首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of designed peptides has been analyzed by 1H-NMR spectroscopy in order to investigate the influence of cross-strand side-chain interactions in beta-hairpin formation. The peptides differ in the N-terminal residues of a previously designed linear decapeptide that folds in aqueous solution into two interconverting beta-hairpin conformations, one with a type I turn (beta-hairpin 4:4) and the other with a type I + G1 beta-bulge turn (beta-hairpin 3:5). Analysis of the conformational behavior of the peptides studied here demonstrates three favorable and two unfavorable cross-strand side-chain interactions for beta-hairpin formation. These results are in agreement with statistical data on side-chain interactions in protein beta-sheets. All the peptides in this study form significant populations of the beta-hairpin 3:5, but only some of them also adopt the beta-hairpin 4:4. The formation of beta-hairpin 4:4 requires the presence of at least two favorable cross-strand interactions, whereas beta-hairpin 3:5 seems to be less susceptible to side-chain interactions. A protein database analysis of beta-hairpins 3:5 and beta-hairpins 4:4 indicates that the former occur more frequently than the latter. In both peptides and proteins, beta-hairpins 3:5 have a larger right-handed twist than beta-hairpins 4:4, so that a factor contributing to the higher stability of beta-hairpin 3:5 relative to beta-hairpin 4:4 is due to an appropriate backbone conformation of the type I + G1 beta-bulge turn toward the right-handed twist usually observed in protein beta-sheets. In contrast, as suggested previously, backbone geometry of the type I turn is not adequate for the right-handed twist. Because analysis of buried hydrophobic surface areas on protein beta-hairpins reveals that beta-hairpins 3:5 bury more hydrophobic surface area than beta-hairpins 4:4, we suggest that the right-handed twist observed in beta-hairpin 3:5 allows a better packing of side chains and that this may also contribute to its higher intrinsic stability.  相似文献   

2.
We previously demonstrated that a beta-hairpin peptide, termed BH(9-10), derived from a single-layer beta-sheet of Borrelia OspA protein, formed a native-like beta-turn in trifluoroethanol (TFE) solution, and it assembled into amyloid-like fibrils at higher TFE concentrations. This peptide is highly charged, and fibrillization of such a hydrophilic peptide is quite unusual. In this study, we designed a circularly permutated peptide of BH(9-10), termed BH(10-9). When folded into their respective beta-hairpin structures found in OspA, these peptides would have identical cross-strand interactions but different turns connecting the strands. NMR study revealed that BH(10-9) had little propensity to form a turn structure both in aqueous and TFE solutions. At higher TFE concentration, BH(10-9) precipitated with a concomitant alpha-to-beta conformational conversion, in a similar manner to the BH(9-10) fibrillization. However, the BH(10-9) precipitates were nonfibrillar aggregation. The precipitation kinetics of BH(10-9) was exponential, consistent with a first-order molecular assembly reaction, while the fibrillization of BH(9-10) showed sigmoidal kinetics, indicative of a two-step reaction consisting of nucleation and molecular assembly. The correlation between native-like turn formation and fibrillization of our peptide system strongly suggests that BH(9-10) adopts a native-like beta-hairpin conformation in the fibrils. Remarkably, seeding with the preformed BH(10-9) precipitates changed the two-step BH(9-10) fibrillization to a one-step molecular assembly reaction, and disrupted the BH(9-10) fibril structure, indicating interactions between the BH(10-9) aggregates and the BH(9-10) peptide. Our results suggest that, in these peptides, cross-strand interactions are the driving force for molecular assembly, and turn formation limits modes of peptide assembly.  相似文献   

3.
Plasticins (23 long-residue glycine-leucine-rich dermaseptin-related peptides produced by the skin of South American hylids) have very similar amino acid sequences, hydrophobicities, and amphipathicities, but differ in their membrane-damaging properties and structurations (i.e. destabilized helix states, beta-hairpin, beta-sheet, and disordered states) at anionic and zwitterionic membrane interfaces. Structural malleability of plasticins in aqueous solutions together with parameters that may govern their ability to fold within beta-hairpin like structures were analyzed through circular dichroism and FTIR spectroscopic studies completed by molecular dynamics simulations in polar mimetic media. The goal of this study was to probe to which extent pre-existent peptide conformations, i.e. intrinsic "conformational landscape", may be responsible for variability in bioactive conformation and antimicrobial/hemolytic mechanisms of action of these peptides in relation with their various membrane disturbing properties. All plasticins present a turn region that does not always result in folding into a beta-hairpin shaped conformation. Residue at position 8 plays a major role in initiating the folding, while position 12 is not critical. Conformational stability has no major impact on antimicrobial efficacy. However, preformed beta-hairpin in solution may act as a conformational lock that prevents switch to alpha-helical structure. This lock lowers the antimicrobial efficiency and explains subtle differences in potencies of the most active antimicrobial plasticins.  相似文献   

