首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 495 毫秒
1.
This article explores root epidermal cell elongation and its dependence on two structural elements of cells, cortical microtubules and cellulose microfibrils. The recent identification of Arabidopsis morphology mutants with putative cell wall or cytoskeletal defects demands a procedure for examining and comparing wall architecture and microtubule organization patterns in this species. We developed methods to examine cellulose microfibrils by field emission scanning electron microscopy and microtubules by immunofluorescence in essentially intact roots. We were able to compare cellulose microfibril and microtubule alignment patterns at equivalent stages of cell expansion. Field emission scanning electron microscopy revealed that Arabidopsis root epidermal cells have typical dicot primary cell wall structure with prominent transverse cellulose microfibrils embedded in pectic substances. Our analysis showed that microtubules and microfibrils have similar orientation only during the initial phase of elongation growth. Microtubule patterns deviate from a predominantly transverse orientation while cells are still expanding, whereas cellulose microfibrils remain transverse until well after expansion finishes. We also observed microtubule-microfibril alignment discord before cells enter their elongation phase. This study and the new technology it presents provide a starting point for further investigations on the physical properties of cell walls and their mechanisms of assembly.  相似文献   

2.
Burk DH  Ye ZH 《The Plant cell》2002,14(9):2145-2160
It has long been hypothesized that cortical microtubules (MTs) control the orientation of cellulose microfibril deposition, but no mutants with alterations of MT orientation have been shown to affect this process. We have shown previously that in Arabidopsis, the fra2 mutation causes aberrant cortical MT orientation and reduced cell elongation, and the gene responsible for the fra2 mutation encodes a katanin-like protein. In this study, using field emission scanning electron microscopy, we found that the fra2 mutation altered the normal orientation of cellulose microfibrils in walls of expanding cells. Although cellulose microfibrils in walls of wild-type cells were oriented transversely along the elongation axis, cellulose microfibrils in walls of fra2 cells often formed bands and ran in different directions. The fra2 mutation also caused aberrant deposition of cellulose microfibrils in secondary walls of fiber cells. The aberrant orientation of cellulose microfibrils was shown to be correlated with disorganized cortical MTs in several cell types examined. In addition, the thickness of both primary and secondary cell walls was reduced significantly in the fra2 mutant. These results indicate that the katanin-like protein is essential for oriented cellulose microfibril deposition and normal cell wall biosynthesis. We further demonstrated that the Arabidopsis katanin-like protein possessed MT-severing activity in vitro; thus, it is an ortholog of animal katanin. We propose that the aberrant MT orientation caused by the mutation of katanin results in the distorted deposition of cellulose microfibrils, which in turn leads to a defect in cell elongation. These findings strongly support the hypothesis that cortical MTs regulate the oriented deposition of cellulose microfibrils that determines the direction of cell elongation.  相似文献   

3.
Cellulose microfibril deposition patterns define the direction of plant cell expansion. To better understand how microfibril alignment is controlled, we examined microfibril orientation during cortical microtubule disruption using the temperature-sensitive mutant of Arabidopsis thaliana, mor1-1. In a previous study, it was shown that at restrictive temperature for mor1-1, cortical microtubules lose transverse orientation and cells lose growth anisotropy without any change in the parallel arrangement of cellulose microfibrils. In this study, we investigated whether a pre-existing template of well-ordered microfibrils or the presence of well-organized cortical microtubules was essential for the cell to resume deposition of parallel microfibrils. We first transiently disrupted the parallel order of microfibrils in mor1-1 using a brief treatment with the cellulose synthesis inhibitor 2,6-dichlorobenzonitrile (DCB). We then analysed the alignment of recently deposited cellulose microfibrils (by field emission scanning electron microscopy) as cellulose synthesis recovered and microtubules remained disrupted at the mor1-1 mutant's non-permissive culture temperature. Despite the disordered cortical microtubules and an initially randomized wall texture, new cellulose microfibrils were deposited with parallel, transverse orientation. These results show that transverse cellulose microfibril deposition requires neither accurately transverse cortical microtubules nor a pre-existing template of well-ordered microfibrils. We also demonstrated that DCB treatments reduced the ability of cortical microtubules to form transverse arrays, supporting a role for cellulose microfibrils in influencing cortical microtubule organization.  相似文献   

