首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Vasomotion describes oscillations of arterial vascular tone due to synchronized changes of intracellular calcium concentrations. Since increased calcium influx into vascular smooth muscle cells from spontaneously hypertensive rats (SHR) has been associated with variances of transient receptor potential canonical (TRPC) channels, in the present study we tested the hypothesis that increased vasomotion in hypertension is directly linked to increased TRPC expression. Using a small vessel myograph we observed significantly increased norepinephrine‐induced vasomotion in mesenteric arterioles from SHR compared to normotensive Wistar–Kyoto (WKY) rats. Using immunoblottings we obtained significantly increased expression of TRPC1, TRPC3 and TRPC5 in mesenteric arterioles from SHR compared to WKY, whereas TRPC4 and TRPC6 showed no differences. Norepinephrine‐induced vasomotion from SHR was significantly reduced in the presence of verapamil, SKF96365, 2‐aminoethoxydiphenylborane (2‐APB) or gadolinium. Pre‐incubation of mesenteric arterioles with anti‐TRPC1 and anti‐TRPC3 antibodies significantly reduced norepinephrine‐induced vasomotion and calcium influx. Control experiments with pre‐incubation of TRPC antibodies plus their respective antigenic peptide or in the presence of anti‐β‐actin antibodies or random immunoglobulins not related to TRPC channels showed no inhibitory effects of norepinephrine‐induced vasomotion and calcium influx. Administration of candesartan or telmisartan, but not amlodipine to SHR for 16 weeks significantly reduced either the expression of TRPC1, TRPC3 and TRPC5 as well as norepinephrine‐induced vasomotion in mesenteric arterioles. In conclusion we gave experimental evidence that the increased TRPC1, TRPC3 and TRPC5 expression in mesenteric arterioles from SHR causes increased vasomotion in hypertension.  相似文献   

2.
The aim of the investigation was to assess and compare the effects of a calcium channel antagonist, (i.e. amlodipine) and an ACE-inhibitor (i.e. lisinopril) in reducing chronic left ventricular hypertrophy in 15-week old spontaneously hypertensive rats (SHR). Changes in cardiac hypertrophy were assessed after 8 weeks by measuring the fractional rates of protein synthesis using a ‘flooding dose’ of [3H]-phenylalanine for 10 min. Blood pressure was monitored throughout the treatment period in both SHR and Wistar-Kyoto control rats (WKY). The results showed a decrease in blood pressure by amlodipine after 1 week of treatment which was further reduced at 4 to 8 weeks. Lisinopril caused immediate and sustained reductions in blood pressure (190 mmHg to 130 mmHg, P < 0·001). After 8 weeks of treatment in SHR rats, amlodipine had no significant effect on left ventricular weight (P > 0·05), whereas lisinopril caused a marked reduction. The protein content and RNA were also not changed by amlodipine. In contrast, lisinopril significantly lowered the tissue protein, RNA and DNA content (P < 0·001). The changes in the left ventricles of lisinopril-treated SHR rats were accompanied by an increase in the fractional synthesis rate of left ventricular myofibrillar proteins (+12 per cent, P < 0·025). The synthesis rate per unit RNA was also increased in right ventricular tissue of lisinopril-treated SHR rats. However, amlodipine had no effect on the fractional synthesis rates of any of the left-ventricular fractions of SHR rats (P > 0·05). The cellular efficiency in the right ventricle was also increased in amlodipine-treated SHR rats, indicating a moderate effect on protein metabolism. In conclusion, amlodipine had minimal effects in the reduction of established left ventricular hypertrophy (LVH), despite reducing the blood pressure, whereas lisinopril caused regression of LVH. These events were associated with small changes in protein synthesis rates, with the contractile protein showing an increase.  相似文献   

