首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study investigated stand dynamics during 10-year period in a conifer/broadleaved mixed forest in Hokkaido, northern Japan, focusing on spatially dependent recruitment, mortality and growth of two growth-form groups, deciduous broadleaved species and the dominant evergreen conifer Abies sachalinensis. The stand-level basal area was maintained over the 10-year period, while a compositional equilibrium at the individual species level was not confirmed. Univariate and bivariate spatial analyses revealed clustering of many of the constituent species. The absence of single-species patches suggested an ambiguous mosaic formed by co-occurrence of Abies and broadleaved trees. The trend towards an aggregated distribution of Abies and broadleaved trees was caused by spatially dependent recruitment rather than mortality. New recruits of broadleaved species were spatially associated with surviving broadleaved trees, while this was not the case for Abies. The degree of competitive effects on growth was not consistent over the 10-year period. Abies showed between-groups competition, but not within-group competition. In contrast, we found asymmetric competitions between the broadleaved trees. Our results suggest that Abies is not sufficiently competitively dominant to exclude broadleaved trees, and that the co-occurrence of the two growth-form groups might be maintained.  相似文献   

2.
We defined gas exchange phenology as the seasonality of the gas exchange characteristics of a forest canopy, and investigated how the gas exchange phenology could be directly detected from an eddy covariance (EC) dataset and its influence on the canopy fluxes within an evergreen Japanese cypress forest. For the detection of gas exchange phenology, we derived three bulk parameters of the extended big-leaf model (Kosugi et al. 2005) inversely from EC flux data over a 7-year period: surface conductance (g c), maximum rate of carboxylation of the “big leaf” (V CMAX), and intercellular CO2 concentration of the “big leaf” (C I). The relationship between g c and the vapor pressure deficit declined in winter and spring. The relationship between the daily ecosystem respiration and air temperature was greater in the spring than in the other seasons. The temperature dependence curve of V CMAX decreased substantially in the winter and was different from that of an evergreen broadleaved forest. A decrease in C I was occasionally coupled with the decrease in canopy gross primary production during April and August, indicating that stomatal closure was responsible for a decline in canopy photosynthesis. Gas exchange phenology should be quantified when understanding the determining factors of the seasonality of canopy fluxes at evergreen coniferous forests.  相似文献   

3.

Assessing long-term changes in the biomass of old-growth forests with consideration of climate effects is essential for understanding forest ecosystem functions under a changing climate. Long-term biomass changes are the result of accumulated short-term changes, which can be affected by endogenous processes such as gap filling in small-scale canopy openings. Here, we used 26 years (1993–2019) of repeated tree census data in an old-growth, cool-temperate, mixed deciduous forest that contains three topographic units (riparian, denuded slope, and terrace) in northern Japan to document decadal changes in aboveground biomass (AGB) and their processes in relation to endogenous processes and climatic factors. AGB increased steadily over the 26 years in all topographic units, but different tree species contributed to the increase among the topographic units. AGB gain within each topographic unit exceeded AGB loss via tree mortality in most of the measurement periods despite substantial temporal variation in AGB loss. At the local scale, variations in AGB gain were partially explained by compensating growth of trees around canopy gaps. Climate affected the local-scale AGB gain: the gain was larger in the measurement periods with higher mean air temperature during the current summer but smaller in those with higher mean air temperature during the previous autumn, synchronously in all topographic units. The influences of decadal summer and autumn warming on AGB growth appeared to be counteracting, suggesting that the observed steady AGB increase in KRRF is not fully explained by the warming. Future studies should consider global and regional environmental factors such as elevated CO2 concentrations and nitrogen deposition, and include cool-temperate forests with a broader temperature range to improve our understanding on biomass accumulation in this type of forests under climate change.

