首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The steroid hormone progesterone is an essential regulator of the cellular processes that are required for the development and maintenance of reproductive function. The diverse effects of progesterone are mediated by the progesterone receptor (PR). The functions of the PR are regulated not only by ligands but also by modulators of various cell signaling pathways. However, it is not clear which energy state regulates PR activity. AMP-activated protein kinase (AMPK), a serine/threonine protein kinase, is a key modulator of energy homeostasis. Once activated by an increasing cellular AMP:ATP ratio, AMPK switches off ATP-consuming processes and switches on ATP-producing processes. We found that both 5-aminoimidazole-4-carboxamide 1-β-d-ribofuranoside (AICAR) and metformin, traditional pharmacological activators of AMPK, inhibited the PR pathway, as evidenced by progesterone response element (PRE)-driven luciferase activity and PR target gene expression. Compound C, an inhibitor of AMPK, partly but significantly reversed the anti-PR effects of AICAR and metformin. The downregulation of endogenous AMPK by small interfering RNAs (siRNAs) stimulated PR activity. AMPK activation by AICAR decreased the progesterone-induced phosphorylation of PR at serine 294 and inhibited the recruitment of PR to an endogenous PRE. Taken together, our data suggest that AMPK, an energy sensor, is involved in the regulation of PR signaling.  相似文献   

2.
Several forms of protein kinase C with molecular masses of 74-, 77-, and 80-kDa were detected in subcellular fractions of human breast cancer MDA-MB-231 cells which express the alpha-type protein kinase C. Several lines of evidence indicated that the 74-kDa is the precursor of the 77- and 80-kDa protein kinase C forms. (i) Pulse-labeling experiments revealed that protein kinase C is synthesized on membranes as a 74-kDa protein that can be chased into the 77- and the 80-kDa protein kinase C forms. (ii) The primary translation product of protein kinase C displayed an apparent molecular size of 74-kDa as determined by in vitro translation of poly(A)+ RNA from MDA-MB-231 cells. (iii) Incubation with serine/threonine-specific protein phosphatases (potato acid phosphatase and phosphatase 1 or 2A) resulted in the complete dephosphorylation of the 77-kDa to the 74-kDa protein kinase C form. Protein kinase C appears to be synthesized in membranes as an unphosphorylated and presumably inactive 74-kDa form that is converted into the active 77- and 80-kDa protein kinase C by post-translational modification involving at least two phosphorylation steps. The first phosphorylation is probably achieved by a specific, yet unidentified, "protein kinase C kinase" since the 74-kDa protein kinase C species did not undergo autophosphorylation and was neither a substrate for the purified protein kinase C, S6 kinase, phosphorylase kinase, casein kinase II, nor for the catalytic subunit of cAMP-dependent protein kinase. Except for phosphorylase kinase and the catalytic subunit of the cAMP-dependent protein kinase, phosphorylation of the 77-kDa protein kinase C form with purified protein kinase C (autophosphorylation), S6 kinase or casein kinase II shifted the molecular mass of the 77-kDa protein kinase C to 80-kDa. Prolonged exposure of MDA-MB-231 cells to phorbol 12-myristate 13-acetate not only leads to a complete down-regulation of protein kinase C activity but also to an accumulation of 74-kDa protein kinase C due to a retarded conversion of the 74-kDa into the 77- and 80-kDa protein kinase C forms in these cells. Our data indicate that tumor promoters additionally interfere with the posttranslational processing that converts the 74-kDa protein kinase C precursor into the 77- and 80-kDa forms of the enzyme.  相似文献   

