首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nerve growth factor (NGF) rapidly stimulates the phosphorylation of a 250 kDa cytoskeletally-associated protein (pp250) by a protein kinase which is also associated with structural elements of the cell. We have solubilized these proteins and demonstrated that NGF-stimulated phosphorylation can be observed in cell free extracts of cytoskeletons from NGF-treated PC12 cells. The pp250 substrate and the 250-kinase were solubilized from PC12 cytoskeletons by treatment with 2 M urea. Phosphorylation of pp250 was maximally stimulated following treatment of the cells for 5 min with NGF. This effect was transient, diminishing with longer exposure of the cells to hormone. The 250-kinase preferred Mn2+ over Mg2+ and was inhibited by both Na+ and K+. The phosphorylation of pp250 was not affected by Ca2+. Upon fractionation of the urea-soluble cytoskeletal proteins by gel filtration, the 250-kinase eluted in two peaks; one peak of enzyme activity coeluting with the pp250 substrate, and a second peak of enzyme activity eluting with an apparent Mr of approximately 60 kDa. Treatment of the PC12 cells with the phorbol ester TPA also stimulated the phosphorylation of pp250, although this effect was not as great as that produced by NGF. This cell free system should be a valuable tool in the investigation of the mechanisms of NGF action.Special issue dedicated to Dr. E. M. Shooter and Dr. S. Varon.  相似文献   

2.
Protein phosphorylation in a low speed supernatant of human peripheral nerve (tibial and sural) homogenate was investigated. The major phosphorylated proteins had molecular mass in the range of 70, 55, 45, and 25 kDa. Mg2+ or Mn2+ was essential for maximum phosphorylation although Zn2+, Co2+, and Ca2+, could partially support phosphorylation. External protein substrates casein and histone were also phosphorylated. The protein phosphatase inhibitor orthovanadate enhanced the phosphorylation of the 45 and 25 kDa proteins significantly. Concanavalin A-Sepharose chromatography of the phosphorylated peripheral nerve proteins showed that the 25 kDa protein was a glycoprotein. Protein phosphorylation of peripheral nerves from leprosy affected individuals was compared with normals. The phosphorylation of 25 kDa protein was decreased in most of the patients with leprosy.  相似文献   

3.
DEAE-cellulose column chromatography of Neurospora crassa soluble mycelial extracts leads to the resolution of three major protein kinase activity peaks designated PKI, PKII, and PKIII.PKII activity is stimulated by Ca2+ and Neurospora or brain calmodulin. Maximal stimulation was observed at 2 µM-free Ca2+ and 1 µg/ml of the modulator. The stimulatory effect of the Ca2+-calmodulin complex was blocked by EGTA and by some calmodulin antagonists such as phenothiazine drugs or compound 48/80.PKII phosphorylates different proteins, among which histone II-A at a low concentration and CDPKS, the synthetic peptide specific for Ca2+-calmodulin dependent protein kinases, are the best substrates. Some phosphorylation can be detected in the absence of any exogenous acceptor. PKII activity assayed in the presence of histone II-A or in the absence of exogenous phosphate acceptor (autophosphorylation) co-elute in a DEAE-cellulose column at 0.28 M NaCl. As result of the autophosphorylation reaction of the purified enzyme a main phosphorylated component of 70 kDa was resolved by SDS-polyacrylamide gel electrophoresis. It is possible that this component is an active part of this enzyme.  相似文献   

4.
Parvathi  K.  Gayathri  J.  Maralihalli  G.B.  Bhagwat  A.S.  Raghavendra  A.S. 《Photosynthetica》2000,38(1):23-28
PEP carboxylase (PEPC) in leaves of C4 plants is activated by phosphorylation of enzyme by a PEPC-protein kinase (PEPC-PK). We reevaluated the pattern of PEPC phosphorylation in leaf extracts of Amaranthus hypochondriacus. It was dependent on Ca2+, the optimum concentration of which for stimulation was 10 mM. The extent of stimulation was inhibited by 1,2-bis(2-aminophenoxy)ethane-N,N,N,N-tetraacetic acid (BAPTA), a Ca2+ chelator. The inhibition by BAPTA was relieved by the addition of Ca2+ but not by the addition of Mg2+. The stimulation by Ca2+ of PEPC phosphorylation was marginally enhanced by calmodulin (CaM), but not by diacylglycerol (DAG). Phosphorylation was strongly restricted by Ca2+ or Ca2+-CaM-dependent protein kinase inhibitors. Thus phosphorylation of PEPC is Ca2+-dependent in leaves of A. hypochondriacus and a calcium-dependent protein kinase (CDPK) may modulate PEPC-PK and subsequently the phosphorylation status of PEPC.  相似文献   