  相似文献   

4.
We examined fine litterfall fluctuations on a seasonal and annual scale for 14 years (1992–2005) in a 1.2-ha plot in an old-growth lucidophyllous (evergreen broad-leaved) forest within the Aya Research Site, southwestern Japan. The average total litterfall input was 6.32 Mg ha–1, of which leaf litter accounted for 60% of the total. Two high-impact typhoons struck the study area in 1993 (T9313) and 2004 (T0416) during the observation period; however, the subsequent pattern of litterfall after disturbance was different between the two typhoons. T9313 disturbance caused a reduction of biomass (ca. 10% of basal area (BA)) and a sharp decrease in litterfall input following a massive input in 1993. On the other hand, T0416 caused a minor decline in litterfall input, accompanied by a relatively small reduction of BA (5.2% of the 2001 BA). In spite of large fluctuations, litterfall input increased year by year after the T9313 disturbance. In 2000, 7 years after T9313, leaf input showed no significant differences and recorded more than 90% of pre-T9313 levels. Re-leafing from typhoon survivors may play an important role in the recovery of litterfall input in this forest. This study demonstrated how one high-impact typhoon can alter the temporal fluctuations in fine litterfall in lucidophyllous forest ecosystems.  相似文献   

5.
Our objective was to test how a long‐term increased water limitation affects structural and functional properties of a Mediterranean ecosystem, and how these changes modify the response of the main carbon fluxes to climatic controls. In 2003, a 27% throughfall exclusion experiment was installed in a Quercus ilex L. forest in France. Gross primary production (GPP), ecosystem respiration (RECO) and net ecosystem exchange (NEE) were estimated in a control and a dry treatment. Decreasing throughfall decreased GPP by 14% and had a smaller effect on RECO (?12%), especially soil respiration RS (?11%). Interannual variability of GPP (29%) was higher than for RECO (12%). Error propagation was used to estimates uncertainties in the NEE fluxes, which ranged from 3% to 10% in the control treatment but up to 167% for NEE in the dry treatment because more steps and data types were involved in the scaling. After 3 years of throughfall exclusion, we found no acclimation of RS to climatic drivers. Functional properties of the response of RS to soil water, temperature and rain pulse remained similar in the control and the dry treatments. A diurnal clockwise hysteresis in RS was probably controlled by canopy photosynthesis with a 3 h lag. The proportion of diurnal variation of respiration due to photosynthesis was similar in all treatments (4–5%). Because of the characteristic of rain in Mediterranean climates, a continuous decrease of water input in these environments have an effect on topsoil water and consequently on RS only during short periods when rainfall is characterized by infrequent and small events that does not allow the topsoil to reach field capacity and does not allow to dry completely. However, in the longer term, we expect a stronger decrease in RS in the dry treatment driven by the decrease in GPP.  相似文献   

6.
Lianas require host trees to reach and stay in the forest canopy, but as seedlings and juveniles, they benefit from canopy gaps created by treefalls. Here, we evaluated the relative importance of these two aspects, that is, the availability of potential hosts vs. the legacy effect of past treefall gaps, on the local abundance of liana stems in a seasonal tropical evergreen forest in the Sakaerat Biosphere Reserve in northeastern Thailand. Within a 2.5-ha plot for forest dynamics monitoring, canopy height was measured in 1993 and 2018 at 5-m intervals to distinguish areas of mature (canopy height ≥ 20 m), building (10–20 m), and gap phases (< 10 m). In 2017–2018, we surveyed all liana stems ≥ 1 cm in diameter at breast height within 50 subplots (10 m × 10 m each) and recorded their diameter and the diameter of the host tree. Of a total of 445 liana individuals, 242 could be identified at least to the family level, while the others had clear morphological traits of climbing mechanisms. The number of liana stems was higher in areas that had been at the building/gap phase than those at the mature phase in 1993. When this 25-year-old legacy of past gap locations was considered, there was a positive association of local abundance between lianas and trees in areas at the mature phase in 2018. In conclusion, liana abundance reflected a long-term legacy of past treefall gaps more than 25 years earlier in this seasonal evergreen forest.  相似文献   