3.
4.
The present study determined cardiac chamber-specific alterations of the expression of the atrial and brain natriuretic peptide (ANP and BNP) genes with a small increase in age beyond adulthood and with systemic hypertension of intermediate duration. The expression distributions of these genes was determined using in situ hybridization in the right and left atria (RA and LA), and the right and left ventricles (RV and LV) in Wistar Kyoto rats (WKY) and age-matched Spontaneously Hypertensive rats (SHR) at ages 6 months (adult) and 8 months (advanced-age beyond adulthood).In all rat groups, both genes were expressed (ANP > BNP) in the LA and LV, and were not expressed in the RA and RV. The genes were expressed in the LA in all rat groups; the ANP, but not the BNP, expression increased with advancing age and with superimposed hypertension. They were expressed in the LV of the advanced-age WKY, adult and advanced-age SHR, but not in the adult WKY. The ANP mRNA labeling in the LA was diffuse and interspersed with dense accumulations, whereas BNP labeling was diffuse. The labeling of both genes in the form of sparse clusters was seen in the LV of the advanced-age SHR. Our study showed that ANP and BNP expression in left heart chambers increased with a small increase in age, with hypertension of intermediate duration, and with modest left ventricular hypertrophy. The chamber-specific expression distribution could be due to special groups of cardiac cells, or to local chamber-specific factors.  相似文献   

5.
Functional evidence suggests that nitric oxide (NO) signalling in the rostral ventrolateral medulla (RVLM) is cGMP-dependent and that this pathway is impaired in hypertension. We examined cGMP expression as a marker of active NO signalling in the C1 region of the RVLM, comparing adult (>18 weeks) Wistar–Kyoto (WKY, n = 4) and spontaneously hypertensive rats (SHR, n = 4). Double label immunohistochemistry for cGMP-immunoreactivity (IR) and C1 neurons [as identified by phenylethanolamine N-methyltransferase (PNMT-IR) or tyrosine hydroxylase TH-IR)], or neuronal NO synthase (nNOS) neurones, failed to reveal cGMP-IR neurons in the RVLM of either strain, despite consistent detection of cGMP-IR in the nucleus ambiguus (NA). This was unchanged in the presence of isobutylmethylxanthine (IBMX; 0.5 mM, WKY, n = 4, SHR  = 2) and in young animals (WKY, 10-weeks, n = 3). Incubation of RVLM-slices (WKY, 10-weeks, n = 9) in DETA-NO (100 μm; 10 min) or NMDA (10 μM; 2 min) did not uncover cGMP-IR. In all studies, cGMP was prominent within the vasculature. Soluble guanylate cyclase (sGC)-IR was found throughout neurones of the RVLM, but did not co-localise with PNMT, TH or nNOS-IR neurons (WKY, 10-weeks, n = 6). Results indicate that within the RVLM, cGMP is not detectable using immunohistochemistry in the basal state and cannot be elicited by phosphodiesterase inhibition, NMDA receptor stimulation or NO donor application. Kellysan Powers-Martin and Anna M. Barron contributed equally.  相似文献   

6.
Hyperinsulinemia (HI) and insulin resistance (IR) are frequentlyassociated with hypertension and atherosclerosis. However, the exactroles of HI and IR in the development of hypertension are unclear.Mitogen-activated protein kinases (MAPK) are well-characterized intracellular mediators of cell proliferation. In this study, weexamined the contribution of MAPK pathway in insulin-stimulated mitogenesis using primary vascular smooth muscle cells (VSMCs) isolatedfrom aortas of normotensive Wistar-Kyoto rats (WKY) and spontaneoushypertensive rats (SHR). VSMCs were grown to confluence in culture,serum starved, and examined for DNA synthesis {using [3H]thymidine (TDR),immunoprecipitated MAPK activity, and MAPK phosphatase (MKP-1)induction}. Basal rate of TDR incorporation into DNA was twofoldhigher in SHR compared with WKY (P < 0.005). Insulin caused a dose-dependent increase in TDR incorporation (150% over basal levels with 100 nM in 12 h). Stimulation was sustained for 24 h with a decline toward basal in 36 h. Pretreatment with insulin-like growth factor I (IGF-I) receptor antibody did notabolish mitogenesis mediated by 10-100 nM insulin, suggesting thatinsulin effect is mediated via its own receptors. Insulin had a smallmitogenic effect in WKY (33% over basal). Insulin-stimulated mitogenesis was accompanied by a dose-dependent increase in MAPK activity in SHR, with a peak activation (>2-fold over basal) between 5 and 10 min with 100 nM insulin. Insulin had very small effects onMAPK activity in WKY. In contrast, serum-stimulated MAPK activation wascomparable in WKY and SHR. Pretreatment with MEK inhibitor, PD-98059,completely blocked insulin's effect on MAPK activation andmitogenesis. Inhibition of phosphatidylinositol 3-kinase with wortmannin also prevented insulin's effects on MAPK activation andmitogenesis. In WKY, insulin and IGF-I treatment resulted in a rapidinduction of MKP-1, the dual-specificity MAPK phosphatase. Incontrast, VSMCs from SHR were resistant to insulin with respect toMPK-1 expression. We conclude that insulin is mitogenic in SHR, and theeffect appears to be mediated by sustained MAPK activation due toimpaired insulin-mediated MKP-1 mRNA expression, which may act asan inhibitory feedback loop in attenuating MAPK signaling.