3.
4.
Caldesmon is a calmodulin- and actin-binding protein present in both smooth and non-muscle tissue. The present study demonstrates that platelet caldesmon is a substrate for cAMP-dependent protein kinase (protein kinase A). Purified platelet caldesmon has an apparent molecular mass of 82 kDa on sodium dodecyl sulfate-polyacrylamide gels and can be phosphorylated in vitro by the catalytic subunit of protein kinase A to a level of 2 mol of phosphate/mol of caldesmon. Phosphorylation of caldesmon by protein kinase A results in a shift in the apparent molecular mass of the protein to 86 kDa. When caldesmon was immunoprecipitated from intact platelets treated with prostacyclin (PGI2) the same shift in apparent molecular mass of caldesmon was observed. Comparison of two-dimensional tryptic phosphopeptide maps of caldesmon phosphorylated in vitro by protein kinase A with caldesmon immunoprecipitated from intact platelets verified that protein kinase A was responsible for the observed increase in caldesmon phosphorylation in PGI2-treated platelets. The present study demonstrates that although caldesmon is basally phosphorylated in the intact platelet, activation of protein kinase A by PGI2 results in the significant incorporation of phosphate into two new sites. In addition, the effects of phorbol ester, collagen, and thrombin on caldesmon phosphorylation were also examined. Although phorbol ester treatment results in a significant increase in caldesmon phosphorylation apparently by protein kinase C, treatment of intact platelets with thrombin or collagen does not result in an increase in caldesmon phosphorylation.  相似文献   

5.
Human DNA methyltransferase, the enzyme thought to be responsible for the somatic inheritance of patterns of DNA methylation, is an effective substrate for phosphorylation by protein kinase C. This provides a plausible mechanistic link between the action of tumor promoting phorbol esters, which stimulate protein kinase C, and abnormal patterns of DNA methylation often observed in transformed cells.  相似文献   

6.
7.
Human organic anion transporter 4 (hOAT4) belongs to a family of organic anion transporters that play critical roles in the body disposition of clinically important drugs, including anti-human immunodeficiency virus therapeutics, anti-tumor drugs, antibiotics, antihypertensives, and anti-inflammatories. hOAT4 is abundantly expressed in the placenta. In the current study, we examined the regulation of hOAT4 by pregnancy-specific hormones progesterone (P(4)) and 17beta-estradiol (E(2)) and by protein kinase C (PKC) in human placental BeWo cells. P(4) induced a time- and concentration-dependent downregulation of hOAT4 transport activity, whereas E(2) had no effect on hOAT4 function. The downregulation of hOAT4 activity by P(4) mainly resulted from a decreased cell surface expression without a change in total cell expression of the transporter, kinetically revealed as a decreased V(max) without significant change in K(m). Activation of PKC by phorbol 12,13-dibutyrate also resulted in an inhibition of hOAT4 activity through a decreased cell surface expression of the transporter. However, P(4)-induced downregulation of hOAT4 activity could not be prevented by treating hOAT4-expressing cells with the PKC inhibitor staurosporine. We concluded that both P(4) and activation of PKC inhibited hOAT4 activity through redistribution of the transporter from cell surface to the intracellular compartments. However, P(4) regulates hOAT4 activity by mechanisms independent of PKC pathway.  相似文献   

8.
The D(1) dopamine receptor (D(1) DAR) is robustly phosphorylated by multiple protein kinases, yet the phosphorylation sites and functional consequences of these modifications are not fully understood. Here, we report that the D(1) DAR is phosphorylated by protein kinase C (PKC) in the absence of agonist stimulation. Phosphorylation of the D(1) DAR by PKC is constitutive in nature, can be induced by phorbol ester treatment or through activation of Gq-mediated signal transduction pathways, and is abolished by PKC inhibitors. We demonstrate that most, but not all, isoforms of PKC are capable of phosphorylating the receptor. To directly assess the functional role of PKC phosphorylation of the D(1) DAR, a site-directed mutagenesis approach was used to identify the PKC sites within the receptor. Five serine residues were found to mediate the PKC phosphorylation. Replacement of these residues had no effect on D(1) DAR expression or agonist-induced desensitization; however, G protein coupling and cAMP accumulation were significantly enhanced in PKC-null D(1) DAR. Thus, constitutive or heterologous PKC phosphorylation of the D(1) DAR dampens dopamine activation of the receptor, most likely occurring in a context-specific manner, mediated by the repertoire of PKC isozymes within the cell.  相似文献   