7.
We surveyed road kills occurring along a 26-km stretch of a major national road (Portugal) in two different years: 1996 and 2005. For analysis purposes, we divided the data into seven vertebrate groups: amphibians, reptiles, carnivores, prey mammals (shrews, moles, rodents, rabbits and hares), hedgehogs, owls and passerines. Main factors influencing vertebrate road casualties were evaluated using redundancy analysis and variance partitioning techniques, focusing on three sets of variables: land cover, landscape metrics and spatial location. We also took into account meteorological conditions and changes in traffic intensity specific to each of the surveyed years. The percentage of variance explained by the explanatory variables was greater in 1996 (67.5%) than in 2005 (48.1%). Many variables influencing road kill incidence were common to both years. The most significantly associated factor was the distance to the Natural Park of Serra de São Mamede (NPSSM): road kills decreased steadily as our survey moved south, away from the NPSSM border. Moreover, an increased incidence of road losses occurred in forested areas, such as montado and traditional olive groves. As 2005 was a climatically drier year, additional variance factors became prominent, including the distance to water reservoirs, suggesting a greater influence of water availability. Traffic flow increased by almost 150% from 1996 to 2005, which may explain the overall increase in road kills, with the notable exception of the amphibian group, whose road fatalities incidences decreased approximately sixfold. We expect that our survey will provide a comprehensive understanding of the most critical factors currently influencing vertebrate road fatalities and aid in improving the effectiveness of mitigation measures to reduce them.  相似文献   

8.
Rapid growth of ground vegetation following clear-cutting is important to site productivity because vegetation retains nutrients in the ecosystem and can decrease nutrient leaching prior to stand re-establishment. Aboveground biomass, nutrient contents (N, P, K and Ca) and species composition of ground vegetation were determined 1 year before and for 7 years after clear-cutting of a mixed forest dominated by Norway spruce [Picea abies (L.) H. Karst.] in eastern Finland. The biomass of the feather mosses [Pleurozium schreberi Brid. and Hylocomium splendens (Hedw.) B. S.& G.] and the dwarf shrubs (Vaccinium myrtillus L. and V. vitis-idaea L.), which had dominated the ground vegetation in the mature forest, significantly decreased after clear-cutting. However, with the exception of H. splendens, these species had recovered within 3–5 years. The biomass of Deschampsia flexuosa (L.) Trin. considerably increased soon after clear-cutting, and Epilobium angustifolium L. appeared 3–5 years after cutting. These species contributed to the retention of nutrients not simply because of their biomass but also because of higher nutrient concentrations in their tissues. Total biomass and nutrient contents of the ground vegetation exceeded those of the pre-cutting levels. The proportion of ground vegetation biomass and nutrient contents represented by mosses decreased after cutting, while V. myrtillus, although reduced after cutting, remained a marked nutrient sink. The results suggest that H. splendens is the most sensitive species to cutting, but the biomass of P. schreberi, V. myrtillus and V. vitis-idaea return to initial levels soon after clear-cutting as do the nutrient contents of ground vegetation.  相似文献   

9.
Coastal-ridge plains are progradational landforms composed of elevated ridges and low-lying swales. The transitions between ridges and swales are steep, promoting dynamic shifts between xeric and mesic systems. Two understory plants that co-occur in ridge plains of North American mid-Atlantic maritime forests are Sabal minor and Ilex vomitoria. As coastal-ridge plains foster varying amounts of surface and sub-surface water driven largely by topography, the purpose of this study was to evaluate plant–water relations and chlorophyll a fluorescence in these two species. Ridge plants had lower leaf- and xylem-water potentials, lower osmotic potential (I. vomitoria), and lower symplastic water content (S. minor). Although there were no differences in potential- and effective-quantum yields, there were decreases in fluorescence performance index for ridge I. vomitoria and swale S. minor. While the data support potential water-stress conditions in ridge plants of both species, the data also suggest that I. vomitoria and S. minor use different physiological processes to tolerate hydrologically dynamic ridge–swale maritime forests.  相似文献   

10.
High-latitude boreal and arctic surface/inland waters contain sizeable reservoirs of dissolved organic matter (DOM) and trace elements (TE), which are subject to seasonal freezing. Specifically, shallow ponds and lakes in the permafrost zone often freeze solid, which can lead to transformations in the colloidal and dissolved fractions of DOM and TE. Here, we present results from experimental freeze-thaw cycles using iron (Fe)- and DOM-rich water from thaw ponds situated in Stordalen and Storflaket palsa mires in northern Sweden. After ten cycles of freezing, 85% of Fe and 25% of dissolved organic carbon (DOC) were removed from solution in circumneutral fen water (pH 6.9) but a much smaller removal of Fe and DOC (< 7%) was found in acidic bog water (pH 3.6). This removal pattern was consistent with initial supersaturation of fen water with respect to Fe hydroxide and a lack of supersaturation with any secondary mineral phase in the bog water. There was a nearly two- to threefold increase in the low-molecular-weight (LMW) fraction of organic carbon (OC) and several TEs caused by the repeated freeze-thaw cycles. Future increases in the freeze-thaw frequency of surface waters with climate warming may remove up to 25% of DOC in circumneutral organic-rich waters. Furthermore, an increase of LMW OC may result in enhanced carbon dioxide losses from aquatic ecosystems since this fraction is potentially more susceptible to biodegradation.  相似文献   

