首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.

Background

Vaccines that activate strong specific Th1-predominant immune responses are critically needed for many intracellular pathogens, including Leishmania. The requirement for sustained and efficient vaccination against leishmaniasis is to formulate the best combination of immunopotentiating adjuvant with the stable antigen (Ag) delivery system. The aim of the present study is to evaluate the effectiveness of an immunomodulator on liposomal Ag through subcutaneous (s.c.) route of immunization, and its usefulness during prime/boost against visceral leishmaniasis (VL) in BALB/c mice.

Methodology/Principal Findings

Towards this goal, we formulated recombinant GP63 (rGP63)-based vaccines either with monophosphoryl lipid A-trehalose dicorynomycolate (MPL-TDM) or entrapped within cationic liposomes or both. Combinatorial administration of liposomes with MPL-TDM during prime confers activation of dendritic cells, and induces an early robust T cell response. To investigate whether the combined formulation is required for optimum immune response during boost as well, we chose to evaluate the vaccine efficacy in mice primed with combined adjuvant system followed by boosting with either rGP63 alone, in association with MPL-TDM, liposomes or both. We provide evidences that the presence of either liposomal rGP63 or combined formulations during boost is necessary for effective Th1 immune responses (IFN-γ, IL-12, NO) before challenge infection. However, boosting with MPL-TDM in conjugation with liposomal rGP63 resulted in a greater number of IFN-γ producing effector T cells, significantly higher levels of splenocyte proliferation, and Th1 responses compared to mice boosted with liposomal rGP63, after virulent Leishmania donovani (L. donovani) challenge. Moreover, combined formulations offered superior protection against intracellular amastigote replication in macrophages in vitro, and hepatic and splenic parasite load in vivo.

Conclusion

Our results define the immunopotentiating effect of MPL-TDM on protein Ag encapsulated in a controlled release system against experimental VL.  相似文献   

2.
BackgroundWith the paucity of new drugs and HIV co-infection, vaccination remains an unmet research priority to combat visceral leishmaniasis (VL) requiring strong cellular immunity. Protein vaccination often suffers from low immunogenicity and poor generation of memory T cells for long-lasting protection. Cysteine proteases (CPs) are immunogenic proteins and key mediators of cellular functions in Leishmania. Here, we evaluated the vaccine efficacies of CPs against VL, using cationic liposomes with Toll like receptor agonists for stimulating host immunity against L. donovani in a hamster model.Conclusion/SignificanceThe present study is the first report of a comparative efficacy of leishmanial CPs and their cocktail using liposomal formulation with MPL-TDM against L. donovani. The level of protection attained has not been reported for any other subcutaneous single or polyprotein vaccination against VL.  相似文献   

3.

Background

For effective control of visceral leishmaniasis (VL) in East Africa, new rapid diagnostic tests are required to replace current tests with low sensitivity. The aim of this study is to improve diagnosis of VL in East Africa by testing a new antigen from an autochthonous L. donovani strain in Sudan.

Methodology and Principle Findings

We cloned, expressed and purified a novel recombinant protein antigen of L. donovani from Sudan, designated rKLO8, that contains putative conserved domains with significant similarity to the immunodominant kinesin proteins of Leishmania. rKLO8 exhibited 93% and 88% amino acid identity with cloned kinesin proteins of L. infantum (synonymous L. chagasi) (K39) and L. donovani (KE16), respectively. We evaluated the diagnostic efficiency of the recombinant protein in ELISA for specific detection of VL patients from Sudan. Data were compared with a rK39 ELISA and two commercial kits, the rK39 strip test and the direct agglutination test (DAT). Of 106 parasitologically confirmed VL sera, 104 (98.1%) were tested positive by rKLO8 as compared to 102 (96.2%) by rK39. Importantly, the patients'' sera showed increased reactivity with rKLO8 than rK39. Specificity was 96.1% and 94.8% for rKLO8- and rK39 ELISAs, respectively. DAT showed 100% specificity and 94.3% sensitivity while rK39 strip test performed with 81.1% sensitivity and 98.7% specificity.

Conclusion

The increased reactivity of Sudanese VL sera with the rKLO8 makes this antigen a potential candidate for diagnosis of visceral leishmaniasis in Sudan. However, the suitability at the field level will depend on its performance in a rapid test format.  相似文献   

4.

