首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cyclin-dependent kinase 5 (CDK5) is a serine/threonine kinase homologue attributed to the mitotic cyclin-dependent kinase family. Both the kinase activity and the biological effects of CDK5 in central nervous system are mainly dependent on association with its regulatory subunit 1 known as CDK5R1 (p35). In the present study, the full-length coding regions of CDK5 and CDK5R1 were cloned from pigs. Radiation hybrid mapping localized porcine CDK5 to chromosome 18q12-13, whereas CDK5R1 was electro-localized to chromosome 12q12. Real-time quantitative RT-PCR (qRT-PCR) showed that CDK5 mRNA is ubiquitously present in all porcine tissues examined, with relatively high levels in cerebral cortex, cerebellum, testicle and lung. We also examined the expression profile of porcine CDK5/CDK5R1 in various tissues at different developmental stages. The results indicated that CDK5 mRNA reaches the highest level in cerebral cortex at two months of age and in cerebellum and liver at 4 months of age, respectively, whereas the peak level of CDK5R1 was observed in both cerebral cortex and cerebellum at two months of age, indicating the pivotal role of CDK5/CDK5R1 during the development of porcine brain.  相似文献   

2.
3.
4.
One hallmark of Alzheimer's disease (AD) is the formation of neurofibrillary tangles, aggregated paired helical filaments composed of hyperphosphorylated tau. Amyloid-beta (Abeta) induces tau hyperphosphorylation, decreases microtubule (MT) stability and induces neuronal death. MT stabilizing agents have been proposed as potential therapeutics that may minimize Abeta toxicity and here we report that paclitaxel (taxol) prevents cell death induced by Abeta peptides, inhibits Abeta-induced activation of cyclin-dependent kinase 5 (cdk5) and decreases tau hyperphosphorylation. Taxol did not inhibit cdk5 directly but significantly blocked Abeta-induced calpain activation and decreased formation of the cdk5 activator, p25, from p35. Taxol specifically inhibited the Abeta-induced activation of the cytosolic cdk5-p25 complex, but not the membrane-associated cdk5-p35 complex. MT-stabilization was necessary for neuroprotection and inhibition of cdk5 but was not sufficient to prevent cell death induced by overexpression of p25. As taxol is not permeable to the blood-brain barrier, we assessed the potential of taxanes to attenuate Abeta toxicity in adult animals using a succinylated taxol analog (TX67) permeable to the blood-brain barrier. TX67, but not taxol, attenuated the magnitude of both basal and Abeta-induced cdk5 activation in acutely dissociated cortical cultures prepared from drug treated adult mice. These results suggest that MT-stabilizing agents may provide a therapeutic approach to decrease Abeta toxicity and neurofibrillary pathology in AD and other tauopathies.  相似文献   

5.
CDK5 plays an important role in neurotransmission and synaptic plasticity in the normal function of the adult brain, and dysregulation can lead to Tau hyperphosphorylation and cognitive impairment. In a previous study, we demonstrated that RNAi knock down of CDK5 reduced the formation of neurofibrillary tangles (NFT) and prevented neuronal loss in triple transgenic Alzheimer's mice. Here, we report that CDK5 RNAi protected against glutamate‐mediated excitotoxicity using primary hippocampal neurons transduced with adeno‐associated virus 2.5 viral vector eGFP‐tagged scrambled or CDK5 shRNA‐miR during 12 days. Protection was dependent on a concomitant increase in p35 and was reversed using p35 RNAi, which affected the down‐stream Rho GTPase activity. Furthermore, p35 over‐expression and constitutively active Rac1 mimicked CDK5 silencing‐induced neuroprotection. In addition, 3xTg‐Alzheimer's disease mice (24 months old) were injected in the hippocampus with scrambled or CDK5 shRNA‐miR, and spatial learning and memory were performed 3 weeks post‐injection using ‘Morris’ water maze test. Our data showed that CDK5 knock down induced an increase in p35 protein levels and Rac activity in triple transgenic Alzheimer's mice, which correlated with the recovery of cognitive function; these findings confirm that increased p35 and active Rac are involved in neuroprotection. In summary, our data suggest that p35 acts as a mediator of Rho GTPase activity and contributes to the neuroprotection induced by CDK5 RNAi.