9.
R E Lewis  L Cao  D Perregaux  M P Czech 《Biochemistry》1990,29(7):1807-1813
The ability of tumor-promoting phorbol diesters to inhibit both insulin receptor tyrosine kinase activity and its intracellular signaling correlates with the phosphorylation of the insulin receptor beta subunit on serine and threonine residues. In the present studies, mouse 3T3 fibroblasts transfected with a human insulin receptor cDNA and expressing greater than one million of these receptors per cell were labeled with [32P]phosphate and treated with or without 100 nM 4 beta-phorbol 12 beta-myristate 13 alpha-acetate (PMA). Phosphorylated insulin receptors were immunoprecipitated and digested with trypsin. Alternatively, insulin receptors affinity purified from human term placenta were phosphorylated by protein kinase C prior to trypsin digestion of the 32P-labeled beta subunit. Analysis of the tryptic phosphopeptides from both the in vivo and in vitro labeled receptors by reversed-phase HPLC and two-dimensional thin-layer separation revealed that PMA and protein kinase C enhanced the phosphorylation of a peptide with identical chromatographic properties. Partial hydrolysis and radiosequence analysis of the phosphopeptide derived from insulin receptor phosphorylated by protein kinase C indicated that the phosphorylation of this tryptic peptide occurred specifically on a threonine, three amino acids from the amino terminus of the tryptic fragment. Comparison of these data with the known, deduced receptor sequence suggested that the receptor-derived tryptic phosphopeptide might be Ile-Leu-Thr(P)-Leu-Pro-Arg. Comigration of a phosphorylated synthetic peptide containing this sequence with the receptor-derived phosphopeptide confirmed the identity of the tryptic fragment. The phosphorylation site corresponds to threonine 1336 in the human insulin receptor beta subunit.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The various inositol 1,4,5-trisphosphate receptor (IP(3)R) isoforms are potential substrates for several protein kinases. We compared the in vitro phosphorylation of purified IP(3)R1 and IP(3)R3 by the catalytic subunit of protein kinase C (PKC). Phosphorylation of IP(3)R1 by PKC was about eight times stronger than that of IP(3)R3 under identical conditions. Protein kinase A strongly stimulated the PKC-induced phosphorylation of IP(3)R1. In contrast, Ca(2+) inhibited its phosphorylation (IC(50)相似文献   

11.
The present study addresses the capacity of heregulin (HRG), a ligand of type I receptor tyrosine kinases, to transactivate the progesterone receptor (PR). For this purpose, we studied, on the one hand, an experimental model of hormonal carcinogenesis in which the synthetic progestin medroxyprogesterone acetate (MPA) induced mammary adenocarcinomas in female BALB/c mice and, on the other hand, the human breast cancer cell line T47D. HRG was able to exquisitely regulate biochemical attributes of PR in a way that mimicked PR activation by progestins. Thus, HRG treatment of primary cultures of epithelial cells of the progestin-dependent C4HD murine mammary tumor line and of T47D cells induced a decrease of protein levels of PRA and -B isoforms and the downregulation of progesterone-binding sites. HRG also promoted a significant increase in the percentage of PR localized in the nucleus in both cell types. DNA mobility shift assay revealed that HRG was able to induce PR binding to a progesterone response element (PRE) in C4HD and T47D cells. Transient transfections of C4HD and T47D cells with a plasmid containing a PRE upstream of a chloramphenicol acetyltransferase (CAT) gene demonstrated that HRG promoted a significant increase in CAT activity. In order to assess the molecular mechanisms underlying PR transactivation by HRG, we blocked ErbB-2 expression in C4HD and T47D cells by using antisense oligodeoxynucleotides to ErbB-2 mRNA, which resulted in the abolishment of HRG's capacity to induce PR binding to a PRE, as well as CAT activity in the transient-transfection assays. Although the inhibition of HRG binding to ErbB-3 by an anti-ErbB-3 monoclonal antibody suppressed HRG-induced PR activation, the abolishment of HRG binding to ErbB-4 had no effect on HRG activation of PR. To investigate the role of mitogen-activated protein kinases (MAPKs), we used the selective MEK1/MAPK inhibitor PD98059. Blockage of MAPK activation resulted in complete abrogation of HRG's capacity to induce PR binding to a PRE, as well as CAT activity. Finally, we demonstrate here for the first time that HRG-activated MAPK can phosphorylate both human and mouse PR in vitro.  相似文献   