5.
We have examined phosphorylation of the rat liver glucocorticoid receptor (GR) and GR-associated protein kinase (PK) activity in the immunopurified receptor preparations. Affinity labeling of hepatic cytosol with [3H]dexamethasone 21-mesylate showed a covalent association of the steroid with a 94 kDa protein. GR was immunopurified with antireceptor monoclonal antibody BuGR2 (Gametchu & Harrison, Endocrinology 114: 274–279, 1984) to near homogeneity. A 23° C incubation of the immunoprecipitated protein A-Sepharose adsorbed GR with [-32P]ATP, Mg2+ and the catalytic subunit of cAMP-dependent PK (cAMP-PK) from bovine heart, led to an incorporation of radioactivity in the 94 kDa protein. Phosphorylation of GR was not evident in the absence of the added kinase. Of the radioinert nucleotides (ATP, GTP, UTP or CTP) tested, only ATP successfully competed with [-32P]ATP demonstrating a nucleotide specific requirement for the phosphorylation of GR. Other divalent cations, such as Mn2+ or Ca2+, could not be substituted for Mg2+ during the phosphorylation reaction. Phosphorylation of GR was sensitive to the presence of the protein kinase inhibitor, H-8, an isoquinoline sulfonamide derivative. In addition, the incorporation of radioactivity into GR was both time- and temperature-dependent. The phosphorylation of GR by cAMP-PK was independent of the presence of hsp-90 and transformation state of the receptor. The results of this study demonstrate that GR is an effective substrate for action of cAMP-PK and that the immunopurified protein A-Sepharose adsorbed GR lacks intrinsic kinase activity but can be conveniently used for the characterization of the phosphorylation reaction in the presence of an exogenous kinase.Abbreviations BUGR2 anti-GR monoclonal antibody - cAMP-PK cAMP-dependent protein kinase - DMSO dimethyl sulfoxide - EDTA ethylenediamine tetra acetic acid - GR glucocorticoid receptor - H-8 Isoquinoline sulfonamide derivative - hsp-90 90 kDa heat-shock protein - PMSF phenylmethylsulfonyl fluoride - PR progesterone receptor - NaF sodium fluoride - SDS sodium dodecyl sulfate - SDS-PAGE SDS-polyacrylamide gel electrophoresis - SR steroid receptor - TA triamcinolone acetonide  相似文献   

6.
Mitochondria isolated from 4-day-old dark-grown wheat seedlings were purified by self-generating Percoll gradient. Phosphorylation reaction was carried out in vitro with the addition of [ c-32P]ATP and polypeptides resolved by 50S-PAGE were subjected to autoradiography. Amongst endogenous polypeptides phosphorylated, four polypeptides of 120, 66, 43 and 21 kD were prominent. Addition of Mg2+ (5 mM) caused dephosphorylation of 120 and 66 kO polypeptides but, simultaneously, induced/enhanced the phosphorylation of some polypeptides, with the effect being more pronounced on a 67 kD species. The phosphorylation of 120 kD species and a few other polypeptides was also down-regulated and that of a 18 kD polypeptide was up-regulated by Ca2+. The present study provides evidence that phosphorylation status of mitochondrial proteins is regulated by Mg2+ and/or Ca2+-dependent phosphatase(s) and protein kinase(s).  相似文献   

7.
A protein kinase (ATP: histone phosphotransferase) with high specificity for the phosphorylation of the very lysine-rich histone H1 has been partially purified and characterized from soybean hypocotyl. The enzyme has a molecular weight of about 48,500. Its activity and sedimentation behavior are refractory to cyclic nucleoside monophosphates. No significant amount of cyclic AMP or cyclic GMP binding activity could be detected in the crude or partially purified enzyme preparations. Km for ATP and histone H1 are 0.4 μM and 0.7 μM, respectively. The enzyme requires Mg2+ or Mn2+ for activity, while addition of 0.5 mM Ca2+, Zn2+ or Hg2+ results in 50% inhibition. Arginine-rich histones H3 and H4 are inhibitory to histone H1 phosphorylation; these histones affect the Vmax of the enzyme, but not the Km for histone H1.  相似文献   