4.
A previous NMR investigation of model decapeptides with identical beta-strand sequences and different turn sequences demonstrated that, in these peptide systems, the turn residues played a more predominant role in defining the type of beta-hairpin adopted than cross-strand side-chain interactions. This result needed to be tested in longer beta-hairpin forming peptides, containing more potentially stabilizing cross-strand hydrogen bonds and side-chain interactions that might counterbalance the influence of the turn sequence. In that direction, we report here on the design and 1H NMR conformational study of three beta-hairpin forming pentadecapeptides. The design consists of adding two and three residues at the N- and C-termini, respectively, of the previously studied decapeptides. One of the designed pentadecapeptides includes a potentially stabilizing R-E salt bridge to investigate the influence of this interaction on beta-hairpin stability. We suggest that this peptide self-associates by forming intermolecular salt bridges. The other two pentadecapeptides behave as monomers. A conformational analysis of their 1H NMR spectra reveals that they adopt different types of beta-hairpin structure despite having identical strand sequences. Hence, the beta-turn sequence drives beta-hairpin formation in the investigated pentadecapeptides that adopt beta-hairpins that are longer than the average protein beta-hairpins. These results reinforce our previous suggestion concerning the key role played by the turn sequence in directing the kind of beta-hairpin formed by designed peptides.  相似文献   

5.
We have recently reported on the design of a 20-residue peptide able to form a significant population of a three-stranded up-and-down antiparallel beta-sheet in aqueous solution. To improve our beta-sheet model in terms of the folded population, we have modified the sequences of the two 2-residue turns by introducing the segment DPro-Gly, a sequence shown to lead to more rigid type II' beta-turns. The analysis of several NMR parameters, NOE data, as well as Deltadelta(CalphaH), DeltadeltaC(beta), and Deltadelta(Cbeta) values, demonstrates that the new peptide forms a beta-sheet structure in aqueous solution more stable than the original one, whereas the substitution of the DPro residues by LPro leads to a random coil peptide. This agrees with previous results on beta-hairpin-forming peptides showing the essential role of the turn sequence for beta-hairpin folding. The well-defined beta-sheet motif calculated for the new designed peptide (pair-wise RMSD for backbone atoms is 0.5 +/- 0.1 A) displays a high degree of twist. This twist likely contributes to stability, as a more hydrophobic surface is buried in the twisted beta-sheet than in a flatter one. The twist observed in the up-and-down antiparallel beta-sheet motifs of most proteins is less pronounced than in our designed peptide, except for the WW domains. The additional hydrophobic surface burial provided by beta-sheet twisting relative to a "flat" beta-sheet is probably more important for structure stability in peptides and small proteins like the WW domains than in larger proteins for which there exists a significant contribution to stability arising from their extensive hydrophobic cores.  相似文献   

6.
Wang M  Shan L  Wang J 《Biopolymers》2006,83(3):268-279
Two synthetic peptides, SNasealpha1 and SNasealpha2, corresponding to residues G55-I72 and K97-A109, respectively, of staphylococcal nuclease (SNase), are adopted for detecting the role of helix alpha1 (E57-A69) and helix alpha2 (M98-Q106) in the initiation of folding of SNase. The helix-forming tendencies of the two SNase peptide fragments are investigated using circular dichroism (CD) and two-dimensional (2D) nuclear magnetic resonance (NMR) methods in water and 40% trifluoroethanol (TFE) solutions. The coil-helix conformational transitions of the two peptides in the TFE-H2O mixture are different from each other. SNasealpha1 adopts a low population of localized helical conformation in water, and shows a gradual transition to helical conformation with increasing concentrations of TFE. SNasealpha2 is essentially unstructured in water, but undergoes a cooperative transition to a predominantly helical conformation at high TFE concentrations. Using the NMR data obtained in the presence of 40% TFE, an ensemble of alpha-helical structures has been calculated for both peptides in the absence of tertiary interactions. Analysis of all the experimental data available indicates that formation of ordered alpha-helical structures in the segments E57-A69 and M98-Q106 of SNase may require nonlocal interactions through transient contact with hydrophobic residues in other parts of the protein to stabilize the helical conformations in the folding. The folding of helix alpha1 is supposed to be effective in initiating protein folding. The formation of helix alpha2 depends strongly on the hydrophobic environment created in the protein folding, and is more important in the stabilization of the tertiary conformation of SNase.  相似文献   