  相似文献   

7.
微小RNA在自发性高血压大鼠主动脉的差异表达   总被引:4,自引:0,他引:4  
Xu CC  Han WQ  Xiao B  Li NN  Zhu DL  Gao PJ 《生理学报》2008,60(4):553-560
微小RNAs(microRNAs,miRNAs)是一类基因组编码、非蛋白质编码的小RNA,在转录后水平负性调节靶基因表达.本研究探讨miRNAs在自发性高血压大(spontaneously hypertensive rats,SHR)主动脉的表达特征及其与高血压的关系.取4、8、16和24周龄雄性SHR大鼠及同龄正常血压对照(Wistar-Kyoto,WKY)大鼠.MiRanda、TargetScan和PicTar用于候选miRNAs及靶基因预测分析.通过实时定量RT-PCR检测大鼠主动脉miR-1、miR-133a、miR-155及miR-208的表达,并进一步通过实时定量RT-PCR检测呈差异表达的miR-155和miR-208的预测靶基因mRNA表达.结果显示,SHR大鼠主动脉miR-155表达在4、8、24周时与同龄WKY大鼠无显著差异,但在16周时明显低于同龄WKY大鼠(P<0.05),且大鼠主动脉miR-155表达量与血压呈负相关(r=-0.525,P<0.05).MiR-208表达在4周龄时最高,随年龄增长明显下降(P<0.05),其表达水平与血压和年龄呈负相关(r=-0.400,P<0.05;r=-0.684,P<0.0001),但在SHR和WKY大鼠之间无显著差异.miR-1和miR-133a在各年龄组SHR和WKY大鼠间未呈现差异表达.MiR-155和miR-208表达与相应预测靶基因mRNA表达无显著负相关性.以上结果表明,miR-155表达在成年SHR大鼠主动脉明显低于WKY,并与血压呈负相关,提示miR-155可能参与高血压的发生发展,主动脉miR-155表达异常可能是SHR大鼠血压升高的原因之一.大鼠主动脉miR-208表达在幼年时最高,随年龄增长而明显下降,提示其可能与血管发育有关.  相似文献   

8.
Prolylcarboxypeptidase (PRCP), an endothelial cell membrane serine peptidase that inactivates angiotensin II and activates pre-kallikrein, is thought to have anti-hypertensive and anti-proliferative roles in cardiovascular homeostasis. We hypothesized that PRCP function may be altered in heart tissue under conditions that predispose to left ventricle hypertrophy (LVH) in rats. We therefore used real-time PCR and western-blotting to examine the mRNA and protein expression of PRCP in the hearts of spontaneously hypertensive rats (SHR) at pre-hypertensive (5-week-old) and hypertensive (16-week-old) stages compared with age-matched hypertensive (2 kidney-1 clip; 2K-1C) rats and normotensive Wistar rats. PRCP mRNA expression was significantly reduced in hearts of 5- and 16-week-old SHR compared with age-matched Wistar controls, 2K-1C hypertensive rats and sham-operated normotensive rats. There were no significant differences in the PRCP mRNA and protein expression levels in hearts from hypertensive renovascular and sham-operated normotensive rats. Prolonged treatment of SHR with the AT1 receptor antagonist losartan (40 mg/kg, gavage for 8 weeks) reduced the left ventricular weight/body weight ratio (LVW/BW), as well as the mRNA expression of collagen type 1, collagen type 3 and MMP9 in left ventricular tissue, without affecting PRCP gene and protein expression. Our results suggest that diminished PRCP gene and protein expression might be constitutionally involved in the SHR phenotype. In addition, since neither the development of arterial hypertension in the 2K-1C model nor its successful treatment in SHR altered PRCP gene and protein expression in heart tissue, it appears unlikely that PRCP function is regulated by the renin–angiotensin system or by afterload conditions.  相似文献   