8.
ATPase activity of plasma membranes isolated from oat (Avena sativa L. cv. Goodfield) roots was activated by divalent cations (Mg2+ = Mn2+ > Zn2+ > Fe2+ > Ca2+) and further stimulated by KCl and a variety of monovalent salts, both inorganic and organic. The enzyme exhibited greater specificity for cations than anions. The presence of Mg2+ was necessary for KCl stimulation. Ca2+ was ineffective in replacing Mg2+ for activation of plasma membrane ATPase, but it did activate other membrane-bound ATPases. The pH optima for Mg2+ activation and KCl stimulation of the plasma membrane ATPase were 7.5 and 6.5, respectively.  相似文献   

9.
Purified myelin fraction isolated from rat brain white matter contained Mg2+-dependent protein kinase capable of phosphorylation of myelin basic proteins. The Mg2+-supported kinase was markedly stimulated (two- to fivefold) by micromolar concentrations of free Ca2+ with and without Triton X-100 in the assay, the degree of stimulation being greater with the detergent present. Cyclic AMP, on the other hand, failed to show any effect on phosphorylation of myelin in the absence of Triton X-100 and in the presence of Triton caused only 25–30% stimulation. The phosphorylation reaction was temperature dependent and exhibited a pH optimum at pH 6.5. Apparent affinity toward MgATP2? was found to be about 70 μm and Ca2+ had no effect on this parameter. Dependence on MgCl2 of myelin phosphorylation indicated the presence of high- and low-affinity sites toward Mg2+; Ca2+ appeared to influence the low-affinity site. Maximal level of phosphorylation was attained by 10–15 min at 30 °C and it declined at longer incubation times due to phosphatase activity present in the preparation. Stimulatory effect of Ca2+ on phosphorylation was not due to inhibition of phosphatase activity. Dephosphorylation experiments showed that neither cyclic AMP nor Ca2+ influenced the myelin phosphatase activity. Autoradiographic analysis revealed that phosphorylation of myelin basic proteins accounted for nearly 90% of total myelin phosphorylation. This was supported by the observation that the HCl extract of myelin contained 85% of total activity and comigrated with purified myelin basic proteins. Basal and Ca2+-stimulated phosphorylation of basic proteins were due to phosphorylation of serines mainly, although threonine was phosphorylated to a minor extent. Within myelin, Ca2+ and cyclic AMP kinases are differentially bound. It appears that the myelin kinase (studied in vitro) is primarily influenced by Ca2+ rather than cyclic AMP. Inhibitors (Type I and Type II) of cyclic nucleotide-stimulated protein kinases had no effect on the Ca2+-stimulated phosphorylation although basal and cyclic AMP-stimulated phosphorylation was inhibited, indicating that the Ca2+ kinase is a separate and distinct enzyme from the cyclic AMP-stimulated and basal kinase(s). Also, leupeptin, a protease inhibitor, did not influence basal, cyclic AMP-stimulated, or Ca2+-stimulated myelin phosphorylation, indicating that under the conditions used protease(s) did not alter the myelin kinase activity. The potential significance of phosphorylation of myelin basic proteins and the stimulatory action of Ca2+ on this reaction are discussed.  相似文献   

10.
A 50 kDa, calcium-dependent protein kinase (CDPK) was purified about 1000-fold from cultured cells of alfalfa (Medicago varia) on the basis of its histone H1 phosphorylation activity. The major polypeptide from bovine histone H1 phosphorylated by either animal protein kinase C (PK-C) or by the alfalfa CDPK gave an identical phosphopeptide pattern. The phosphoamino acid determination showed phosphorylation of serine residues in histone H1 by the plant enzyme. Histone-related oligopeptides known to be substrates for animal histone kinases also served as substrates for the alfalfa kinase. Both of the studied peptides (GKKRKRSRKA; AAASFKAKK) inhibited phosphorylation of H1 histones by bovine and alfalfa kinases. The results of competition studies with the nonapeptide (AAASFKAKK), which is a PK-C specific substrate, suggest common features in target recognition between the plant Ca2+-dependent kinase and animal protein kinase C. We also propose that synthetic peptides like AAASFKAKK can be used as a tool to study substrates of plant kinases in crude cell extracts.  相似文献   