Background

In areas endemic for visceral leishmaniasis (VL), a large number of infected individuals mount a protective cellular immune response and remain asymptomatic carriers. We propose an interferon-gamma release assay (IFN-γRA) as a novel marker for latent L. donovani infection.

Methods and Findings

We modified a commercial kit (QuantiFERON) evaluating five different leishmania-specific antigens; H2B, H2B-PSA2, H2B-Lepp12, crude soluble antigen (CSA) and soluble leishmania antigen (SLA) from L. donovani with the aim to detect the cell-mediated immune response in VL. We evaluated the assay on venous blood samples of active VL patients (n = 13), cured VL patients (n = 15), non-endemic healthy controls (n = 11) and healthy endemic controls (n = 19). The assay based on SLA had a sensitivity of 80% (95% CI = 54.81–92.95) and specificity of 100% (95% CI = 74.12–100).

Conclusion

Our findings suggest that a whole-blood SLA-based QuantiFERON assay can be used to measure the cell-mediated immune response in L. donovani infection. The positive IFN-γ response to stimulation with leishmania antigen in patients with active VL was contradictory to the conventional finding of a non-proliferative antigen-specific response of peripheral blood mononuclear cells and needs further research.  相似文献   

5.

Background

In the Indian subcontinent, Visceral leishmaniasis is endemic in a geographical area coinciding with the Lower Gangetic Plain, at low altitude. VL occurring in residents of hill districts is therefore often considered the result of Leishmania donovani infection during travel. Early 2014 we conducted an outbreak investigation in Okhaldhunga and Bhojpur districts in the Nepal hills where increasing number of VL cases have been reported.

Methodology/Principal Findings

A house-to-house survey in six villages documented retrospectively 35 cases of Visceral Leishmaniasis (VL). Anti-Leishmania antibodies were found in 22/23 past-VL cases, in 40/416 (9.6%) persons without VL and in 12/155 (7.7%) domestic animals. An age- and sex- matched case-control study showed that exposure to known VL-endemic regions was no risk factor for VL, but having a VL case in the neighbourhood was. SSU-rDNA PCR for Leishmania sp. was positive in 24 (5%) of the human, in 18 (12%) of the animal samples and in 16 (14%) bloodfed female Phlebotomus argentipes sand flies. L. donovani was confirmed in two asymptomatic individuals and in one sand fly through hsp70-based sequencing.

Conclusions/Significance

This is epidemiological and entomological evidence for ongoing local transmission of L. donovani in villages at an altitude above 600 meters in Nepal, in districts considered hitherto non-endemic for VL. The VL Elimination Initiative in Nepal should therefore consider extending its surveillance and control activities in order to assure VL elimination, and the risk map for VL should be redesigned.  相似文献   

6.

Background

Visceral leishmaniasis (VL) is a severe vector-born disease of humans and dogs caused by Leishmania donovani complex parasites. Approximately 0.2 to 0.4 million new human VL cases occur annually worldwide. In the new world, these alarming numbers are primarily due to the impracticality of current control methods based on vector reduction and dog euthanasia. Thus, a prophylactic vaccine appears to be essential for VL control. The current efforts to develop an efficacious vaccine include the use of animal models that are as close to human VL. We have previously reported a L. infantum-macaque infection model that is reliable to determine which vaccine candidates are most worthy for further development. Among the few amastigote antigens tested so far, one of specific interest is the recombinant A2 (rA2) protein that protects against experimental L. infantum infections in mice and dogs.

Methodology/Principal Findings

Primates were vaccinated using three rA2-based prime-boost immunization regimes: three doses of rA2 plus recombinant human interleukin-12 (rhIL-12) adsorbed in alum (rA2/rhIL-12/alum); two doses of non-replicative adenovirus recombinant vector encoding A2 (Ad5-A2) followed by two boosts with rA2/rhIL-12/alum (Ad5-A2+rA2/rhIL12/alum); and plasmid DNA encoding A2 gene (DNA-A2) boosted with two doses of Ad5-A2 (DNA-A2+Ad5-A2). Primates received a subsequent infectious challenge with L. infantum. Vaccines, apart from being safe, were immunogenic as animals responded with increased pre-challenge production of anti-A2-specific IgG antibodies, though with some variability in the response, depending on the vaccine formulation/protocol. The relative parasite load in the liver was significantly lower in immunized macaques as compared to controls. Protection correlated with hepatic granuloma resolution, and reduction of clinical symptoms, particularly when primates were vaccinated with the Ad5-A2+rA2/rhIL12/alum protocol.