11.
To assess the susceptibility of the base metal budget of a remote tropical montane forest in Ecuador to environmental change, we determined the extent of biological control of base metal fluxes and explored the impact of atmospheric inputs and precipitation, considered as potential drivers of ecosystem change, on the base metal fluxes. We quantified all major base metal fluxes in a ca. 9.1 ha forested catchment from 1998 to 2013. Mean (±s.d.) annual flux to the soil via throughfall + stemflow + litterfall was 13800 ± 1500 mg m?2 Ca, 19000 ± 1510 mg m?2 K, 4690 ± 619 mg m?2 Mg and 846 ± 592 mg m?2 Na of which 22 ± 6, 45 ± 16, 39 ± 10 and 84 ± 33%, respectively, were leached to below the organic layer. The mineral soil retained 79–94% of this Ca, K and Mg, while Na was released. Weathering rates estimated with three different approaches ranged from not detected (ND) to 504 mg m?2 year?1 Ca, ND-1770 mg m?2 year?1 K, 287–597 mg m?2 year?1 Mg and 403–540 mg m?2 year?1 Na. The size of mainly biologically controlled aboveground fluxes of Ca, K and Mg was 1–2 orders of magnitude larger than that of mainly geochemically controlled fluxes (sorption to soil and weathering). The elemental catchment budgets (total deposition ? streamflow) were positive for Ca (574 ± 893 mg m?2) and K (1330 ± 773 mg m?2), negative for Na (?370 ± 1300 mg m?2) and neutral for Mg (1.89 ± 304 mg m?2). Our results demonstrate that biological processes controlled element retention for Ca, K and Mg in the biological part of the ecosystem. This was different for Na, which was mainly released by weathering from the study catchment, while the biological part of the ecosystem was Na-poor. The deposition of base metals was the strongest driver of their budgets suggesting that the base metal cycling of the study ecosystem is susceptible to changing deposition.  相似文献   

12.
Femoral head bone allografts have traditionally been used to provide mechanical stability to areas of bony deficiency, or for its osteoinductive and osteoconductive properties. Concerns have been raised over increased infection rates following the use of fresh-frozen graft tissue. This retrospective study aims to investigate the outcomes of fresh frozen femoral heads kept in a regulated, non-commercial bone bank at a university teaching hospital.The local bone bank database was used to identify released femoral heads during a 14 year study period (September 1999–December 2013) whereby a retrospective review of patient records was undertaken to determine clinical outcome. During the observed study period, 427 femoral heads were released from cold storage. Of these, 270 femoral heads had a mean follow-up of 347 days. 157 femoral heads were excluded due to insufficient follow-up data (n = 132) or discarded due to breaks in the cold chain prior to use (n = 25). Of the 270 included femoral heads, 231 (85.6 %) had no reported complications with good graft incorporation. In the remaining 39 with reported complications, only 5 (2.6 %) developed a postoperative infection. Our findings suggest that the use of fresh frozen allograft does not materially increase the risk of post-operative bacterial infection. Our reported post-operative infection rates are comparable with infection rates of other similar studies on fresh frozen allograft use.  相似文献   

13.
At most sites the magnitude of soil-atmosphere exchange of nitrous dioxide (N2O), carbon dioxide (CO2) and methane (CH4) was estimated based on a few chambers located in a limited area. Topography has been demonstrated to influence the production and consumption of these gases in temperate ecosystems, but this aspect has often been ignored in tropical areas. In this study, we investigated spatial variability of the net fluxes of these gases along a 100 m long slope of a evergreen broadleaved forest in southern China over a whole year. We expected that the lower part of slope would release more N2O and CO2, but take up less atmospheric CH4 than the upper part due to different availability of water and nutrients. Our results showed that the soil moisture (Water Filled Pore Space, WFPS) decreased along the slope from bottom to top as we expected, but among the three gases only N2O emissions followed this pattern. Annual means of WFPS ranged from 27.7% to 52.7% within the slope, and annual emissions of N2O ranged from 2.0 to 4.4 kg N ha?1 year?1, respectively. These two variables were highly and positively correlated across the slope. Neither potential rates of net N mineralization and nitrification, nor N2O emissions in the laboratory incubated soils varied with slope positions. Soil CO2 release and CH4 uptake appeared to be independent on slope position in this study. Our results suggested that soil water content and associated N2O emissions are likely to be influenced by topography even in a short slope, which may need to be taken into account in field measurements and modelling.  相似文献   