11.
In a previous report (Yu and Yang,Biochem. Biophys. Res. Commun. 207, 140–147 (1995)], phosphorylase b kinase from rabbit skeletal muscle was found to be phosphorylated and activated by a cyclic nucleotide- and Ca2+-independent protein kinase previously identified as an autophosphorylation-dependent multifunctional protein kinase (autokinase) from brain and liver (Yanget al, J. Biol. Chem. 262, 7034–7040, 9421–9427 (1987)]. In this report, the effect of Mg2+ ion concentration on the auto-kinase-catalyzed activation of phosphorylase b kinase is investigated. The levels of phosphorylation and activation of phosphorylase b kinase catalyzed by auto-kinase are found to be dependent on the concentration of Mg2+ ion used. Phosphorylation of phosphorylase b kinase at high Mg2+ ion (>9 mM) is 2–3 times higher than that observed at low Mg2+ ion (1 mM) and this results in a further 2- to 3-fold activation of the enzyme activity at high Mg2+ ion. Analysis of the phosphorylation stoichiometry ofα andβ subunits of phosphorylase b kinase at different Mg2+ ion concentrations further reveals that the phosphorylation level of theβ subunit remains almost unchanged, whereas the phosphorylation level of theα subunit increases dramatically and correlates with the increased enzyme activity. In similarity with theβ subunit, phosphorylations of myelin basic protein and histone 2A by auto-kinase are also unaffected by Mg2+ ion. Taken together, the results provide initial evidence that Mg2+ ion may specifically render thea subunit a better substrate for auto-kinase to cause further phosphorylation/activation of phosphorylase b kinase, representing a new mode of control mechanism for the regulation of auto-kinase involved in the phosphorylation and concurrent activation of phosphorylase b kinase.  相似文献   

12.
Phosphorylation/dephosphorylation of the plasma-membrane H+-ATPase (EC 3.6.1.35) could act as a regulatory mechanism to control its activity. In this work, a plasmalemma-enriched fraction from maize roots and a partially purified H+-ATPase were used to investigate the effects of Ca2+ and calmodulin on the H+-ATPase activity and on its phosphorylation status. Both the hydrolytic and the proton-pumping activities were reduced approximately 50% by micromolar Ca2+ concentrations while calmodulin did not show any effect either alone or in the presence of Ca2+. The lack of effect of calmodulin antagonists indicated that calmodulin was not involved in this response. The addition of staurosporine, a kinase inhibitor, abolished the inhibitory effect of Ca2+. Phosphorylation of plasma membrane and partially purified H+-ATPase showed the same behavior. In the presence of Ca2+ a polypeptide of 100 kDa was phosphorylated. This polypeptide cross-reacted with antibodies raised against the H+-ATPase of maize roots. The autoradiogram of the immunodetected protein clearly showed that this polypeptide, which corresponds to the H+-ATPase, was phosphorylated. Additional clear evidence comes from the immunoprecipitation experiments: the data obtained show that the H+-ATPase activity is indeed influenced by its state of phosphorylation. Received: 19 October 1998 / Accepted: 23 February 1999  相似文献   

13.
Phosphorylation of the regulatory light chain of myosin by the Ca2+/calmodulin-dependent myosin light chain kinase plays an important role in smooth muscle contraction, nonmuscle cell shape changes, platelet contraction, secretion, and other cellular processes. Smooth muscle myosin light chain kinase is also phosphorylated, and recent results from experiments designed to satisfy the criteria of Krebs and Beavo for establishing the physiological significance of enzyme phosphorylation have provided insights into the cellular regulation and function of this phosphorylation in smooth muscle. The multifunctional Ca2+/calmodulin-dependent protein kinase II phosphorylates myosin light chain kinase at a regulatory site near the calmodulin-binding domain. This phosphorylation increases the concentration of Ca2+/calmodulin required for activation and hence increases the Ca2+ concentrations required for myosin light chain kinase activity in cells. However, the concentration of cytosolic Ca2+ required to effect myosin light chain kinase phosphorylation is greater than that required for myosin light chain phosphorylation. Phosphorylation of myosin light chain kinase is only one of a number of mechanisms used by the cell to down regulate the Ca2+ signal in smooth muscle. Since both smooth and nonmuscle cells express the same form of myosin light chain kinase, this phosphorylation may play a regulatory role in cellular processes that are dependent on myosin light chain phosphorylation.  相似文献   