4.
Summary Investigations on the mechanism of orientation of the cellulose microfibrils of the green algaOocystis solitaria have been carried out. This organism demonstrates easily observable and highly ordered microfibrils in its wall, which are arranged parallel to one another and regularly alternate at 90 from layer to layer of which there are approximately 30. During the entire wall development, and always parallel to one of the microfibril directions, are microtubules lying in the cortical cytoplasm. In the presence of 10–2 M colchicine, microtubules are no longer detected and the typical cell wall pattern is not developed. The possible role of microtubules in the orientation of cellulose microfibrils is briefly discussed.  相似文献   

5.
It is a well-known hypothesis that cortical microtubules control the direction of cellulose microfibril deposition, and that the parallel cellulose microfibrils determine anisotropic cell expansion and plant cell morphogenesis. However, the molecular mechanism by which cortical microtubules regulate the orientation of cellulose microfibrils is still unclear. To investigate this mechanism, chemical genetic screening was performed. From this screening, 'SS compounds' were identified that induced a spherical swelling phenotype in tobacco BY-2 cells. The SS compounds could be categorized into three classes: those that disrupted the cortical microtubules; those that reduced cellulose microfibril content; and thirdly those that had neither of these effects. In the last class, a chemical designated 'cobtorin' was found to induce the spherical swelling phenotype at the lowest concentration, suggesting strong binding activity to the putative target. Examining cellulose microfibril regeneration using taxol-treated protoplasts revealed that the cobtorin compound perturbed the parallel alignment of pre-existing cortical microtubules and nascent cellulose microfibrils. Thus, cobtorin could be a novel inhibitor and an attractive tool for further investigation of the mechanism that enables cortical microtubules to guide the parallel deposition of cellulose microfibrils.  相似文献   

6.
Summary The relationship between cell expansion, cortical microtubule orientation, and patterned secondary-cell-wall deposition was investigated in xylogenic cell suspension cultures ofZinnia elegans L. The direction of cell expansion in these cultures is pH dependent; cells elongate at pH 5.5–6.0, but expand isodiametrically at pH 6.5–7.0. Contrary to our expectations, indirect immunofluorescence revealed that cortical microtubules are oriented parallel to the long axis in elongating cells. Pulse labeling of the walls of isolated cells with the fluorochrome Tinopal LPW demonstrated that xylogenic Zinnia mesophyll cells elongate by tip growth in culture. These results confirm that cortical microtubules in developing tracheary elements reorient before bundling to form transverse cortical microtubule bands. This rearrangement may allow the secondary cell wall pattern to conform to cell shape, independent of the direction in which the cell was expanding prior to reorientation.Abbreviations CMT cortical microtubules - Mes 2-[N-morpholino]ethanesulfonic acid - TE tracheary element  相似文献   

7.
The shape of plants depends on cellulose, a biopolymer that self-assembles into crystalline, inextensible microfibrils (CMFs) upon synthesis at the plasma membrane by multi-enzyme cellulose synthase complexes (CSCs). CSCs are displaced in directions predicted by underlying parallel arrays of cortical microtubules, but CMFs remain transverse in cells that have lost the ability to expand unidirectionally as a result of disrupted microtubules. These conflicting findings suggest that microtubules are important for some physico-chemical property of cellulose that maintains wall integrity. Using X-ray diffraction, we demonstrate that abundant microtubules enable a decrease in the degree of wall crystallinity during rapid growth at high temperatures. Reduced microtubule polymer mass in the mor1-1 mutant at high temperatures is associated with failure of crystallinity to decrease and a loss of unidirectional expansion. Promotion of microtubule bundling by over-expressing the RIC1 microtubule-associated protein reduced the degree of crystallinity. Using live-cell imaging, we detected an increase in the proportion of CSCs that track in microtubule-free domains in mor1-1, and an increase in the CSC velocity. These results suggest that microtubule domains affect glucan chain crystallization during unidirectional cell expansion. Microtubule disruption had no obvious effect on the orientation of CMFs in dark-grown hypocotyl cells. CMFs at the outer face of the hypocotyl epidermal cells had highly variable orientation, in contrast to the transverse CMFs on the radial and inner periclinal walls. This suggests that the outer epidermal mechanical properties are relatively isotropic, and that axial expansion is largely dependent on the inner tissue layers.  相似文献   