9.
Since the identification of the alternative angiotensin converting enzyme (ACE)2/Ang‐(1‐7)/Mas receptor axis, renin‐angiotensin system (RAS) is a new complex target for a pharmacological intervention. We investigated the expression of RAS components in the heart and kidney during the development of hypertension and its perinatal treatment with losartan in young spontaneously hypertensive rats (SHR). Expressions of RAS genes were studied by the RT‐PCR in the left ventricle and kidney of rats: normotensive Wistar, untreated SHR, SHR treated with losartan since perinatal period until week 9 of age (20 mg/kg/day) and SHR treated with losartan only until week 4 of age and discontinued until week 9. In the hypertrophied left ventricle of SHR, cardiac expressions of Ace and Mas were decreased while those of AT1 receptor (Agtr1a) and Ace2 were unchanged. Continuous losartan administration reduced LV weight (0.43 ± 0.02; P < 0.05 versus SHR) but did not influence altered cardiac RAS expression. Increased blood pressure in SHR (149 ± 2 in SHR versus 109 ± 2 mmHg in Wistar; P < 0.05) was associated with a lower renal expressions of renin, Agtr1a and Mas and with an increase in ACE2. Continuous losartan administration lowered blood pressure to control levels (105 ± 3 mmHg; P < 0.05 versus SHR), however, only renal renin and ACE2 were significantly up‐regulated (for both P < 0.05 versus SHR). Conclusively, prevention of hypertension and LV hypertrophy development by losartan was unrelated to cardiac or renal expression of Mas. Increased renal Ace2, and its further increase by losartan suggests the influence of locally generated Ang‐(1‐7) in organ response to the developing hypertension in SHRs.  相似文献   

10.
11.
Liu J  Bai H  Xing DQ  Sun YP  Wu LL 《生理学报》2002,54(2):159-164
为了探索血小板源生长因子 (platelet derivedgrowthfactor,PDGF)受体介导的信号转导在自发性高血压大鼠(spontaneouslyhypertensiverats,SHR)心肌肥大中的作用 ,实验采用Westernblot法检测SHR及其对照WKY大鼠心肌PDGF受体β和细胞外信号调节激酶 (extracellularsignal regulatedkinase1/ 2 ,ERK 1/ 2 )的蛋白表达和ERK 1/ 2磷酸化水平的变化。结果显示 :4周龄SHR的收缩压、舒张压、±dp/dtmax和心肌肥大指数与同龄WKY大鼠相比均无明显差异 ,而 12周龄SHR上述指标与同龄WKY大鼠相比均明显升高 ,表明 12周SHR已发生高血压 ,心脏收缩功能代偿性增强 ,并出现心肌肥大。 4周龄SHR心肌PDGF受体 β和ERK1/ 2的磷酸化水平以及ERK 1/ 2的蛋白表达水平与同龄对照相比均无明显变化 ,12周时SHR心肌PDGF受体 β的蛋白表达较同龄WKY增加 32 77% (P <          0 0 5 ) ,PDGF受体介导的信号转导通路的下游信号分子ERK 1/ 2的磷酸化水平较同龄WKY升高 19 6 % (P =0 0 1) ,表明ERK 1/ 2的活化增加 ,但ERK 1/ 2的蛋白表达水平尚无变化。为进一步明确PDGF受体 β在心肌细胞生长中的作用及其与ERK 1/ 2活性的关系 ,采用PDGF BB刺激培养的乳鼠心肌细胞 ,发现 [3 H]亮氨酸掺入量明显增加 ,ERK 1/ 2的磷酸化水平明  相似文献   

