首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
外膜蛋白(Outer Membrane Proteins, OMPs)是一类具有重要生物功能的蛋白质, 通过生物信息学方法来预测OMPs能够为预测OMPs的二级和三级结构以及在基因组发现新的OMPs提供帮助。文中提出计算蛋白质序列的氨基酸含量特征、二肽含量特征和加权多阶氨基酸残基指数相关系数特征, 将三类特征组合, 采用支持向量机(Support Vector Machine, SVM)算法来识别OMPs。计算了包括四种残基指数的多种组合特征的识别结果, 并且讨论了相关系数的阶次和权值对预测性能的影响。在数据集上的十倍交叉验证测试和独立性测试结果显示, 组合特征识别方法对OMPs和非OMPs的识别精度最高分别达到96.96%和97.33%, 优于现有的多种方法。在五种细菌基因组内识别OMPs的结果显示, 组合特征方法具有很高的特异性, 并且对PDB数据库中已知结构的OMPs识别准确度超过99%。表明该方法能够作为基因组内筛选OMPs的有效工具。  相似文献   

2.
Discrimination of outer membrane proteins using support vector machines   总被引:3,自引:0,他引:3  
MOTIVATION: Discriminating outer membrane proteins from other folding types of globular and membrane proteins is an important task both for dissecting outer membrane proteins (OMPs) from genomic sequences and for the successful prediction of their secondary and tertiary structures. RESULTS: We have developed a method based on support vector machines using amino acid composition and residue pair information. Our approach with amino acid composition has correctly predicted the OMPs with a cross-validated accuracy of 94% in a set of 208 proteins. Further, this method has successfully excluded 633 of 673 globular proteins and 191 of 206 alpha-helical membrane proteins. We obtained an overall accuracy of 92% for correctly picking up the OMPs from a dataset of 1087 proteins belonging to all different types of globular and membrane proteins. Furthermore, residue pair information improved the accuracy from 92 to 94%. This accuracy of discriminating OMPs is higher than that of other methods in the literature, which could be used for dissecting OMPs from genomic sequences. AVAILABILITY: Discrimination results are available at http://tmbeta-svm.cbrc.jp.  相似文献   

3.
外膜蛋白(Outer Membrane Proteins, OMPs)是一类具有重要生物功能的蛋白质, 通过生物信息学方法来预测OMPs能够为预测OMPs的二级和三级结构以及在基因组发现新的OMPs提供帮助。文中提出计算蛋白质序列的氨基酸含量特征、二肽含量特征和加权多阶氨基酸残基指数相关系数特征, 将三类特征组合, 采用支持向量机(Support Vector Machine, SVM)算法来识别OMPs。计算了包括四种残基指数的多种组合特征的识别结果, 并且讨论了相关系数的阶次和权值对预测性能的影响。在数据集上的十倍交叉验证测试和独立性测试结果显示, 组合特征识别方法对OMPs和非OMPs的识别精度最高分别达到96.96%和97.33%, 优于现有的多种方法。在五种细菌基因组内识别OMPs的结果显示, 组合特征方法具有很高的特异性, 并且对PDB数据库中已知结构的OMPs识别准确度超过99%。表明该方法能够作为基因组内筛选OMPs的有效工具。  相似文献   

4.
The increasing protein sequences from the genome project require theoretical methods to predict transmembrane helical segments (TMHs). So far, several prediction methods have been reported, but there are some deficiencies in prediction accuracy and adaptability in these methods. In this paper, a method based on discrete wavelet transform (DWT) has been developed to predict the number and location of TMHs in membrane proteins. PDB coded as 1KQG is chosen as an example to describe the prediction process by this method. 80 proteins with known 3D structure from Mptopo database are chosen at random as data sets (including 325 TMHs) and 80 sequences are divided into 13 groups according to their function and type. TMHs prediction is carried out for each group of membrane protein sequences and obtain satisfactory result. To verify the feasibility of this method, 80 membrane protein sequences are treated as test sets, 308 TMHs can be predicted and the prediction accuracy is 96.3%. Compared with the main prediction results of seven popular prediction methods, the obtained results indicate that the proposed method in this paper has higher prediction accuracy.  相似文献   

