific prodomain–growth factor interfaces and primes the growth factor for release from the prodomain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号