12.
SUMMARY 1. In situ hybridization done using a 35S-cRNA probe was carried out to obtain information on the expressions of the SA gene in brains and kidneys of the spontaneously hypertensive rat (SHR) strain obtained from the Izumo colony (/Izm) and from Charles River Laboratories (/Crj).2. In the brain, SA mRNA expression was most abundantly observed in epithelial cells of the choroid plexus. High to moderate levels was present on neurons of the CA1–CA4 pyramidal cell layer and the dentate gyrus of the hippocampus and the cerebellar Purkinje cell layer. The solitary tract nucleus and the dorsal motor nucleus of the vagus expressed the SA gene at very low levels. An increase in the expression was noted in the choroid plexus of WKY/Crj; there was no difference, however, in expression levels of other brain areas between WKY/Izm, SHR/Izm, and SHRSP/Izm, and between WKY/Crj and SHR/Crj.3. In the kidney, expression signals of SA mRNA were observed in renal medullary rays and focal cortex of WKY/Izm, SHR/Izm, SHRSP/Izm, and SHR/Crj, whereas mRNA expression in the WKY/Crj kidney was observed in medullary rays and outer strips of the outer medulla. Microscopically, hybridization signals were predominant in the proximal tubules.4. Expression densities decreased only in the kidney of WKY/Crj in 4-and 8-week-old rats, but not in the WKY/Izm kidney, compared with findings in SHR and SHRSP kidneys. These observations are in good agreement with data from Northern blot analysis.5. The SA gene expressions in the brain and the kidney seem not to relate to states of elevated blood pressure, but rather to strain differences. Abundant expressions in the brain and the kidney may mean that the SA gene plays a role in the water–electrolyte transport system. It is noteworthy that there are neuronal expressions of the SA gene in hippocampal pyramidal cells and cerebellar Purkinje cells.  相似文献   

13.
14.
Zhu JH  Liu Z  Huang ZY  Li S 《生理学报》2005,57(5):587-592
本文研究血管紧张素Ⅱ(angiotensin Ⅱ,Ang Ⅱ)对自发性高血压大鼠(spontaneously hypertensive rat,SHR)和Wistar- Kyoto(WKY)大鼠血管平滑肌细胞(vascular smooth muscle cells.VSMCs)细胞外信号调节激酶(extracellular signal-regulated pro- tein kinases,ERKs)信号途径的影响。体外培养SHR和WKY大鼠的VSMCs,先在培养基中加入终浓度为1×105mmol/L 的缬沙坦或1×105mmol/L的PD98059或不加药物,再给予1×107mmol/L的Ang Ⅱ刺激24 h后收集细胞,以无血清培养基 培养的VSMCs作对照。用免疫沉淀法测定ERK活性;用Western-blot方法检测总ERK(total ERK,t-ERK)、磷酸化ERK (phosphorylated-ERK,p-ERK)及丝裂素活化蛋白激酶磷酸酶-1(mitogen-activated protem kinases phosphatase-1,MKP-1)水 平;用RT-PCR法半定量测定MKP-1 mRNA的含量。结果显示:(1)SHR和WKY大鼠Ang Ⅱ刺激组VSMCs中ERK活 性、p-ERK、MKP-1及MKP-1 mRNA水平均明显高于对照组(P<0.05);SHR和WKY大鼠Ang Ⅱ+缬沙坦组和Ang Ⅱ +PD98059组的上述指标与对照组比较均无显著性差异。(2)SHR大鼠VSMCs中ERK活性、P-ERK、MKP-1及MKP-1 mRNA均显著高于相同干预的WKY大鼠(P<0.01)。(3)SHR和WKY大鼠之间以及对照组、Ang Ⅱ刺激组、Ang Ⅱ+缬沙 坦组和Ang Ⅱ+PD98059组间VSMCs中t-ERK水平均无显著性差异。以上结果表明,Ang Ⅱ可能主要通过其1型(Ang Ⅱ type 1,AT)受体激活SHR和WKY大鼠VSMCs中ERK途径,增加ERK活性和p-ERK蛋白水平,继而引起MKP-1及 MKP-1 mRNA水平升高。  相似文献   

15.
《Phytomedicine》2014,21(3):195-198
BackgroundThe traditional Chinese medicine Praeruptorin c (Pra-c) has many physiological and pharmacological effects, including antagonistic effects on blood pressure and calcium levels, maintenance of cellular calcium homeostasis, and improved cardiac systolic and diastolic function. It is potentially a novel and versatile drug for the treatment and prevention of cardiovascular diseases.ObjectiveTo explore the possible impact of Pra-c on blood pressure in SHR and its mechanism of action.Materials and methodsTwenty SHR were randomly divided into a Pra-c group [Pra-c was administered intragastrically, 20 mg kg−1 d−1, n = 10] or an untreated control group (n = 10), containing 10 age-matched SD rats. Each group of rats was followed for 8 weeks. Before and during the treatment, tail artery systolic blood pressure was measured using a tail-cuff every 2 weeks. After 8 weeks, the rats were sacrificed and RNA was extracted from homogenates of cardiac tissue. Tissue from the left ventricle was fixed, sectioned and H&E stained to assess possible changes in myocardial cell structure and morphology. Semi-quantitative RT-PCR was used to assess changes in phospholamban gene expression in treated and untreated rats.ResultsSHR treated with Pra-c for 8 weeks had a lower systolic pressure than untreated SHR (p < 0.05), two measures of cardiac damage, the heart mass index and left ventricle mass index (HMI and LVMI, respectively) were improved, and the level of PLB mRNA expression was lower in the untreated SHR group (p < 0.05).Discussion and conclusionWith continuous hypertension, SHR gradually formed or developed cardiac hypertrophy and fibrosis. Pra-c had a clear effect on blood pressure in SHR, and reversed SHR ventricular remodeling by upregulating the gene expression of sarcoplasmic reticulum PLB.  相似文献   