5.
Discriminating outer membrane proteins for globular proteins (GPs) and other types of membrane proteins from genomic sequences is an important and hot topic. In this paper, a measure based on information discrepancy is proposed and applied to the discrimination of outer membrane proteins. It differs from previous methods which are based on amino acid composition. Our approach focuses on the comparison of subsequence distributions and takes into account the effect of residue order in protein primary structures. As a result, the new approach outperforms all previous methods on the same benchmark datasets. In particular, we show that the proposed approach has correctly identified the outer membrane proteins at an accuracy of 99% for the training set of 337 proteins and has correctly excluded the GPs at an accuracy of 86% in a non-redundant dataset of 668 proteins. Furthermore, this method is able to correctly exclude alpha-helical membrane proteins at an accuracy of 100%.  相似文献   

6.
膜蛋白是一类结构独特的蛋白质,是细胞执行各种功能的物质基础。根据其在细胞膜上的不同存在方式,主要分为六种类型。本文利用压缩的氨基酸对原始膜蛋白序列进行信息压缩,再对压缩序列进行氨基酸组成和顺序特征的提取,最后采用支持向量机构建分类模型。通过五叠交叉验证的结果表明,该方法对于六种膜蛋白的分类预测,准确度最高可达98%以上,平均预测准确度在85%以上,可有效实现膜蛋白六种类型的划分,为进一步分析膜蛋白的结构和功能奠定基础。  相似文献   

7.
Membrane protein is an important composition of cell membrane. Given a membrane protein sequence, how can we identify its type(s) is very important because the type keeps a close correlation with its functions. According to previous studies, membrane protein can be divided into the following eight types: single-pass type I, single-pass type II, single-pass type III, single-pass type IV, multipass, lipid-anchor, GPI-anchor, peripheral membrane protein. With the avalanche of newly found protein sequences in the post-genomic age, it is urgent to develop an automatic and effective computational method to rapid and reliable prediction of the types of membrane proteins. At present, most of the existing methods were based on the assumption that one membrane protein only belongs to one type. Actually, a membrane protein may simultaneously exist at two or more different functional types. In this study, a new method by hybridizing the pseudo amino acid composition with multi-label algorithm called LIFT (multi-label learning with label-specific features) was proposed to predict the functional types both singleplex and multiplex animal membrane proteins. Experimental result on a stringent benchmark dataset of membrane proteins by jackknife test show that the absolute-true obtained was 0.6342, indicating that our approach is quite promising. It may become a useful high-through tool, or at least play a complementary role to the existing predictors in identifying functional types of membrane proteins.  相似文献   

8.
MOTIVATION: Discriminating outer membrane proteins from other folding types of globular and membrane proteins is an important task both for identifying outer membrane proteins from genomic sequences and for the successful prediction of their secondary and tertiary structures. RESULTS: We have systematically analyzed the amino acid composition of globular proteins from different structural classes and outer membrane proteins. We found that the residues, Glu, His, Ile, Cys, Gln, Asn and Ser, show a significant difference between globular and outer membrane proteins. Based on this information, we have devised a statistical method for discriminating outer membrane proteins from other globular and membrane proteins. Our approach correctly picked up the outer membrane proteins with an accuracy of 89% for the training set of 337 proteins. On the other hand, our method has correctly excluded the globular proteins at an accuracy of 79% in a non-redundant dataset of 674 proteins. Furthermore, the present method is able to correctly exclude alpha-helical membrane proteins up to an accuracy of 80%. These accuracy levels are comparable to other methods in the literature, and this is a simple method, which could be used for dissecting outer membrane proteins from genomic sequences. The influence of protein size, structural class and specific residues for discrimination is discussed.  相似文献   

9.
Gromiha MM  Suwa M 《Proteins》2006,63(4):1031-1037
Discriminating outer membrane proteins (OMPs) from other folding types of globular and membrane proteins is an important task both for identifying OMPs from genomic sequences and for the successful prediction of their secondary and tertiary structures. In this work, we have analyzed the performance of different methods, based on Bayes rules, logistic functions, neural networks, support vector machines, decision trees, etc. for discriminating OMPs. We found that most of the machine learning techniques discriminate OMPs with similar accuracy. The neural network-based method could discriminate the OMPs from other proteins [globular/transmembrane helical (TMH)] at the fivefold cross-validation accuracy of 91.0% in a dataset of 1,088 proteins. The accuracy of discriminating globular proteins is 88.8% and that of TMH proteins is 93.7%. Further, the neural network method is tested with globular proteins belonging to 30 different folding types and it could successfully exclude 95% of the considered proteins. The proteins with SAM domain such as knottins, rubredoxin, and thioredoxin folds are eliminated with 100% accuracy. These accuracy levels are comparable to or better than other methods in the literature. We suggest that this method could be effectively used to discriminate OMPs and for detecting OMPs in genomic sequences.  相似文献   