14.
We evaluated 25?years of change in wind-impacted oak and pine-dominated sites in the Cedar Creek Ecosystem Science Reserve, Minnesota, USA. We address the question: how did the storm alter stand architecture and spatial pattern and how did this affect recovery and recruitment? We mapped and marked all stems greater than 1?cm in diameter in a 0.25?ha oak-dominated plot and a 0.30?ha pine-dominated plot. After the initial sampling in 1983, plots were resurveyed four times in the 25?years following the windstorm. We used ordination and diameter distributions to describe compositional and structural characteristics of the sites. The stands are compositionally converging after the windstorm with both moving towards a late-successional forest type dominated by shade-tolerant tree species. The architecture in both sites is similar through time; sites have transitioned from bimodal diameter distributions to reverse-J distributions. We used Ripley??s K point pattern analysis to assess spatial patterns of tree mortality and recruitment within each site. In the pine site, surviving trees were significantly clumped, but mortality and recruitment patterns did not significantly differ from random. In the oak site, the storm did not substantially alter the spatial pattern of surviving trees, but subsequent recruitment was significantly associated with trees killed by the storm at scales within 6?C8?m and significantly dissociated with surviving trees at scales greater than 1?m. The dynamics of accelerated succession observed here are mediated by the damage and mortality initially sustained and its corresponding effects on spatial patterns of surviving and recruiting trees.  相似文献   

15.
Restoration of wetlands is a high priority world-wide. Peat extraction areas can be restored by rewetting, however affecting the environment. It could be expected to turn the drained peat-cutover area from a source to a sink of most elements. This study examined effects of such rewetting on peat, hydrology and water chemistry over 15 years at two sites in Sweden; the nutrient-poor Porla peatland and the nutrient-rich Västkärr peatland. Rewetting caused minor changes to peat chemistry, but at the Västkärr site ammonium concentrations increased in superficial peat layers while nitrate decreased. In terms of hydrology, rewetting of the Porla site decreased annual runoff and both high and low discharges. Water pH at the Porla site stayed fairly stable, but at the Västkärr site pH, after an initial 4 years dip, gradually increased to higher values than before rewetting. Water colour and organic matter content were fairly stable, but slightly lower values were found after 15 years than in initial 4–5 years. The concentrations of base cations and of inorganic N were lower after rewetting, while total P was higher. However, these impacts could change from an initial phase as the wetlands in the long-term perspective develop into mires.  相似文献   

16.
This is a short preface of this Special Issue Lactoferrin, it described the major points of key reporters in ‘The 9th International Conference on LF Structure, Function and Applications’ in Beijing in late Autumn 2009, and the major articles published in this issue. A panaroma and the lastest advances of lactoferrin R&D during past two years (2007–2009) was tried to extract.  相似文献   

17.
The tropical forests of the Congo Basin constitute biodiversity refuges that still hold large numbers of species, including endemic and endangered vertebrates. Along with several key species, the critically endangered western lowland gorilla (WLG) potentially contributes to forest dynamics through seed dispersal. Considering the extensive influence of timber harvesting on tropical forest ecosystems, the survival of gorilla populations in logged forests might prove critical for forest ecosystem conservation. We estimated WLG density, through a nest count survey, in a forest in southeast Gabon that has been logged for 25 years. Nesting behavior and habitat use were described and we applied generalized linear models to identify the factors that influence gorilla day and night habitat use. The estimated density of weaned gorillas, 1.5 gorillas km?2, is comparable with estimates from some protected areas and other sustainably managed sites within their range. Habitat type had the greatest influence on nest site distribution. We observed a preference for nesting in open terra firma forest, and open habitats in general, which supports the findings of previous studies. Habitat use during the day was strongly influenced by habitat type and human activities, and to a lesser degree by functional and non-functional roads, and rivers. Our results support the suggestion that logged forests are suitable habitats for WLG if hunting and poaching are controlled. We recommend collaborations between timber operators and scientists to improve the conservation potential of tropical forests and enhance the wildlife-management aspects of logging practices.  相似文献   