12.
Protein phosphorylation in response to toxic doses of glutamate has been investigated in cerebellar granule cells.32P-labelled cells have been stimulated with 100 M glutamate for up to 20 min and analysed by one and two dimensional gel electrophoresis. A progressive incorporation of label is observed in two molecular species of about 80 and 43 kDa (PP80 and PP43) and acidic isoelectric point. Glutamate-stimulated phosphorylation is greatly reduced by antagonists of NMDA and non-NMDA glutamate receptors. The effect of glutamate is mimicked by phorbol esters and is markedly reduced by inhibitors of protein kinase C (PKC) such as staurosporine and calphostin C. PP80 has been identified by Western blot analysis as the PKC substrate MARCKS (myristoylated alanine-rich C kinase substrate), while antibody to GAP-43 (growth associated protein-43), the nervous tissue-specific substrate of PKC, failed to recognize PP43. Our results suggest that PKC is responsible for the early phosphorylative events induced by toxic doses of glutamate in cerebellar granule cells.Abbreviations (NMDA) N-methyl-D-aspartate - (PKC) protein kinase C - (EAA) excitatory aminoacids - (GAMSA) -D-glutamylaminomethylsulfonate - (MK801) (+)-10,11-dihydro-5-methyl-5-H-dibenzo-(a,d)-cyclohepten-5,10imine - (TPA) phorbol 12-myristate 13-acetate - (MARCKS) myristoylated alanine-rich C kinase substrate - (GAP-43) growth-associated protein-43 - (SDS) sodium dodecyl sulfate - (PAGE) polyacrylamide gel electrophoresis - (H7) 1-(5-isoquinolinesulfonyl)-2-methylpiperazine - (DIV) days in vitro  相似文献   

13.
Progesterone receptor A and B subunits from laying hen oviducts were highly purified and their phosphorylation by cAMP-dependent protein kinase from bovine heart was studied. Both proteins are phosphorylated by the kinase using physiological or subphysiological concentrations of the enzyme. This result indicates that the receptors are good substrates. The reaction is dependent upon exogenous enzyme; no phosphorylation is seen in the absence of protein kinase.  相似文献   

14.
15.
16.
17.
Hepp R  Cabaniols JP  Roche PA 《FEBS letters》2002,532(1-2):52-56
SNAP-25 is a key protein required for the fusion of synaptic vesicles with the plasma membrane during exocytosis. This study establishes that SNAP-25 is differentially phosphorylated by protein kinase C and protein kinase A in neuroendocrine PC12 cells. Using phosphopeptide mapping and site-directed mutagenesis we identified both Thr138 and Ser187 as the targets of SNAP-25 phosphorylation by protein kinase C and Thr138 as the exclusive site of SNAP-25 phosphorylation by protein kinase A in vivo. Finally, despite published data to the contrary, we demonstrate that stimulation of regulated exocytosis under physiological conditions is independent of a measurable increase in SNAP-25 phosphorylation in PC12 cells.  相似文献   

18.
We have investigated the influence of three structurally different but functionally related compounds [1, 10 ortho-phenanthroline (phenanthroline), Rifampicin and aurin tricarboxylic acid (ATA)] on the rate and the extent of proliferation of progesterone-responsive T47D human breast cancer cells. These compounds have previously been used in this laboratory and have been shown to modulate properties of nucleic acid binding proteins. Because p53 and the progesterone receptor (PR) are both DNA binding proteins that appear to regulate proliferation of breast cells, alterations in T47D cell p53 and PR levels were examined to determine their relevance in cell proliferation. T47D cells were grown in the absence of phenol red and in the presence of 5% fetal calf serum with or without charcoal stripping in the presence of the inhibitors. The rate of proliferation of cells grown in Rifampicin containing medium exhibited nearly 70% inhibition. Phenanthroline, a known metal chelator, was an effect ive inhibitor of proliferation at 3 mM reducing the cell number by more than 75%. ATA (0.24–2.4 µg/ml) inhibited the growth of the cells by nearly 50%. Analysis of the mechanism of action of these compounds revealed that treatment with these compounds caused specific changes in the molecular composition of T47D cell PR. Whereas ATA caused increased stability of PR isoforms, Rifampicin induced a upshift in the mobility of PR in SDS gels – a phenomenon associated with hyperphosphorylation of steroid receptors (SRs). Phenanthroline treatment (> 2 mM) caused a complete down-regulation of PR and the tumor suppressor protein, p53. The downregulation of p53 paralleled the changes in the molecular composition of PR. We propose that the inhibition of T47D cell proliferation by phenanthroline, Rifampicin and ATA results from a number of cellular changes that include regulation of p53 and PR. (Mol Cell Biochem 175: 81–89, 1997)  相似文献   