10.
Tjalsma H  van Dijl JM 《Proteomics》2005,5(17):4472-4482
The availability of complete bacterial genome sequences allows proteome-wide predictions of exported proteins that are potentially retained in the cytoplasmic membranes of the corresponding organisms. In practice, however, major problems are encountered with the computer-assisted distinction between (Sec-type) signal peptides that direct exported proteins into the growth medium and lipoprotein signal peptides or amino-terminal membrane anchors that cause protein retention in the membrane. In the present studies, which were aimed at improving methods to predict protein retention in the bacterial cytoplasmic membrane, we have compared sets of membrane-attached and extracellular proteins of Bacillus subtilis that were recently identified through proteomics approaches. The results showed that three classes of membrane-attached proteins can be distinguished. Two classes include 43 lipoproteins and 48 proteins with an amino-terminal transmembrane segment, respectively. Remarkably, a third class includes 31 proteins that remain membrane-retained despite the presence of typical Sec-type signal peptides with consensus signal peptidase recognition sites. This unprecedented finding indicates that unknown mechanisms are involved in membrane retention of this class of proteins. A further novelty is a consensus sequence indicative for release of certain lipoproteins from the membrane by proteolytic shaving. Finally, using non-overlapping sets of secreted and membrane-retained proteins, the accuracy of different signal peptide prediction algorithms was assessed. Accuracy for the prediction of protein retention in the membrane was increased to 82% using a majority-vote approach. Our findings provide important leads for future identification of surface proteins from pathogenic bacteria, which are attractive candidate infection markers and potential targets for drugs or vaccines.  相似文献   

11.
MOTIVATION: Membrane domain prediction has recently been re-evaluated by several groups, suggesting that the accuracy of existing methods is still rather limited. In this work, we revisit this problem and propose novel methods for prediction of alpha-helical as well as beta-sheet transmembrane (TM) domains. The new approach is based on a compact representation of an amino acid residue and its environment, which consists of predicted solvent accessibility and secondary structure of each amino acid. A recently introduced method for solvent accessibility prediction trained on a set of soluble proteins is used here to indicate segments of residues that are predicted not to be accessible to water and, therefore, may be 'buried' in the membrane. While evolutionary profiles in the form of a multiple alignment are used to derive these simple 'structural profiles', they are not used explicitly for the membrane domain prediction and the overall number of parameters in the model is significantly reduced. This offers the possibility of a more reliable estimation of the free parameters in the model with a limited number of experimentally resolved membrane protein structures. RESULTS: Using cross-validated training on available sets of structurally resolved and non-redundant alpha and beta membrane proteins, we demonstrate that membrane domain prediction methods based on such a compact representation outperform approaches that utilize explicitly evolutionary profiles and multiple alignments. Moreover, using an external evaluation by the TMH Benchmark server we show that our final prediction protocol for the TM helix prediction is competitive with the state-of-the-art methods, achieving per-residue accuracy of approximately 89% and per-segment accuracy of approximately 80% on the set of high resolution structures used by the TMH Benchmark server. At the same time the observed rates of confusion with signal peptides and globular proteins are the lowest among the tested methods. The new method is available online at http://minnou.cchmc.org.  相似文献   

12.