8.
The microtubule cytoskeleton and the cell wall both play key roles in plant cell growth and division, determining the plant’s final stature. At near weightlessness, tubulin polymerizes into microtubules in vitro, but these microtubules do not self-organize in the ordered patterns observed at 1g. Likewise, at near weightlessness cortical microtubules in protoplasts have difficulty organizing into parallel arrays, which are required for proper plant cell elongation. However, intact plants do grow in space and therefore should have a normally functioning microtubule cytoskeleton. Since the main difference between protoplasts and plant cells in a tissue is the presence of a cell wall, we studied single, but walled, tobacco BY-2 suspension-cultured cells during an 8-day space-flight experiment on board of the Soyuz capsule and the International Space Station during the 12S mission (March–April 2006). We show that the cortical microtubule density, ordering and orientation in isolated walled plant cells are unaffected by near weightlessness, as are the orientation of the cellulose microfibrils, cell proliferation, and cell shape. Likely, tissue organization is not essential for the organization of these structures in space. When combined with the fact that many recovering protoplasts have an aberrant cortical microtubule cytoskeleton, the results suggest a role for the cell wall, or its production machinery, in structuring the microtubule cytoskeleton.  相似文献   

9.
In diffuse growing cells the orientation of cellulose fibrils determines mechanical anisotropy in the cell wall and hence also the direction of plant and organ growth. This paper reports on the mean or net orientation of cellulose fibrils in the outer epidermal wall of the whole Arabidopsis plant. This outer epidermal wall is considered as the growth-limiting boundary between plant and environment. In the root a net transverse orientation of the cellulose fibrils occurs in the elongation zone, while net random and longitudinal orientations are found in subsequent older parts of the differentiation zone. The position and the size of the transverse zone is related with root growth rate. In the shoot the net orientation of cellulose fibrils is transverse in the elongating apical part of the hypocotyl, and longitudinal in the fully elongated basal part. Leaf primordia and very young leaves have a transverse orientation. Throughout further development the leaf epidermis builds a very complex pattern of cells with a random orientation and cells with a transverse or a longitudinal orientation of the cellulose fibrils. The patterns of net cellulose orientation correlate well with the cylindrical growth of roots and shoots and with the typical planar growth of the leaf blade. On both the shoot and the root surface very specific patterns of cellulose orientation occur at sites of specific cell differentiation: trichome-socket cells complexes on the shoot and root hairs on the root.  相似文献   

10.
Image acquisition is an important step in the study of cytoskeleton organization. As visual interpretations and manual measurements of digital images are prone to errors and require a great amount of time, a freely available software package named MicroFilament Analyzer (MFA) was developed. The goal was to provide a tool that facilitates high‐throughput analysis to determine the orientation of filamentous structures on digital images in a more standardized, objective and repeatable way. Here, the rationale and applicability of the program is demonstrated by analyzing the microtubule patterns in epidermal cells of control and gravi‐stimulated Arabidopsis thaliana roots. Differential expansion of cells on either side of the root results in downward bending of the root tip. As cell expansion depends on the properties of the cell wall, this may imply a differential orientation of cellulose microfibrils. As cellulose deposition is orchestrated by cortical microtubules, the microtubule patterns were analyzed. The MFA program detects the filamentous structures on the image and identifies the main orientation(s) within individual cells. This revealed four distinguishable microtubule patterns in root epidermal cells. The analysis indicated that gravitropic stimulation and developmental age are both significant factors that determine microtubule orientation. Moreover, the data show that an altered microtubule pattern does not precede differential expansion. Other possible applications are also illustrated, including field emission scanning electron micrographs of cellulose microfibrils in plant cell walls and images of fluorescent actin.  相似文献   