16.
To explore the impact of myocardial injection of mesenchymal stem cells (MSCs) and specific recombinant human VEGF165 (hVEGF165) plasmid on collagen remodelling in rats with furazolidone induced dilated cardiomyopathy (DCM). DCM was induced by furazolidone (0.3 mg/bodyweight (g)/day per gavage for 8 weeks). Rats were then divided into four groups: (i) PBS group (n = 18): rats received equal volume myocardial PBS injection; (ii) MSCs group (n = 17): 100 μl culture medium containing 105 MSCs were injected into four sites of left ventricular free wall (25 μl per site); (iii) GENE group (n = 18): pCMVen‐MLC2v‐EGFP‐VEGF165 plasmid [5 × 109 pfu (0.2 ml)] were injected into four sites of left ventricular free wall (0.05 ml per site)] and (iv) MSCs+GENE group (n = 17): rats received both myocardial MSCs and pCMVen‐MLC2v‐EGFP‐VEGF165 plasmid injections. After 4 weeks, cardiac function was evaluated by echocardiography. Myocardial mRNA expressions of type I, type III collagen and transforming growth factor (TGF)‐β1 were detected by RT‐PCR. The protein expression of hVEGF165 was determined by Western blot. Myocardial protein expression of hVEGF165 was demonstrated in GENE and MSCs+GENE groups. Cardiac function was improved in MSCs, GENE and MSCs+GENE groups. Collagen volume fraction was significantly reduced and myocardial TGF‐β1 mRNA expression significantly down‐regulated in both GENE and MSCs+GENE groups, collagen type I/III ratio reduction was more significant in MSCs+GENE group than in MSCs or GENE group. Myocardial MSCs and hVEGF165 plasmid injection improves cardiac function possibly through down‐regulating myocardial TGF‐β1 expression and reducing the type I/III collagen ratio in this DCM rat model.  相似文献   

17.
The general purpose of this study was to test the effect of exercise training on the left ventricular (LV) pressure-volume relationship (LV/PV) and apoptotic signaling markers in normotensive and hypertensive hearts. Four-month-old female normotensive Wistar-Kyoto rats (WKY; n = 37) and spontaneously hypertensive rats (SHR; n = 38) were assigned to a sedentary (WKY-SED, n = 21; SHR-SED, n = 19) or treadmill-trained (WKY-TRD, n = 16; SHR-TRD, n = 19) group (~60% Vo(2 peak), 60 min/day, 5 days/wk, 12 wk). Ex vivo LV/PV were established in isovolumic Langendorff-perfused hearts, and LV levels of Akt, phosphorylated Akt (Akt(Pi)), Bad, phosphorylated Bad (Bad(Pi)) c-IAP, x-IAP, calcineurin, and caspases 3, 8, and 9 were measured. Heart-to-body weight ratio was increased in SHR vs. WKY (P < 0.05), concomitant with increased calcineurin mRNA (P < 0.05). There was a rightward shift in the LV/PV (P < 0.05) and a reduction in systolic elastance (E(s)) in SHR vs. WKY. Exercise training corrected E(s) in SHR (P < 0.05) but had no effect on the LV/PV in WKY. Caspase 3 was increased in SHR-SED relative to WKY-SED, while Bad(Pi,) c-IAP, and x-IAP were significantly lower in SHR relative to WKY (P < 0.05). Exercise training increased Bad(Pi) in both WKY and SHR but did not alter caspase 9 activity in either group. While caspase 3 activity was increased with training in WKY (P < 0.05), it was unchanged with training in SHR. We conclude that moderate levels of regular aerobic exercise attenuate systolic dysfunction early in the compensatory phase of hypertrophy, and that a differential phenotypical response to moderate-intensity exercise exists between WKY and SHR.  相似文献   