14.
Summary Smooth Muscle Phosphatases II (SMP-I1) which has been purified from turkey gizzards and previously classified as protein phosphatase 2C, is inactive in the absence of divalent cations. Study of the activation of SMP-II by Mg2+ and Mn2+ revealed differences in the modes of activation by these cations. The maximal activation elicited by Mg2+ is 1.5–2.5-fold higher than the maximal Mn2+ activation. However, the latter is achieved at a lower concentration than the maximal Mg2+-activation. Furthermore, at low cation concentrations ( 2 mM), the Mn2+-activated activity is higher than the Mg2+-activated activity. In the presence of both cations, the effect of Mn2+ predominates suggesting that the affinity of the enzyme for Mn2+ is greater than for Mg2+. In contrast to Mg2+ and Mn2+, Ca2+ does not activate SMP-II but it was observed to antagonize the effects of Mg2+ and Mn2+. Ca2+ acts as a competitive inhibitor of Mg2+. However, the inhibitory effect at high Ca2+ concentrations is not completely reversed by increasing the Mg2+ concentration. Mn2+ activation is also inhibited by Ca2+ but to a lesser extent. Ca2+ cannot completely inhibit Mn2+-activation suggesting that SMP-I1 has greater affinity for Mn2+ than for Ca2+. The finding that Ca2+ inhibits the activation of SMP-II raises the possibility that Ca2+ may be a regulator of SMP-II in vivo.Abbreviations SMP-II Smooth Muscle Phosphatase-II - MOPS 3-[N-Morpholine]propane Sulfonic Acid - PLC Phosphorylated Myosin Light Chains  相似文献   

15.
Sperm motility is a process which involves a cascade of events mediated by cAMP and Ca2+, cAMP in the initiation of flagellar movement, and Ca2+ in the regulation of beat asymmetry, and it has been suggested that these two messengers act through phosphorylation/dephosphorylation of axonemal proteins. Only a few studies on human sperm protein phosphorylation have been reported and no relation of this process with motility or other function has been established. In the present study, phosphorylation of human sperm proteins was performed using detergent-demembranated spermatozoa, in which motility is reactivated by the addition of ATP. This system allows direct accessibility of intracellular kinases to [32P]-γATP and allows some relation between protein phosphorylation and flagellar movements. After electrophoresis and autoradiography, numerous phosphoproteins were detected. Phosphorylation of 2 proteins (36 and 51 kDa) was stimulated by cAMP in a concentration-dependent manner, and this increase was prevented by inhibitors of cAMP-dependent protein kinase. In order to characterize phosphoproteins originating from the cytoskeleton or axoneme, detergent extracted spermatozoa were also subjected to phosphorylation. Three major phosphorylated proteins (14.8, 15.3, and 16.2 kDa) were detected, the first two expressing cAMP-dependency according to their cAMP concentration-dependent increase in phosphorylation and the reversal of this effect by inhibitors of cAMP-dependent protein kinase. Proteins phosphorylation during the reactivation of demembranated spermatozoa previously immobilized H2O2, xanthine + xanthine oxidase-generated reactive oxygen species, or the oxidative phosphorylation uncoupler rotenone, revealed increases in cAMP-independent phosphorylation of proteins of 16.2, 46, and 93 kDa. These results documenting human sperm phosphoproteins form a base for further studies on the role of protein phosphorylation in sperm functions. © 1996 Wiley-Liss, Inc.  相似文献   

16.
In a previous report (Yu and Yang,Biochem. Biophys. Res. Commun. 207, 140–147 (1995)], phosphorylase b kinase from rabbit skeletal muscle was found to be phosphorylated and activated by a cyclic nucleotide- and Ca2+-independent protein kinase previously identified as an autophosphorylation-dependent multifunctional protein kinase (autokinase) from brain and liver (Yanget al, J. Biol. Chem. 262, 7034–7040, 9421–9427 (1987)]. In this report, the effect of Mg2+ ion concentration on the auto-kinase-catalyzed activation of phosphorylase b kinase is investigated. The levels of phosphorylation and activation of phosphorylase b kinase catalyzed by auto-kinase are found to be dependent on the concentration of Mg2+ ion used. Phosphorylation of phosphorylase b kinase at high Mg2+ ion (>9 mM) is 2–3 times higher than that observed at low Mg2+ ion (1 mM) and this results in a further 2- to 3-fold activation of the enzyme activity at high Mg2+ ion. Analysis of the phosphorylation stoichiometry of and subunits of phosphorylase b kinase at different Mg2+ ion concentrations further reveals that the phosphorylation level of the subunit remains almost unchanged, whereas the phosphorylation level of the subunit increases dramatically and correlates with the increased enzyme activity. In similarity with the subunit, phosphorylations of myelin basic protein and histone 2A by auto-kinase are also unaffected by Mg2+ ion. Taken together, the results provide initial evidence that Mg2+ ion may specifically render thea subunit a better substrate for auto-kinase to cause further phosphorylation/activation of phosphorylase b kinase, representing a new mode of control mechanism for the regulation of auto-kinase involved in the phosphorylation and concurrent activation of phosphorylase b kinase.  相似文献   