11.
The anisotropic growth of plant cells depends on cell walls having anisotropic mechanical properties, which are hypothesized to arise from aligned cellulose microfibrils. To test this hypothesis and to identify genes involved in controlling plant shape, we isolated mutants in Arabidopsis thaliana in which the degree of anisotropic expansion of the root is reduced. We report here the characterization of mutants at two new loci, RADIALLY SWOLLEN 4 (RSW4) and RSW7. The radial swelling phenotype is temperature sensitive, being moderate (rsw7) or negligible (rsw4) at the permissive temperature, 19 degrees C, and pronounced at the restrictive temperature, 30 degrees C. After transfer to 30 degrees C, the primary root's elongation rate decreases and diameter increases, with all tissues swelling radially. Swelling is accompanied by ectopic cell production but swelling is not reduced when the extra cell production is eliminated chemically. A double mutant was generated, whose roots swell constitutively and more than either parent. Based on analytical determination of acid-insoluble glucose, the amount of cellulose was normal in rsw4 and slightly elevated in rsw7. The orientation of cortical microtubules was examined with immunofluorescence in whole mounts and in semi-thin plastic sections, and the orientation of microfibrils was examined with field-emission scanning electron microscopy and quantitative polarized-light microscopy. In the swollen regions of both mutants, cortical microtubules and cellulose microfibrils are neither depleted nor disoriented. Thus, oriented microtubules and microfibrils themselves are insufficient to limit radial expansion; to build a wall with high mechanical anisotropy, additional factors are required, supplied in part by RSW4 and RSW7.  相似文献   

12.
Summary Following a 5 hours ethylene treatment, cortical cells of Pea (Pisum sativum L. var Alaska) epicotyl third internode showed a change in the orientation of both microtubules near the plasma membrane and recently deposited cellulose microfibrils. Control cortical cells had mostly transverse microtubules. The ratio of the average frequency of transverse to longitudinal microtubules was 6.0. After 5 hours of ethylene treatment, cortical cells had mostly longitudinal microtubules, with the ratio of transverse to longitudinal microtubules equal to 0.1. Epidermal cells were more variable than cortical cells with regard to the frequency of longitudinal and transverse microtubules. Observation of cortical cell walls in conventionally stained thin sections revealed that recent deposition of microfibrils had been primarily transverse in almost all of the control cortical cells sampled. In contrast, more than half of the ethylene-treated cortical cells had recent deposition oriented primarily longitudinally. This change in microtubule and microfibril orientation may be early enough to constitute the primary effect of ethylene leading to radial cell expansion.Research supported by NSF grant PCM 78-03244, A1, 2 to PBG and by a Research Corporation grant to WRE.  相似文献   

13.
M. E. Galway  A. R. Hardham 《Protoplasma》1986,135(2-3):130-143
Summary Microtubule reorganization and cell wall deposition have been monitored during the first 30 hours of regeneration of protoplasts of the filamentous green algaMougeotia, using immunofluorescence microscopy to detect microtubules, and the cell-wall stain Tinopal LPW to detect the orientation of cell wall microfibrils. In the cylindrical cells of the alga, cortical microtubules lie in an ordered array, transverse to the long axis of the cells. In newly formed protoplasts, cortical microtubules exhibit some localized order, but within 1 hour microtubules become disordered. However, within 3 to 4 hours, microtubules are reorganized into a highly ordered, symmetrical array centered on two cortical foci. Cell wall synthesis is first detected during early microtubule reorganization. Oriented cell wall microfibrils, co-aligned with the microtubule array, appear subsequent to microtubule reorganization but before cell elongation begins. Most cells elongate in the period between 20 to 30 hours. Elongation is preceded by the aggregation of microtubules into a band intersecting both foci, and transverse to the incipient axis of elongation. The foci subsequently disappear, the microtubule band widens, and microfibrils are deposited in a band which is co-aligned with the band of microtubules. It is proposed that this band of microfibrils restricts lateral expansion of the cells and promotes elongation. Throughout the entire regeneration process inMougeotia, changes in microtubule organization precede and are paralleled by changes in cell wall organization. Protoplast regeneration inMougeotia is therefore a highly ordered process in which the orientation of the rapidly reorganized array of cortical microtubules establishes the future axis of elongation.  相似文献   