Background  

The number of protein sequences deriving from genome sequencing projects is outpacing our knowledge about the function of these proteins. With the gap between experimentally characterized and uncharacterized proteins continuing to widen, it is necessary to develop new computational methods and tools for functional prediction. Knowledge of catalytic sites provides a valuable insight into protein function. Although many computational methods have been developed to predict catalytic residues and active sites, their accuracy remains low, with a significant number of false positives. In this paper, we present a novel method for the prediction of catalytic sites, using a carefully selected, supervised machine learning algorithm coupled with an optimal discriminative set of protein sequence conservation and structural properties.  相似文献   

13.
S-glutathionylation of proteins plays an important role in various biological processes and is known to be protective modification during oxidative stress. Since, experimental detection of S-glutathionylation is labor intensive and time consuming, bioinformatics based approach is a viable alternative. Available methods require relatively longer sequence information, which may prevent prediction if sequence information is incomplete. Here, we present a model to predict glutathionylation sites from pentapeptide sequences. It is based upon differential association of amino acids with glutathionylated and non-glutathionylated cysteines from a database of experimentally verified sequences. This data was used to calculate position dependent F-scores, which measure how a particular amino acid at a particular position may affect the likelihood of glutathionylation event. Glutathionylation-score (G-score), indicating propensity of a sequence to undergo glutathionylation, was calculated using position-dependent F-scores for each amino-acid. Cut-off values were used for prediction. Our model returned an accuracy of 58% with Matthew’s correlation-coefficient (MCC) value of 0.165. On an independent dataset, our model outperformed the currently available model, in spite of needing much less sequence information. Pentapeptide motifs having high abundance among glutathionylated proteins were identified. A list of potential glutathionylation hotspot sequences were obtained by assigning G-scores and subsequent Protein-BLAST analysis revealed a total of 254 putative glutathionable proteins, a number of which were already known to be glutathionylated. Our model predicted glutathionylation sites in 93.93% of experimentally verified glutathionylated proteins. Outcome of this study may assist in discovering novel glutathionylation sites and finding candidate proteins for glutathionylation.  相似文献   

14.
An algorithm to predict the membrane protein types based on the multi-residue-pair effect in the Markov model is proposed. For a newly constructed dataset of 835 membrane proteins with very low sequence similarity, the overall prediction accuracy has been achieved as high as 81.1% and 71.7% in the resubstitution and jackknife test, respectively, for a prediction of type I single-pass, type II single-pass, multi-pass membrane proteins, lipid chain-anchored and GPI-anchored membrane proteins. The improvement of about 11% in the jackknife test can be achieved compared with the component-coupled algorithm merely based on the amino acid composition (AAC approach). The improvement is also confirmed on a high similarity dataset and the other extrapolating test. The result implies that designing more incisive analysis tools, one should develop algorithms based on the representative dataset with lower sequence similarity. The present algorithm is useful to expedite the determination of the types and functions of new membrane proteins and may be useful for the systematic analysis of functional genome data in a large scale. The computer program is available on request.  相似文献   

15.
Transmembrane proteins affect vital cellular functions and pathogenesis, and are a focus of drug design. It is difficult to obtain diffraction quality crystals to study transmembrane protein structure. Computational tools for transmembrane protein topology prediction fill in the gap between the abundance of transmembrane proteins and the scarcity of known membrane protein structures. Their prediction accuracy is still inadequate: TMHMM, the current state-of-the-art method, has less than 52% accuracy in topology prediction on one set of transmembrane proteins of known topology. Based on the observation that there are functional domains that occur preferentially internal or external to the membrane, we have extended the model of TMHMM to incorporate functional domains, using a probabilistic approach originally developed for computational gene finding. Our extension is better than TMHMM in predicting the topology of transmembrane proteins. As prediction of functional domain improves, our system's prediction accuracy will likely improve as well.  相似文献   

16.
MOTIVATION: The completion of the Arabidopsis genome offers the first opportunity to analyze all of the membrane protein sequences of a plant. The majority of integral membrane proteins including transporters, channels, and pumps contain hydrophobic alpha-helices and can be selected based on TransMembrane Spanning (TMS) domain prediction. By clustering the predicted membrane proteins based on sequence, it is possible to sort the membrane proteins into families of known function, based on experimental evidence or homology, or unknown function. This provides a way to identify target sequences for future functional analysis. RESULTS: An automated approach was used to select potential membrane protein sequences from the set of all predicted proteins and cluster the sequences into related families. The recently completed sequence of Arabidopsis thaliana, a model plant, was analyzed. Of the 25,470 predicted protein sequences 4589 (18%) were identified as containing two or more membrane spanning domains. The membrane protein sequences clustered into 628 distinct families containing 3208 sequences. Of these, 211 families (1764 sequences) either contained proteins of known function or showed homology to proteins of known function in other species. However, 417 families (1444 sequences) contained only sequences with no known function and no homology to proteins of known function. In addition, 1381 sequences did not cluster with any family and no function could be assigned to 1337 of these.  相似文献   