7.
Daidone I  Amadei A  Di Nola A 《Proteins》2005,59(3):510-518
The folding of the amyloidogenic H1 peptide MKHMAGAAAAGAVV taken from the syrian hamster prion protein is explored in explicit aqueous solution at 300 K using long time scale all-atom molecular dynamics simulations for a total simulation time of 1.1 mus. The system, initially modeled as an alpha-helix, preferentially adopts a beta-hairpin structure and several unfolding/refolding events are observed, yielding a very short average beta-hairpin folding time of approximately 200 ns. The long time scale accessed by our simulations and the reversibility of the folding allow to properly explore the configurational space of the peptide in solution. The free energy profile, as a function of the principal components (essential eigenvectors) of motion, describing the main conformational transitions, shows the characteristic features of a funneled landscape, with a downhill surface toward the beta-hairpin folded basin. However, the analysis of the peptide thermodynamic stability, reveals that the beta-hairpin in solution is rather unstable. These results are in good agreement with several experimental evidences, according to which the isolated H1 peptide adopts very rapidly in water beta-sheet structure, leading to amyloid fibril precipitates [Nguyen et al., Biochemistry 1995;34:4186-4192; Inouye et al., J Struct Biol 1998;122:247-255]. Moreover, in this article we also characterize the diffusion behavior in conformational space, investigating its relations with folding/unfolding conditions.  相似文献   

8.
The designed peptide (denoted 20-mer, sequence VFITS(D)PGKTYTEV(D)PGOKILQ) has been shown to form a three-strand antiparallel beta-sheet. It is generally believed that the (D)Pro-Gly segment has the propensity to adopt a type II' beta-turn, thereby promoting the formation of this beta-sheet. Here, we replaced (D)Pro-Gly with Asp-Gly, which should favor a type I' turn, to examine the influence of different type of turns on the stability of the beta-sheet. Contrary to our expectation, the mutant peptide, denoted P6D, forms a five-residue type I turn plus a beta-bulge between the first two strands due to a one amino-acid frameshift in the hydrogen bonding network and side-chain inversion of the first beta-strand. In contrast, the same kind of substitution at (D)Pro-14 in the double mutant, denoted P6DP14D, does not yield the same effect. These observations suggest that the SDGK sequence disfavors the type I' conformation while the VDGO sequence favors a type I' turn, and that the frameshift in the first strand provides a way for the peptide to accommodate a disfavored turn sequence by protruding a bulge in the formation of the beta-hairpin. Thus, different types of turns can affect the stability of a beta-structure.  相似文献   

9.
Terada T  Satoh D  Mikawa T  Ito Y  Shimizu K 《Proteins》2008,73(3):621-631
Chignolin is a 10-residue peptide (GYDPETGTWG) that forms a stable beta-hairpin structure in water. However, its design template, GPM12 (GYDDATKTFG), does not have a specific structure. To clarify which amino acids give it the ability to form the beta-hairpin structure, we calculated the folding free-energy landscapes of chignolin, GPM12, and their chimeric peptides using multicanonical molecular dynamics (MD) simulation. Cluster analysis of the conformational ensembles revealed that the native structure of chignolin was the lowest in terms of free energy while shallow local minima were widely distributed in the free energy landscape of GPM12, in agreement with experimental observations. Among the chimeric peptides, GPM12(D4P/K7G) stably formed the same beta-hairpin structure as that of chignolin in the MD simulation. This was confirmed by nuclear magnetic resonance (NMR) spectroscopy. A comparison of the free-energy landscapes showed that the conformational distribution of the Asp3-Pro4 sequence was inherently biased in a way that is advantageous both to forming hydrogen bonds with another beta-strand and to initiating loop structure. In addition, Gly7 helps stabilize the loop structure by having a left-handed alpha-helical conformation. Such a conformation is necessary to complete the loop structure, although it is not preferred by other amino acids. Our results suggest that the consistency between the short-range interactions that determine the local geometries and the long-range interactions that determine the global structure is important for stable tertiary structure formation.  相似文献   