14.
Microtubules have long been known to play a key role in plant cell morphogenesis, but just how they fulfill this function is unclear. Transverse microtubules have been thought to constrain the movement of cellulose synthase complexes in order to generate transverse microfibrils that are essential for elongation growth. Surprisingly, some recent studies demonstrate that organized cortical microtubules are not essential for maintaining or re-establishing transversely oriented cellulose microfibrils in expanding cells. At the same time, however, there is strong evidence that microtubules are intimately associated with cellulose synthesis activity, especially during secondary wall deposition. These apparently conflicting results provide important clues as to what microtubules do at the interface between the cell and its wall. I hypothesize that cellulose microfibril length is an important parameter of wall mechanics and suggest ways in which microtubule organization may influence microfibril length. This concept is in line with current evidence that links cellulose synthesis levels and microfibril orientation. Furthermore, in light of new evidence showing that a wide variety of proteins bind to microtubules, I raise the broader question of whether a major function of plant microtubules is in modulating signaling pathways as plants respond to sensory inputs from the environment.  相似文献   

15.
It is generally believed that cell elongation is regulated by cortical microtubules, which guide the movement of cellulose synthase complexes as they secrete cellulose microfibrils into the periplasmic space. Transversely oriented microtubules are predicted to direct the deposition of a parallel array of microfibrils, thus generating a mechanically anisotropic cell wall that will favor elongation and prevent radial swelling. Thus far, support for this model has been most convincingly demonstrated in filamentous algae. We found that in etiolated Arabidopsis thaliana hypocotyls, microtubules and cellulose synthase trajectories are transversely oriented on the outer surface of the epidermis for only a short period during growth and that anisotropic growth continues after this transverse organization is lost. Our data support previous findings that the outer epidermal wall is polylamellate in structure, with little or no anisotropy. By contrast, we observed perfectly transverse microtubules and microfibrils at the inner face of the epidermis during all stages of cell expansion. Experimental perturbation of cortical microtubule organization preferentially at the inner face led to increased radial swelling. Our study highlights the previously underestimated complexity of cortical microtubule organization in the shoot epidermis and underscores a role for the inner tissues in the regulation of growth anisotropy.  相似文献   

16.
A L Cleary  L G Smith 《The Plant cell》1998,10(11):1875-1888
The cytoskeleton plays a major role in the spatial regulation of plant cell division and morphogenesis. Arrays of microtubules and actin filaments present in the cell cortex during prophase mark sites to which phragmoplasts and associated cell plates are guided during cytokinesis. During interphase, cortical microtubules are believed to influence the orientation of cell expansion by guiding the pattern in which cell wall material is laid down. Little is known about the mechanisms that regulate these cytoskeleton-dependent processes critical for plant development. Previous work showed that the Tangled1 (Tan1) gene of maize is required for spatial regulation of cytokinesis during maize leaf development but not for leaf morphogenesis. Here, we examine the cytoskeletal arrays associated with cell division and morphogenesis during the development of tan1 and wild-type leaves. Our analysis leads to the conclusion that Tan1 is required both for the positioning of cytoskeletal arrays that establish planes of cell division during prophase and for spatial guidance of expanding phragmoplasts toward preestablished cortical division sites during cytokinesis. Observations on the organization of interphase cortical microtubules suggest that regional influences may play a role in coordinating cell expansion patterns among groups of cells during leaf morphogenesis.  相似文献   