Conclusions/Significance

The remarkable clinical protection induced by A2 in an animal model that is evolutionary close to humans qualifies this antigen as a suitable vaccine candidate against human VL.  相似文献   

7.

Background

Visceral leishmaniasis (VL), a widely distributed systemic disease caused by infection with the Leishmania donovani complex (L. donovani and L. infantum), is almost always fatal if symptomatic and untreated. A rapid point-of-care diagnostic test for anti-Leishmania antibodies, the rK39-immunochromatographic test (rK39-ICT), has high sensitivity and specificity in South Asia but is less sensitive in East Africa. One of the underlying reasons may be continent-specific molecular diversity in the rK39 antigen within the L. donovani complex. However, a second reason may be differences in specific IgG anti-Leishmania levels in patients from different geographical regions, either due to variable antigenicity or immunological response.

Methodology/Principal Findings

We determined IgG titres of Indian and Sudanese VL patients against whole cell lysates of Indian and Sudanese L. donovani strains. Indian VL patients had significantly higher IgG titres against both L. donovani strains compared to Sudanese VL patients (p<0.0001). Mean reciprocal log10 50% end-point titres (1/log10t50) were i) 3.80 and 3.88 for Indian plasma and ii) 2.13 and 2.09 for Sudanese plasma against Indian and Sudanese antigen respectively (p<0.0001). Overall, the Indian VL patients therefore showed a 46.8–61.7 -fold higher mean ELISA titre than the Sudanese VL patients. The higher IgG titres occurred in children (<16 years old) and adults of either sex from India (mean 1/log10t50: 3.60–4.15) versus Sudan (mean 1/log10t50: 1.88–2.54). The greatest difference in IgG responses was between male Indian and Sudanese VL patients of ≥ 16 years old (mean 1/log10t50: 4.15 versus 1.99 = 144-fold (p<0.0001).

Conclusions/Significance

Anti-Leishmania IgG responses among VL patients in Sudan were significantly lower than in India; this may be due to chronic malnutrition with Zn2+ deficiency, or variable antigenicity and capacity to generate IgG responses to Leishmania antigens. Such differential anti-Leishmania IgG levels may contribute to lower sensitivity of the rK39-ICT in East Africa.  相似文献   

8.
Visceral leishmaniasis (VL) is a deadly parasitic infection which affects poorest to poor population living in the endemic countries. Increasing resistant to existing drugs, disease burden and a significant number of deaths, necessitates the need for an effective vaccine to prevent the VL infection. This study employed a combinatorial approach to develop a multi-epitope subunit vaccine by exploiting Leishmania donovani membrane proteins. Cytotoxic T- and helper T-lymphocyte binding epitopes along with suitable adjuvant and linkers were joined together in a sequential manner to design the subunit vaccine. The occurrence of B-cell and IFN-γ inducing epitopes approves the ability of subunit vaccine to develop humoral and cell-mediated immune response. Physiochemical parameters of vaccine protein were also assessed followed by homology modeling, model refinement and validation. Moreover, disulfide engineering was performed for the increasing stability of the designed vaccine and molecular dynamics simulation was performed for the comparative stability purposes and to conform the geometric conformations. Further, molecular docking and molecular dynamics simulation study of a mutated and non-mutated subunit vaccine against TLR-4 immune receptor were performed and respective complex stability was determined. In silico cloning ensures the expression of designed vaccine in pET28a(+) expression vector. This study offers a cost-effective and time-saving way to design a novel immunogenic vaccine that could be used to prevent VL infection.

Communicated by Ramaswamy H. Sarma  相似文献   


9.

Background

Parasites'' evolution in response to parasite-targeted control strategies, such as vaccines and drugs, is known to be influenced by their population genetic structure. The aim of this study was to describe the population structure of Ethiopian strains of Leishmania donovani derived from different areas endemic for visceral leishmaniasis (VL) as a prerequisite for the design of effective control strategies against the disease.