18.
Glutathione (GSH) forms a part of the antioxidant system that plays a vital role in preventing oxidative stress, and an imbalance in the oxidant/antioxidant system has been linked to the pathogenesis of hypertension. The aim of this study was to investigate the status of the GSH system in the kidney of spontaneously hypertensive rats (SHR). Components of the GSH system, including glutathione peroxidase (GPx), glutathione reductase (GR), glutathione-S-transferase (GST), and total GSH content, were measured in the kidneys of 4, 6, 8, 12, and 16 weeks old SHR and Wistar–Kyoto (WKY) rats. Systolic blood pressure of SHR was significantly higher from the age of 6 weeks onwards compared with age-matched WKY rats. GPx activity in the SHR was significantly lower from the age of 8 weeks onwards when compared to that in age-matched WKY rats. No significant differences were evident in the GPx-1 protein abundance, and its relative mRNA levels, GR, GST activity, and total GSH content between SHR and age-matched WKY rats. The lower GPx activity suggests of an impairment of the GSH system in the SHR, which might be due to an abnormality in its protein rather than non-availability of a cofactor. Its role in the development of hypertension in SHR however remains unclear.  相似文献   

19.
The hypothesis that endothelin (ET) receptor mechanisms are altered during development and progression of left ventricular hypertrophy (LVH) in vivo was tested using spontaneously hypertensive rats (SHRs). Ventricular cardiomyocytes were isolated from SHRs before onset (8 and 12 wk) and during progression (16, 20, and 24 wk) of LVH and compared with age-matched normotensive Wistar-Kyoto (WKY) rats. PreproET-1 mRNA expression was elevated in SHR (P < 0.05) relative to WKY cardiomyocytes at 20-24 wk. ET binding-site density was twofold greater in SHR than WKY cells at 12 wk (P < 0.05) but normalized at 20 wk. ET(B) receptors were detected on SHR cardiomyocytes as early as 8 wk and their affinity increased progressively with age (P < 0.05), whereas ET(B) receptors were not detected on WKY cells until 20 wk. ET-1 stimulated protein synthesis with similar maximum responses between strains (21-30%), in contrast with sarafotoxin 6c, which stimulated protein synthesis in SHR (13-20%) but not WKY cells at 12-20 wk. In SHR but not WKY cells, the ET(B) receptor-selective ligand A-192621 increased protein synthesis progressively with the development of LVH (15% maximum effect). In conclusion, the presence of ET(B) receptors (8-12 wk) coupled with functional responsiveness of SHR cells but not WKY cells to sarafotoxin 6c at 12 wk supports the involvement of ET(B) receptors before the onset of cardiomyocyte hypertrophy, whereas altered ET(B) receptor characteristics during active hypertrophy (16-24 wk) indicate that ET(B) receptor mechanisms may also contribute to disease progression.  相似文献   

20.
Growing evidence indicates that transient receptor potential canonical (TRPC) channels play important roles in various Ca2+-mediated physiological and pathophysiological processes, including development. Many types of TRPC proteins are expressed in the heart. However, limited data are available comparing the expression and localization among TRPC proteins in the ventricular myocyte at various developmental stages. Our purpose is to investigate the expression and localization profile of TRPC proteins in ventricular myocytes of fetal (18.5 days), neonatal (< 24 h after birth) and adult (8 week old) rats. Western blotting, immunofluorescence and confocal laser scanning microscopy were employed. TRPC1/3-6 proteins were expressed in the rat ventricle throughout the three developmental stages. The expression profile of TRPC1/3/4 in the ventricle followed an upward trend from the fetus to the adult. By contrast, TRPC6 in the ventricle was expressed at the highest level in the fetal group and was sharply down-regulated immediately after birth. TRPC5 expression in the ventricle did not change significantly during the three stages. TRPC1/3/5/6 proteins were localized to the T-tubule and TRPC1/3/4/6 to intercalated disks in adult myocytes. The wide spatiotemporal overlap and dynamic regulation of TRPC expression in ventricular myocytes indicates potential complex combinations and redundancy of native TRPC proteins in the heart and gives important clues for further investigations into the exact subunit compositions and functional properties of native TRPC channels in the heart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号