17.
Plasma membranes were prepared from guinea pig ventricle by a procedure which involved differential centrifugation at low gravitational forces, extraction with KCl, and centrifugation in a discontinuous sucrose gradient. Adenylate cyclase was purified 10–15-fold over the starting homogenate with a yield of 75%. The membranes contained an active Ca2+ binding and uptake system as well as Ca2+-activated adenosine triphosphatase; protein kinase and phosphoprotein phosphatase activities were also present. The membranes could be phosphorylated by either intrinsic or exogenous protein kinase, and phosphorylation was stimulated by cyclic AMP and was reversible. Phosphorylated membranes accumulated twice as much Ca2+ as control preparations.  相似文献   

18.
Bovine brain contains two calmodulin-dependent phosphodiesterase kinases which are separated on Sephacryl S-300 column. One of these kinases has been purified to homogeneity and shown to belong to the calmodulin-dependent protein kinase II family. Phosphorylation of the 63 kDa phosphodiesterase by this purified protein kinase results in the incorporation of 1.0 mol phosphate per mol subunit and an accompanying increase in Ca2+ concentrations required for the phosphodiesterase activation by calmodulin. The protein kinase undergoes autophosphorylation to incorporate 1.0 mol phosphate per mol of subunit of the enzyme and the autophosphorylated enzyme is active, independent of the presence of Ca2+. The autophosphorylation reaction as well as the protein kinase reaction are rendered Ca2+ independent in less than 15 seconds when approximately one mol phosphate per mol protein kinase is incorporated. The result suggests that activation of phosphodiesterase phosphorylation reaction may occur prior to the activation of phosphodiesterase and phosphatase during a cell Ca2+ flux via the protein kinase autophosphorylation mechanism.Abbreviations SDS sodium dodecyl sulfate - EGTA ethylene glycol bis (-aminoethyl ether) - N,N,N,N tetra acetic acid - EDTA ethylenediamine-tetraacetic acid - cAMP cyclic adenosine 35 monophosphate This work is supported by grants from the Medical Research Council of Canada (JHW), the Heart and Stroke Foundation of Alberta (JHW and RKS) and the Heart and Stroke Foundation of Saskatchewan (RKS)  相似文献   

19.
On the basis of the genome sequence, the unicellular motile cyanobacterium Synechocystis sp. PCC 6803 harbors seven putative genes for eukaryotic-type protein kinase belonging to Pkn2 subfamily (spkAspkG). Previously, SpkA was shown to have protein kinase activity and to be required for cell motility. Here, the role of the spkB was examined. The spkB gene was expressed in Escherichia coli as a fusion protein with His-tag, and the protein was purified by Ni2+ affinity chromatography. The eukaryotic-type protein kinase activity of the expressed SpkB was demonstrated as autophosphorylation to itself and phosphorylation of the general substrate proteins. SpkB showed autophosphorylation activity in the presence of both Mg2+ and Mn2+, but not in Ca2+. Phenotype analysis of spkB disruptant of Synechocystis revealed that spkB is required for cell motility, but not for phototaxis. These results suggest that SpkB is the eukaryotic-type protein kinase, which regulates cellular motility via protein phosphorylation like SpkA. Received: 8 June 2002 / Accepted: 5 July 2002  相似文献   

20.
The oxidation of reduced nicotinamide adenine dinucleotide, malate-pyruvate, and succinate by corn mitochondria in buffered 0.2 m KCl was determined as a function of divalent cations. Ni2+, Mg2+, Co2+, Ca2+, Mn2+, Sr2+, and Ba2+ stimulated reduced nicotinamide adenine dinucleotide oxidation in the absence of inorganic phosphate, with Ca2+ and Sr2+ having the greatest effect. Malate-pyruvate and succinate oxidation was stimulated by Ca2+, Ba2+, and Sr2+, but only in the presence of inorganic phosphate. Ca2+, Sr2+, and Ba2+ produced a simulated state 4 to state 3 transition with all three substrates, but only with malate-pyruvate and succinate was there a return to state 4. The order of divalent cation effectiveness suggests that the rate of water substitution from the cation inner coordination hydration sphere may be a rate-limiting step in certain mitochondrial reactions involving electron transport and phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号