Methodology/Principal Findings

Sixty-three strains of L. donovani newly isolated from VL cases in the two main Ethiopian foci, in the north Ethiopia (NE) and south Ethiopia (SE) of the country were investigated by using 14 highly polymorphic microsatellite markers. The microsatellite profiles of 60 previously analysed L. donovani strains from Sudan, Kenya and India were included for comparison. Multilocus microsatellite typing placed strains from SE and Kenya (n = 30) in one population and strains from NE and Sudan (n = 65) in another. These two East African populations corresponded to the areas of distribution of two different sand fly vectors. In NE and Sudan Phlebotomus orientalis has been implicated to transmit the parasites and in SE and Kenya P. martini. The genetic differences between parasites from NE and SE are also congruent with some phenotypic differences. Each of these populations was further divided into two subpopulations. Interestingly, in one of the subpopulations of the population NE we observed predominance of strains isolated from HIV-VL co-infected patients and of strains with putative hybrid genotypes. Furthermore, high inbreeding irreconcilable from strict clonal reproduction was found for strains from SE and Kenya indicating a mixed-mating system.

Conclusions/Significance

This study identified a hierarchical population structure of L. donovani in East Africa. The existence of two main, genetically and geographically separated, populations could reflect different parasite-vector associations, different ecologies and varying host backgrounds and should be further investigated.  相似文献   

10.
Leishmania martiniquensis, a zoonotic hemoflagellate, is a causative agent of cutaneous (CL) and visceral leishmaniasis (VL) among humans and animals. This organism, first reported in Martinique Island, now has become an emerging infectious agent in Thailand. Symptomatic cases of Lmartiniquensis infection among humans have continuously increased. In the meantime, asymptomatic infection of this novel species has seriously created national public health awareness and concern to prevent and control disease transmission. The unsuccessful serological test using the commercial rK39 dipstick based on antigen from Leishmania donovani to detect the antibodies against VL among infected Thai patients has encouraged us to further explore a new sensitive and specific antigenic epitope. In this study, we determined the sequences and expressed recombinant proteins of kinesin 39 (k39), heat shock protein 70 (hsp70), heat shock protein 83 (hsp83), and glycoprotein 63 (gp63) of Lmartiniquensis to evaluate the diagnostic efficiency to detect antibodies against L. martiniquensis in patient sera. The preliminary results from western blot analysis have suggested that K39 is the most sensitive recombinant protein to detect Lmartiniquensis. Moreover, this recombinant protein reacts with antibodies against L. donovani and Leishmania infantum, making it a promising antigen for further development of a universal rapid diagnostic tool for VL.  相似文献   

11.
BackgroundThe development of a vaccine conferring long-lasting immunity remains a challenge against visceral leishmaniasis (VL). Immunoproteomic characterization of Leishmania donovani proteins led to the identification of a novel protein NAD+-dependent Silent Information regulatory-2 (SIR2 family or sirtuin) protein (LdSir2RP) as one of the potent immunostimulatory proteins. Proteins of the SIR2 family are characterized by a conserved catalytic domain that exerts unique NAD-dependent deacetylase activity. In the present study, an immunobiochemical characterization of LdSir2RP and further evaluation of its immunogenicity and prophylactic potential was done to assess for its possible involvement as a vaccine candidate against leishmaniasis.Conclusion/SignificanceThe immunobiochemical characterization strongly suggest the potential of rLdSir2RP as vaccine candidate against VL and supports the concept of its being effective T-cell stimulatory antigen.  相似文献   

12.

Background/Objectives

Visceral leishmaniasis (VL) caused by Leishmania donovani is a major health problem in Ethiopia. Parasites in disparate regions are transmitted by different vectors, and cluster in distinctive genotypes. Recently isolated strains from VL and HIV-VL co-infected patients in north and south Ethiopia were characterized as part of a longitudinal study on VL transmission.