10.
The relative stability of alpha-helix and beta-sheet secondary structure in the solid state was investigated using poly(L-alanine) (PLA) as a model system. Protein folding and stability has been well studied in solution, but little is known about solid-state environments, such as the core of a folded protein, where peptide packing interactions are the dominant factor in determining structural stability. (13)C cross-polarization with magic angle spinning (CPMAS) NMR spectroscopy was used to determine the backbone conformation of solid powder samples of 15-kDa and 21.4-kDa PLA before and after various sample treatments. Reprecipitation from helix-inducing solvents traps the alpha-helical conformation of PLA, although the method of reprecipitation also affects the conformational distribution. Grinding converts the secondary structure of PLA to a final steady-state mixture of 55% beta-sheet and 45% alpha-helix at room temperature regardless of the initial secondary structure. Grinding PLA at liquid nitrogen temperatures leads to a similar steady-state mixture with 60% beta-sheet and 40% alpha-helix, indicating that mechanical shear force is sufficient to induce secondary structure interconversion. Cooling the sample in liquid nitrogen or subjecting it to high pressure has no effect on secondary structure. Heating the sample without grinding results in equilibration of secondary structure to 50% alpha-helix/50% beta-sheet at 100 degrees C when starting from a mostly alpha-helical state. No change was observed upon heating a beta-sheet sample, perhaps due to kinetic effects and the different heating rate used in the experiments. These results are consistent with beta-sheet approximately 260 J/mol more stable than alpha-helix in solid-state PLA.  相似文献   

11.
Autonomously folding beta-hairpins have recently emerged as powerful tools for elucidating the origins of antiparallel beta-sheet folding preferences. Analysis of such model systems has suggested four potential sources of beta-sheet stability: (1) the conformational propensity of the loop segment that connects adjacent strands; (2) favorable contacts between side-chains on adjacent strands; (3) interstrand hydrogen bonds; and (4) the intrinsic beta-sheet propensities of the strand residues. We describe the design and analysis of a series of isomeric 20 residue peptides in which factors (1)-(4) are identical. Differences in beta-hairpin formation within this series demonstrate that these four factors, individually, are not sufficient to explain beta-sheet stability. In agreement with the prediction of a simple statistical mechanical model for beta-hairpin formation, our results show that the separation between the loop segment and an interstrand cluster of hydrophobic side-chains strongly influences beta-hairpin size and stability, with a smaller separation leading to greater stability.  相似文献   

12.
The stability and structure of several beta-hairpin peptide variants derived from the C-terminus of the B1 domain of protein G were investigated by a number of experimental and computational techniques. Our analysis shows that the structure and stability of this hairpin can be greatly affected by one or a few simple mutations. For example, removing an unfavorable charge near the N-terminus of the peptide (Glu42 to Gln or Thr) or optimization of the N-terminal charge-charge interactions (Gly41 to Lys) both stabilize the peptide, even in water. Furthermore, a simple replacement of a charged residue in the turn (Asp47 to Ala) changes the beta-turn conformation. Finally, we show that the effects of combining these single mutations are additive, suggesting that independent stabilizing interactions can be isolated and evaluated in a simple model system. Our results indicate that the structure and stability of this beta-hairpin peptide can be modulated in numerous ways and thus contributes toward a more complete understanding of this important model beta-hairpin as well as to the folding and stability of larger peptides and proteins.  相似文献   

13.
A sequence in yeast MATalpha2/MCM1/DNA complex that folds into alpha-helix or beta-hairpin depending on the surroundings has been known as "chameleon" sequence. We obtained the free-energy landscape of this sequence by using a generalized-ensemble method, multicanonical molecular dynamics simulation, to sample the conformational space. The system was expressed with an all-atom model in explicit water, and the initial conformation for the simulation was a random one. The free-energy landscape demonstrated that this sequence inherently has an ability to form either alpha or beta structure: The conformational distribution in the landscape consisted of two alpha-helical clusters with different packing patterns of hydrophobic residues, and four beta-hairpin clusters with different strand-strand interaction patterns. Narrow pathways connecting the clusters were found, and analysis on the pathways showed that a compact structure formed at the N-terminal root of the chameleon sequence controls the cluster-cluster transitions. The free-energy landscape indicates that a small conditional change induces alpha-beta transitions. Additional unfolding simulations done with replacing amino acids showed that the chameleon sequence has an advantage to form an alpha-helix. Current study may be useful to understand the mechanism of diseases resulting from abnormal chain folding, such as amyloid disease.  相似文献   