19.
Mitogen-activated protein kinase (MAPK) and protein phosphatase 2A (PP2A) regulate oocyte meiosis, yet little is known regarding their mechanisms of action. This study addressed the functional importance of active MAPK and PP2A in regulating oocyte meiosis. Experiments were conducted to identify MAPK activation, PP2A activity, intracellular enzyme trafficking, and ultrastructural associations during meiosis. Questions of requisite kinase and/or phosphatase activity and chromatin condensation, microtubule polymerization, and spindle formation were addressed. At the protein level, MAPK and PP2A were present in constant amounts throughout the first meiotic division. Both MAPK and PP2A were activated following germinal vesicle breakdown (GVBD) in conjunction with metaphase I development. Immunocytochemical studies confirmed the absence of active MAPK in germinal vesicle-intact (GVI) and GVBD oocytes. At metaphase I and during the metaphase I/metaphase II transition, activated MAPK colocalized with microtubules, poles, and plates of meiotic spindles. Protein phosphatase 2A was dispersed evenly throughout the GVI oocyte cytoplasm. Throughout the metaphase I/metaphase II transition, PP2A colocalized with microtubules of meiotic spindles. Both active MAPK and PP2A associated with in vitro-polymerized microtubules, suggesting that active MAPK and PP2A locally regulate spindle formation. Inhibition of MAPK activation resulted in compromised microtubule polymerization, no spindle formation, and loosely condensed chromosomes. Treatment with okadaic acid (OA) or calyculin-A (CL-A), which inhibits oocyte cytoplasmic PP2A, caused an absence of microtubule polymerization and spindles, even though MAPK activity was increased under these treatment conditions. Thus, active MAPK is required, but is not sufficient, for normal meiotic spindle formation and chromosome condensation. In addition, the oocyte OA/CL-A-sensitive PP, presumably PP2A, is essential for microtubule polymerization and meiotic spindle formation.  相似文献   

20.
We have investigated glycogen synthase (GS) activation in L6hIR cells expressing a peptide corresponding to the kinase regulatory loop binding domain of insulin receptor substrate-2 (IRS-2) (KRLB). In several clones of these cells (B2, F4), insulin-dependent binding of the KRLB to insulin receptors was accompanied by a block of IRS-2, but not IRS-1, phosphorylation, and insulin receptor binding. GS activation by insulin was also inhibited by >70% in these cells (p < 0.001). The impairment of GS activation was paralleled by a similarly sized inhibition of glycogen synthase kinase 3 alpha (GSK3 alpha) and GSK3 beta inactivation by insulin with no change in protein phosphatase 1 activity. PDK1 (a phosphatidylinositol trisphosphate-dependent kinase) and Akt/protein kinase B (PKB) activation by insulin showed no difference in B2, F4, and in control L6hIR cells. At variance, insulin did not activate PKC zeta in B2 and F4 cells. In L6hIR, inhibition of PKC zeta activity by either a PKC zeta antisense or a dominant negative mutant also reduced by 75% insulin inactivation of GSK3 alpha and -beta (p < 0.001) and insulin stimulation of GS (p < 0.002), similar to Akt/PKB inhibition. In L6hIR, insulin induced protein kinase C zeta (PKC zeta) co-precipitation with GSK3 alpha and beta. PKC zeta also phosphorylated GSK3 alpha and -beta. Alone, these events did not significantly affect GSK3 alpha and -beta activities. Inhibition of PKC zeta activity, however, reduced Akt/PKB phosphorylation of the key serine sites on GSK3 alpha and -beta by >80% (p < 0.001) and prevented full GSK3 inactivation by insulin. Thus, IRS-2, not IRS-1, signals insulin activation of GS in the L6hIR skeletal muscle cells. In these cells, insulin inhibition of GSK3 alpha and -beta requires dual phosphorylation by both Akt/PKB and PKC zeta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号