Methodology/Principal Findings

Sixty-three L. donovani strains were examined by polymerase chain reaction (PCR) targeting three regions: internal transcribed spacer 1 (ITS1), cysteine protease B (cpb), and HASPB (k26). ITS1- and cpb - PCR identified these strains as L. donovani. Interestingly, the k26 - PCR amplicon size varied depending on the patient''s geographic origin. Most strains from northwestern Ethiopia (36/40) produced a 290 bp product with a minority (4/40) giving a 410 bp amplicon. All of the latter strains were isolated from patients with HIV-VL co-infections, while the former group contained both VL and HIV-VL co-infected patients. Almost all the strains (20/23) from southwestern Ethiopia produced a 450 bp amplicon with smaller products (290 or 360 bp) only observed for three strains. Sudanese strains produced amplicons identical (290 bp) to those found in northwestern Ethiopia; while Kenyan strains gave larger PCR products (500 and 650 bp). High-resolution melt (HRM) analysis distinguished the different PCR products. Sequence analysis showed that the k26 repeat region in L. donovani is comprised of polymorphic 13 and 14 amino acid motifs. The 13 amino acid peptide motifs, prevalent in L. donovani, are rare in L. infantum. The number and order of the repeats in L. donovani varies between geographic regions.

Conclusions/Significance

HASPB repeat region (k26) shows considerable polymorphism among L. donovani strains from different regions in East Africa. This should be taken into account when designing diagnostic assays and vaccines based on this antigen.  相似文献   

13.
Mazumder S  Maji M  Das A  Ali N 《PloS one》2011,6(2):e14644

Background

Visceral leishmaniasis (VL) caused by an intracellular protozoan parasite Leishmania, is fatal in the absence of treatment. At present there are no effective vaccines against any form of leishmaniasis. Here, we evaluate the potency, efficacy and durability of DNA/DNA, DNA-prime/Protein-boost, and Protein/Protein based vaccination against VL in a susceptible murine model.

Methods and Findings

To compare the potency, efficacy, and durability of DNA, protein and heterologous prime-boost (HPB) vaccination against Leishmania donovani, major surface glycoprotein gp63 was cloned into mammalian expression vector pcDNA3.1 for DNA based vaccines. We demonstrated that gp63 DNA based vaccination induced immune responses and conferred protection against challenge infection. However, vaccination with HPB approach showed comparatively enhanced cellular and humoral responses than other regimens and elicited early mixed Th1/Th2 responses before infection. Moreover, challenge with parasites induced polarized Th1 responses with enhanced IFN-γ, IL-12, nitric oxide, IgG2a/IgG1 ratio and reduced IL-4 and IL-10 responses compared to other vaccination strategies. Although, vaccination with gp63 DNA either alone or mixed with CpG- ODN or heterologously prime-boosting with CpG- ODN showed comparable levels of protection at short-term protection study, DNA-prime/Protein-boost in presence of CpG significantly reduced hepatic and splenic parasite load by 107 fold and 1010 fold respectively, in long-term study. The extent of protection, obtained in this study has till now not been achieved in long-term protection through HPB approach in susceptible BALB/c model against VL. Interestingly, the HPB regimen also showed marked reduction in the footpad swelling of BALB/c mice against Leishmania major infection.

Conclusion/Significance

HPB approach based on gp63 in association with CpG, resulted in robust cellular and humoral responses correlating with durable protection against L. donovani challenge till twelve weeks post-vaccination. These results emphasize the potential of DNA-prime/Protein-boost vaccination over DNA/DNA and Protein/Protein based vaccination in maintaining long-term immunity against intracellular pathogen like Leishmania.  相似文献   

14.

Background

In the Indian subcontinent, about 200 million people are at risk of developing visceral leishmaniasis (VL). In 2005, the governments of India, Nepal and Bangladesh started the first regional VL elimination program with the aim to reduce the annual incidence to less than 1 per 10,000 by 2015. A mathematical model was developed to support this elimination program with basic quantifications of transmission, disease and intervention parameters. This model was used to predict the effects of different intervention strategies.

Methods and Findings

Parameters on the natural history of Leishmania infection were estimated based on a literature review and expert opinion or drawn from a community intervention trial (the KALANET project). The transmission dynamic of Leishmania donovani is rather slow, mainly due to its long incubation period and the potentially long persistence of parasites in infected humans. Cellular immunity as measured by the Leishmanin skin test (LST) lasts on average for roughly one year, and re-infection occurs in intervals of about two years, with variation not specified. The model suggests that transmission of L. donovani is predominantly maintained by asymptomatically infected hosts. Only patients with symptomatic disease were eligible for treatment; thus, in contrast to vector control, the treatment of cases had almost no effect on the overall intensity of transmission.