14.
A 23-residue peptide termed BH(9-10) was designed based on a beta-hairpin segment of the single-layer beta-sheet region of Borrelia OspA protein. The peptide contains a large number of charged amino acid residues, and it does not follow the amphipathic pattern that is commonly found in natural beta-sheets. In aqueous solution, the peptide was highly soluble and flexible, with a propensity to form a non-native beta-turn. Trifluoroethanol (TFE) stabilized a native-like beta-turn in BH(9-10). TFE also decreased the level of solubility of the peptide, resulting in peptide precipitation. The precipitation process accompanied a conformational conversion to a beta-sheet structure, as judged with circular dichroism spectroscopy. The precipitate was found to be fibrils similar to those associated with human amyloid diseases. The fibrillization kinetics depended on peptide and TFE concentrations, and had a nucleation step followed by an assembly step. The fibrillization was reversible, and the dissociation reaction involved two phases. TFE appears to induce the fibrils by stabilizing a beta-sheet conformation of the peptide that optimally satisfies hydrogen bonding and electrostatic complementarity. This TFE-induced fibrillization is quite unusual, because most amyloidogenic peptides form fibrils in aqueous solution and TFE disrupts these fibrils. Nevertheless, the BH(9-10) fibrils have similar structure to other fibrils, supporting the emerging idea that polypeptides possess an intrinsic ability to form amyloid-like fibrils. The high level of solubility of BH(9-10), the ability to precisely control fibril formation and dissociation, and the high-resolution structure of the same sequence in the beta-hairpin conformation in the OspA protein provide a tractable experimental system for studying the fibril formation mechanism.  相似文献   

15.
Autonomously folding beta-hairpins (two-strand antiparallel beta-sheets) have become increasingly valuable tools for probing the forces that control peptide and protein conformational preferences. We examine the effects of variations in sequence and solvent on the stability of a previously designed 12-residue peptide (1). This peptide adopts a beta-hairpin conformation containing a two-residue loop (D-Pro-Gly) and a four-residue interstrand sidechain cluster that is observed in the natural protein GB1. We show that the conformational propensity of the loop segment plays an important role in beta-hairpin stability by comparing 1 with (D)P--> N mutant 2. In addition, we show that the sidechain cluster contributes both to conformational stability and to folding cooperativity by comparing 1 with mutant 3, in which two of the four cluster residues have been changed to serine. Thermodynamic analysis suggests that the high loop-forming propensity of the (D)PG segment decreases the entropic cost of beta-hairpin formation relative to the more flexible NG segment, but that the conformational rigidity of (D)PG may prevent optimal contacts between the sidechains of the GB1-derived cluster. The enthalpic favorability of folding in these designed beta-hairpins suggests that they are excellent scaffolds for studying the fundamental mechanisms by which amino acid sidechains interact with one another in folded proteins.  相似文献   

16.
Here we describe the NMR conformational study of a 20-residue linear peptide designed to fold into a monomeric three-stranded antiparallel beta-sheet in aqueous solution. Experimental and statistical data on amino acid beta-turn and beta-sheet propensities, cross-strand side-chain interactions, solubility criteria, and our previous experience with beta-hairpins were considered for a rational selection of the peptide sequence. Sedimentation equilibrium measurements and NMR dilution experiments provide evidence that the peptide is monomeric. Analysis of 1H and 13C-NMR parameters of the peptide, in particular NOEs and chemical shifts, and comparison with data obtained for two 12-residue peptides encompassing the N- and C-segments of the designed sequence indicates that the 20-residue peptide folds into the expected conformation. Assuming a two-state model, the exchange kinetics between the beta-sheet and the unfolded peptide molecules is in a suitable range to estimate the folding rate on the basis of the NMR linewidths of several resonances. The time constant for the coil-beta-sheet transition is of the order of several microseconds in the designed peptide. Future designs based on this peptide system are expected to contribute greatly to our knowledge of the many factors involved in beta-sheet formation and stability.  相似文献   