17.
Discriminating outer membrane proteins (OMPs) from other folding types of globular and membrane proteins is an important task both for identifying outer membrane proteins from genomic sequences and for the successful prediction of their secondary and tertiary structures. In this work, we have analyzed the influence of physico-chemical, energetic and conformational properties of amino acid residues for discriminating outer membrane proteins using different machine learning algorithms, such as, Bayes rules, Logistic functions, Neural networks, Support vector machines, Decision trees, etc. We observed that most of the properties have discriminated the OMPs with similar accuracy. The neural network method with the property, free energy change could discriminate the OMPs from other folding types of globular and membrane proteins at the 5-fold cross-validation accuracy of 94.4% in a dataset of 1,088 proteins, which is better than that obtained with amino acid composition. The accuracy of discriminating globular proteins is 94.3% and that of transmembrane helical (TMH) proteins is 91.8%. Further, the neural network method is tested with globular proteins belonging to 30 major folding types and it could successfully exclude 99.4% of the considered 1612 non-redundant proteins. These accuracy levels are comparable to or better than other methods in the literature. We suggest that this method could be effectively used to discriminate OMPs and for detecting OMPs in genomic sequences.  相似文献   

18.
Membrane proteins are crucial for many biological functions and have become attractive targets for both basic research and drug discovery. With the unprecedented increasing of newly found protein sequences in the post-genomic era, it is both time-consuming and expensive to determine the types of newly found membrane proteins solely with traditional experiment, and so it is highly demanded to develop an automatic method for fast and accurately identifying the type of membrane proteins according to their amino acid sequences. In this study, the discrete wavelet transform (DWT) and support vector machine (SVM) have been used for the prediction of the types of membrane proteins. Maximum accuracy has been obtained using SVM with a wavelet function of bior2.4, a decomposition scale j = 4, and Kyte–Doolittle hydrophobicity scales. The results indicate that the proposed method may play an important complementary role to the existing methods in this area.  相似文献   

19.
Recently, two different models have been developed for predicting gamma-turns in proteins by Kaur and Raghava [2002. An evaluation of beta-turn prediction methods. Bioinformatics 18, 1508-1514; 2003. A neural-network based method for prediction of gamma-turns in proteins from multiple sequence alignment. Protein Sci. 12, 923-929]. However, the major limitation of previous methods is inability in predicting gamma-turns types. Thus, there is a need to predict gamma-turn types using an approach which will be useful in overall tertiary structure prediction. In this work, support vector machines (SVMs), a powerful model is proposed for predicting gamma-turn types in proteins. The high rates of prediction accuracy showed that the formation of gamma-turn types is evidently correlated with the sequence of tripeptides, and hence can be approximately predicted based on the sequence information of the tripeptides alone.  相似文献   

20.
Membrane proteins (MPs) have become a major focus in structure prediction, due to their medical importance. There is, however, a lack of fast and reliable methods that specialize in the modeling of MP loops. Often methods designed for soluble proteins (SPs) are applied directly to MPs. In this article, we investigate the validity of such an approach in the realm of fragment‐based methods. We also examined the differences in membrane and soluble protein loops that might affect accuracy. We test our ability to predict soluble and MP loops with the previously published method FREAD. We show that it is possible to predict accurately the structure of MP loops using a database of MP fragments (0.5–1 Å median root‐mean‐square deviation). The presence of homologous proteins in the database helps prediction accuracy. However, even when homologues are removed better results are still achieved using fragments of MPs (0.8–1.6 Å) rather than SPs (1–4 Å) to model MP loops. We find that many fragments of SPs have shapes similar to their MP counterparts but have very different sequences; however, they do not appear to differ in their substitution patterns. Our findings may allow further improvements to fragment‐based loop modeling algorithms for MPs. The current version of our proof‐of‐concept loop modeling protocol produces high‐accuracy loop models for MPs and is available as a web server at http://medeller.info/fread . Proteins 2014; 82:175–186. © 2013 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号