Conclusions

Treatment of Kala-azar is necessary on the level of the individual patient but may have little effect on transmission of parasites. In contrast, vector control or exposure prophylaxis has the potential to efficiently reduce transmission of parasites. Based on these findings, control of VL should pay more attention to vector-related interventions. Cases of PKDL may appear after years and may initiate a new outbreak of disease; interventions should therefore be long enough, combined with an active case detection and include effective treatment.  相似文献   

15.

Introduction

Asymptomatic persons infected with the parasites causing visceral leishmaniasis (VL) usually outnumber clinically apparent cases by a ratio of 4–10 to 1. We describe patterns of markers of Leishmania donovani infection and clinical VL in relation to age in Bihar, India.

Methods

We selected eleven villages highly endemic for Leishmania donovani. During a 1-year interval we conducted two house to house surveys during which we collected blood samples on filter paper from all consenting individuals aged 2 years and above. Samples were tested for anti-leishmania serology by Direct Agglutination Test (DAT) and rK39 ELISA. Data collected during the surveys included information on episodes of clinical VL among study participants.

Results

We enrolled 13,163 persons; 6.2% were reactive to DAT and 5.9% to rK39. Agreement between the tests was weak (kappa = 0.30). Among those who were negative on both tests at baseline, 3.6% had converted to sero-positive on either of the two tests one year later. Proportions of sero-positives and sero-converters increased steadily with age. Clinical VL occurred mainly among children and young adults (median age 19 years).

Discussion

Although infection with L. donovani is assumed to be permanent, serological markers revert to negative. Most VL cases occur at younger ages, yet we observed a steady increase with age in the frequency of sero-positivity and sero-conversion. Our findings can be explained by a boosting effect upon repeated exposure to the parasite or by intermittent release of parasites in infected subjects from safe target cells. A certain proportion of sero-negative subjects could have been infected but below the threshold of antibody abundance for our serologic testing.  相似文献   

16.
In this study, we evaluate the effect of phospholipid on the adjuvanicity and protective efficacy of liposome vaccine carriers against visceral leishmaniasis (VL) in a hamster model. Liposomes prepared with distearyol derivative of L-alpha-phosphatidyl choline (DSPC) having liquid crystalline transition temperature (Tc) 54 C were as efficient as dipalmitoyl (DPPC) (Tc 41 C) and dimyristoyl (DMPC) (Tc 23 C) derivatives in their ability to entrap Leishmania donovani membrane antigens (LAg) and to potentiate strong antigen-specific antibody responses. However, whereas LAg in DPPC and DMPC liposomes stimulated inconsistent delayed type hypersensitivity (DTH) responses, strong DTH was observed with LAg in DSPC liposomes. The heightened adjuvant activity of DSPC liposomes corresponded with 95% protection, with almost no protectivity with LAg in DPPC and DMPC liposomes, 4 mo after challenge with L. donovani. These data demonstrate the superiority of DSPC liposomes for formulation of L. donovani vaccine. In addition, they demonstrate a correlation of humoral and cell-mediated immunity with protection against VL in hamsters.  相似文献   

17.

Background

Visceral leishmaniasis (VL), caused by protozoa of the Leishmania donovani complex, is a widespread parasitic disease of great public health importance; without effective chemotherapy symptomatic VL is usually fatal. Distinction of asymptomatic carriage from progressive disease and the prediction of relapse following treatment are hampered by the lack of prognostic biomarkers for use at point of care.

Methodology/Principal Findings

All IgG subclass and IgG isotype antibody levels were determined using unpaired serum samples from Indian and Sudanese patients with differing clinical status of VL, which included pre-treatment active VL, post-treatment cured, post-treatment relapsed, and post kala-azar dermal leishmaniasis (PKDL), as well as seropositive (DAT and/or rK39) endemic healthy controls (EHCs) and seronegative EHCs. L. donovani antigen-specific IgG1 levels were significantly elevated in relapsed versus cured VL patients (p<0.0001). Using paired Indian VL sera, consistent with the known IgG1 half-life, IgG1 levels had not decreased significantly at day 30 after the start of treatment (p = 0.8304), but were dramatically decreased by 6 months compared to day 0 (p = 0.0032) or day 15 (p<0.0001) after start of treatment. Similarly, Sudanese sera taken soon after treatment did not show a significant change in the IgG1 levels (p = 0.3939). Two prototype lateral flow immunochromatographic rapid diagnostic tests (RDTs) were developed to detect IgG1 levels following VL treatment: more than 80% of the relapsed VL patients were IgG1 positive; at least 80% of the cured VL patients were IgG1 negative (p<0.0001).