17.
Truhlar SM  Agard DA 《Proteins》2005,61(1):105-114
Most secreted bacterial proteases, including alpha-lytic protease (alphaLP), are synthesized with covalently attached pro regions necessary for their folding. The alphaLP folding landscape revealed that its pro region, a potent folding catalyst, is required to circumvent an extremely large folding free energy of activation that appears to be a consequence of its unique unfolding transition. Remarkably, the alphaLP native state is thermodynamically unstable; a large unfolding free energy barrier is solely responsible for the persistence of its native state. Although alphaLP folding is well characterized, the structural origins of its remarkable folding mechanism remain unclear. A conserved beta-hairpin in the C-terminal domain was identified as a structural element whose formation and positioning may contribute to the large folding free energy barrier. In this article, we characterize the folding of an alphaLP variant with a more favorable beta-hairpin turn conformation (alphaLP(beta-turn)). Indeed, alphaLP(beta-turn) pro region-catalyzed folding is faster than that for alphaLP. However, instead of accelerating spontaneous folding, alphaLP(beta-turn) actually unfolds more slowly than alphaLP. Our data support a model where the beta-hairpin is formed early, but its packing with a loop in the N-terminal domain happens late in the folding reaction. This tight packing at the domain interface enhances the kinetic stability of alphaLP(beta-turn), to nearly the same degree as the change between alphaLP and a faster folding homolog. However, alphaLP(beta-turn) has impaired proteolytic activity that negates the beneficial folding properties of this variant. This study demonstrates the evolutionary limitations imposed by the simultaneous optimization of folding and functional properties.  相似文献   

18.
Riemen AJ  Waters ML 《Biopolymers》2008,90(3):394-398
Study of model beta-hairpin peptides allows for better understanding of the factors involved in the formation of beta-sheet secondary structure in proteins. It is known that turn sequence, sidechain-sidechain interactions, interstrand hydrogen bonding, and beta-sheet propensity of residues are all important for beta-hairpin stability in aqueous solution. However, interactions of the sidechains of the terminal residues of hairpins are thought to contribute little to overall hairpin stability since these residues are typically frayed. Here, the authors report a stabilizing hydrophobic cluster of residues at the termini of the naturally occurring excised N-terminal beta-hairpin of Ubiquitin that folds autonomously in aqueous solution. Our data show that deletion of Met1 and Val17 from this hairpin destabilized the folded state in both aqueous solution and in aqueous-methanol solutions. These results suggest that interactions of terminal residues which are usually frayed can nonetheless contribute significantly to overall stability of beta-hairpin.  相似文献   

19.
Previous conformational analysis of 10-residue linear peptides enabled us to identify some cross-strand side-chain interactions that stabilize beta-hairpin conformations. The stabilizing influence of these interactions appeared to be greatly reduced when the interaction was located at the N- and C-termini of these 10-residue peptides. To investigate the effect of the position relative to the turn of favorable interactions on beta-hairpin formation, we have designed two 15-residue beta-hairpin forming peptides with the same residue composition and differing only in the location of two residues within the strand region. The conformational properties of these two peptides in aqueous solution were studied by 1H and 13C NMR. Differences in the conformational behavior of the two designed 15-residue peptides suggest that the influence of stabilizing factors for beta-hairpin formation, in particular, cross-strand side-chain interactions, depends on their proximity to the turn. Residues adjacent to the turn are most efficient in that concern. This result agrees with the proposal that the turn region acts as the driving force in beta-hairpin folding.  相似文献   

20.
Fifteen years ago it was shown that an alpha-aminoisobutyric acid (Aib) residue is significantly more effective than an L-Pro or a D-amino acid residue in inducing beta-sheet disruption in short model peptides. As this secondary structure element is known to play a crucial role in the neuropathology of Alzheimer's disease, it was decided to check the effect of Aib (and other selected, helix inducer, C(alpha)-tetrasubstituted alpha-amino acids) on the beta-sheet conformation adopted by a protected pentapeptide related to the sequence 17-21 of the beta-amyloid peptide. By use of FT-IR absorption and 1H NMR techniques it was found that the strong self-association characterizing the pentapeptide molecules in weakly polar organic solvents is completely abolished by replacing a single residue with Aib or one of its congeners.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号