18.
For decades, arid desert ecosystems in northwest China, covering one-fourth the country’s land surface, have experienced a rapid decline in plant species diversity, productivity and soil carbon stock owing to degradation by overgrazing. In this study, plant community composition, diversity and productivity, as well as soil carbon (C) and nitrogen (N) stocks, were monitored over 26 years from 1981 to 2006 in a severely degraded Haloxylon ammodendron-dominated shrubland where livestock densities were reduced from 4–5 to 1–2 dry sheep equivalent ha-1. The objective was to assess long-term grazing effects on vegetation and soil C and N accumulation dynamics. Results showed that the reduction of grazing pressure significantly increased vegetation cover, plant diversity and productivity, resulting primarily from an increase in livestock-preferred species. Controlled grazing also led to marked increases in soil C and N stocks in the top 30 cm of soil. This increase was strongly associated with increased plant species richness, vegetation cover and biomass production. Averaged over 26 years, soil C and N accumulated at rates of 89.9 g?C and 8.4 g?N m-2?year-1, respectively, but rates of C and N accumulation varied greatly at different time periods. The greatest species regeneration occurred in the first 8 years, but the largest C and N accumulation took place during years 9–18, with a time-lag in response to changes in vegetation. Our results provide insights into the long-term recovery patterns of different ecosystem components from the influence of prolonged overgrazing disturbance that cannot be inferred from a short-term study. The findings are important for assessing the resilience of these livestock-disturbed desert ecosystems and developing a more effective strategy for the management of this important biome from a long-term perspective.  相似文献   

19.
The vertical 137Cs profile of forest and wasteland soils was analyzed in the south of the Podlasie Lowland area (Eastern Poland) about 20 years after the Chernobyl accident. In addition, the concentration of 40K in soils of the investigated area was measured. Below the litter layer (mean thickness 3 cm), the soil samples were collected up to a depth of 12 cm and then divided into three layers: 0–3, 3–7, 7–12 cm. The behavior of 137Cs and 40K isotopes in soils was analyzed depending on the depth from which the soil samples were collected, as well as on the content of organic carbon, pH of soil and its granulometric composition. It was established that the density of 137Cs in the litter layer equals 2.17 kBq m−2; it is the highest in layer 0–3 cm where it equals 3.44 kBq m−2, and it decreases with the depth to the value of 0.76 kBq m−2 in layer 7–12 cm. No similar pattern was observed in wasteland soils. The concentrations of 40K in forest and wasteland soils did not change significantly with depth.  相似文献   

20.
Animals transform and translocate nutrients at ecologically relevant rates, contributing to eutrophication in aquatic ecosystems by mobilizing otherwise unavailable nutrients. Yet we know little about how animal-mediated nutrient cycling compares with external abiotic nutrient sources over long periods (years–decades) and at multiple timescales. To address this, we conducted a 19-year study in a eutrophic reservoir examining nitrogen (N) and phosphorus (P) inputs from watershed streams versus excretion by an abundant fish (gizzard shad, Dorosoma cepedianum) at weekly, monthly and seasonal timescales. Over the entire time period, watershed N and P loading was 33- and 3-fold greater than fish N and P excretion, respectively. However, fish N excretion exceeded watershed nutrient loading in 36% of weeks and 43% of months, and fish P excretion in 68% of weeks and 58% of months during the growing season. Fish excretion had lower temporal variability in both supply rate and N:P ratio than watershed loading. Fish excretion also supplied nutrients at a much lower molar N:P ratio than the watershed (mean of daily N:P supply ratios were 15 and 723, respectively). In eutrophic lakes with high fish biomass, fish excretion can strongly influence algal biomass and community composition. Eutrophication management efforts should consider removal of benthivorous fish, like gizzard shad, in addition to other watershed management practices to improve water quality. Future climate change will modulate the interplay between fish- and watershed-mediated nutrient dynamics by altering the geographic distribution of detritivorous fish and the frequency and severity of storm and drought events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号