Conclusions/Significance

Six months after treatment of active VL, elevated levels of specific IgG1 were associated with treatment failure and relapse, whereas no IgG1 or low levels were detected in cured VL patients. A lateral flow RDT was successfully developed to detect anti-Leishmania IgG1 as a potential biomarker of post-chemotherapeutic relapse.  相似文献   

18.

Background  

Dengue is a public health problem of global significance for which there is neither an effective antiviral therapy nor a preventive vaccine. It is a mosquito-borne viral disease, caused by dengue (DEN) viruses, which are members of the Flaviviridae family. There are four closely related serotypes, DEN-1, DEN-2, DEN-3 and DEN-4, each of which is capable of causing disease. As immunity to any one serotype can potentially sensitize an individual to severe disease during exposure to a heterologous serotype, the general consensus is that an effective vaccine should be tetravalent, that is, it must be capable of affording protection against all four serotypes. The current strategy of creating tetravalent vaccine formulations by mixing together four monovalent live attenuated vaccine viruses has revealed the phenomenon of viral interference leading to the manifestation of immune responses biased towards a single serotype.  相似文献   

19.

Background  

Contagious bovine pleuropneumonia (CBPP) is a mycoplasmal disease caused by Mycoplasma mycoides subsp. mycoides SC (MmmSC). Since the disease is a serious problem that can affect cattle production in parts of Africa, there is a need for an effective and economical vaccine. Identifying which of the causative agent's proteins trigger potentially protective immune responses is an important step towards developing a subunit vaccine. Accordingly, the purpose of this study was to determine whether phage display combined with bioinformatics could be used to narrow the search for genes that code for potentially immunogenic proteins of MmmSC. Since the production of IgG2 and IgA are associated with a Th1 cellular immune response which is implicated in protection against CBPP, antigens which elicit these immunoglobulin subclasses may be useful in developing a subunit vaccine.  相似文献   

20.

Background

Phlebotomus orientalis Parrot (Diptera: Psychodidae) is the main vector of visceral leishmaniasis (VL) caused by Leishmania donovani in East Africa. Here we report on life cycle parameters and susceptibility to L. donovani of two P. orientalis colonies originating from different sites in Ethiopia: a non-endemic site in the lowlands - Melka Werer (MW), and an endemic focus of human VL in the highlands - Addis Zemen (AZ).

Methodology/Principal Findings

Marked differences in life-cycle parameters between the two colonies included distinct requirements for larval food and humidity during pupation. However, analyses using Random Amplified Polymorphic DNA (RAPD) PCR and DNA sequencing of cytB and COI mitochondrial genes did not reveal any genetic differences. F1 hybrids developed successfully with higher fecundity than the parental colonies. Susceptibility of P. orientalis to L. donovani was studied by experimental infections. Even the lowest infective dose tested (2×103 per ml) was sufficient for successful establishment of L. donovani infections in about 50% of the P. orientalis females. Using higher infective doses, the infection rates were around 90% for both colonies. Leishmania development in P. orientalis was fast, the presence of metacyclic promastigotes in the thoracic midgut and the colonization of the stomodeal valve by haptomonads were recorded in most P. orientalis females by day five post-blood feeding.

Conclusions

Both MW and AZ colonies of P. orientalis were highly susceptible to Ethiopian L. donovani strains. As the average volume of blood-meals taken by P. orientalis females are about 0.7 µl, the infective dose at the lowest concentration was one or two L. donovani promastigotes per sand fly blood-meal. The development of L. donovani was similar in both P. orientalis colonies; hence, the absence of visceral leishmaniasis in non-endemic area Melka Werer cannot be attributed to different susceptibility of local P. orientalis populations to L. donovani.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号