17.
The involvement of cortical microtubules in the control of plant cell expansion was studied in the Arabidopsis root epidermis. In the zone of fast elongation microtubules were transverse to the root axis in all epidermal cells. However when cells entered the differentiation zone cell type-specific microtubule reorientation took place. In the trichoblasts that were then approximately 130 µm long and formed the root hair bulge, the microtubules switched to a random distribution. In the adjoining atrichoblasts microtubules adopted a slightly oblique orientation. In more proximal parts of the differentiation zone atrichoblast microtubules were found in a more oblique and finally in a longitudinal orientation. Upon exposure to ethylene or 1-aminocyclopropane-1-carboxylic acid (ACC – the precursor of ethylene) at a saturating dose, cell elongation abruptly stopped. From then on trichoblast cells reached only a length of about 35 µm, and developed root hairs. Cortical microtubules changed orientation within 10 min. In trichoblasts they adopted the typical random orientation, in atrichoblasts however, they took up a longitudinal orientation. Microtubule reorientation was complete within 60 min. The possible role of microtubules in the control of cell elongation is discussed.  相似文献   

18.
The role of cellulose microfibril orientation in determining cell wall mechanical anisotropy and in the control of the wall plastic versus elastic properties was studied in the adaxial epidermis of onion bulb scales using the constant-load (creep) test. The mean or net cellulose orientation in the outer periclinal wall of the epidermis was parallel to the long axis of the cells. In vitro cell wall extensibility was 30-90% higher in the direction perpendicular to the net microfibril orientation than parallel to it. This was the case for the size of the initial deformation occurring just after the load application and for the rate of time-dependent creep. Loading/unloading experiments confirmed the presence of a real irreversible component in cell wall extension. The plastic component of the time-dependent deformation was higher perpendicular to the net cellulose orientation than parallel to it. An acid buffer (pH 4.5) increased the creep rate by 25-30% but this response was not related to cellulose orientation. The present data provide direct evidence that the net orientation of cellulose microfibrils confers mechanical anisotropy to the walls of seed plants, a characteristic that may be relevant to understanding anisotropic cell growth.  相似文献   

19.
Cell elongation requires directional deposition of cellulose microfibrils regulated by transverse cortical microtubules. Microtubules respond differentially to suppression of cell elongation along the developmental zones of Arabidopsis thaliana root apex. Cortical microtubule orientation is particularly affected in the fast elongation zone but not in the meristematic or transition zones of thanatos and pom2–4 cellulose-deficient mutants of Arabidopsis thaliana. Here, we report that a uniform phenotype is established among the primary cell wall mutants, as cortical microtubules of root epidermal cells of rsw1 and prc1 mutants exhibit the same pattern described in thanatos and pom2–4. Whether cortical microtubules assume transverse orientation or not is determined by the demand for cellulose synthesis, according to each root zone''s expansion rate. It is suggested that cessation of cell expansion may provide a biophysical signal resulting in microtubule reorientation.  相似文献   

20.
Cellulose production is a crucial aspect of plant growth and development. It is functionally linked to cortical microtubules, which self-organize into highly ordered arrays often situated in close proximity to plasma membrane-bound cellulose synthase complexes (CSCs). Although most models put forward to explain the microtubule–cellulose relationship have considered mechanisms by which cortical microtubule arrays influence the orientation of cellulose microfibrils, little attention has been paid to how microtubules affect the physicochemical properties of cellulose. A recent study using the model system Arabidopsis, however, indicates that microtubules can modulate the crystalline and amorphous content of cellulose microfibrils. Microtubules are required during rapid growth for reducing crystalline content, which is predicted to increase the degree to which cellulose is tethered by hemicellulosic polysaccharides. Such tethering is, in turn, critical for maintaining unidirectional cell expansion. In this article, we hypothesize that cortical microtubules influence the crystalline content of cellulose either by controlling plasma membrane fluidity or by modulating the deposition of noncellulosic wall components in the vicinity of the CSCs. We discuss the current limitations of imaging technology to address these hypotheses and identify the image acquisition and processing strategies that will integrate live imaging with super resolution three-dimensional information.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号