  相似文献   


6.
Although the roles of cyclin-dependent kinase 5 (Cdk5) in neurodevelopment and neurodegeneration have been studied extensively, regulation of Cdk5 activity has remained largely unexplored. We report here that glutamate, acting via NMDA or kainate receptors, can induce a transient Ca(2+)/calmodulin-dependent activation of Cdk5 that results in enhanced autophosphorylation and proteasome-dependent degradation of a Cdk5 activator p35, and thus ultimately down-regulation of Cdk5 activity. The relevance of this regulation to synaptic plasticity was examined in hippocampal slices using theta burst stimulation. p35(-/-) mice exhibited a lower threshold for induction of long-term potentiation. Thus excitatory glutamatergic neurotransmission regulates Cdk5 activity through p35 degradation, and this pathway may contribute to plasticity.  相似文献   

7.
Background information. Mitosis during the dinoflagellate cell cycle is unusual in that the nuclear envelope remains intact and segregation of the permanently condensed chromosomes uses a cytoplasmic mitotic spindle. To examine regulation of the dinoflagellate cell cycle in the context of these unusual nuclear features, it is necessary to isolate and characterize cell cycle regulators such as CDK (cyclin‐dependent kinase). Results. We report the characterization of a CDK from the dinoflagellate Lingulodinium polyedrum. This CDK reacts with an anti‐PSTAIRE antibody and was identified by protein microsequencing after partial purification. The protein microsequence shows homology toward the Pho85/CDK5 clade of CDKs. Neither the amount nor the phosphorylation state changed over the course of the cell cycle, in agreement with results reported for CDK5 family members in other systems. Conclusions. We conclude we have probably isolated a dinoflagellate CDK5‐like protein. The data reported here support the identification of this protein as a CDK5 homologue, and suggest that dinoflagellates may contain several CDK families.  相似文献   

8.
Alzheimer’s disease (AD) is a progressive neurodegenerative disease resulting in cognitive and behavioral impairment. The two classic pathological hallmarks of AD include extraneuronal deposition of amyloid ?? (A??) and intraneuronal formation of neurofibrillary tangles (NFTs). NFTs contain hyperphosphorylated tau. Tau is the major microtubule-associated protein in neurons and stabilizes microtubules (MTs). Cyclin dependent kinase 5 (CDK5), when activated by the regulatory binding protein p25, phosphorylates tau at a number of proline-directed serine/threonine residues, resulting in formation of phosphorylated tau as paired helical filaments (PHFs) then in subsequent deposition of PHFs as NFTs. Beginning with the structure of Roscovitine, a moderately selective CDK5 inhibitor, we sought to conduct structural modifications to increase inhibitory potency of CDK5 and increase selectivity over a similar enzyme, cyclin dependent kinase 2 (CDK2). The design, synthesis, and testing of a series of 1-isopropyl-4-aminobenzyl-6-ether-linked benzimidazoles is presented.  相似文献   

9.
Many researchers are currently using PCR technology to amplify individual members of multigene families, including 5S rDNA, for sequencing and related purposes. When members of the family differ in length, analyses would be facilitated if different units could be simultaneously and efficiently amplified. In the present paper we describe conditions that can be used to amplify simultaneously both the “long” and “short” 5S rDNA repeats found in barley (Hordeum vulgare L.).  相似文献   

10.
Nucleoside diphosphate (NDP) kinases are involved in numerous regulatory processes associated with proliferation, development, and differentiation. Previously, we cloned a new member of the NDPK family from mouse, Nm23-M5, which encodes a 211-amino acid protein and has 86% identity to the human Nm23-H5 [Hwang, K.C., Ok, D.W., Hong, J.C., Kim, M.O. and Kim, J.H. (2003) Cloning, sequencing, and characterization of the murine Nm23-M5 gene during mouse spermatogenesis and spermiogenesis. Biochem. Biophys. Res. Commun. 306, 198-207]. To better understand Nm23-M5 function, we generated transgenic mice with reduced Nm23-M5 levels in vivo using a short hairpin RNA (shRNA) knock-down system. Nm23-M5 expression was markedly reduced, as indicated by Northern and Western blot analysis. Nm23-M5 shRNA transgenic mice exhibited reduced numbers of haploid cells. Furthermore, the antioxidant enzyme glutathione peroxidase 5 (GPX-5) is regulated by Nm23-M5 at the level of both expression and activity. These results reveal that expression of Nm23-M5 plays a critical role in spermiogenesis by increasing the cellular levels of GPX-5 to eliminate reactive oxygen species.  相似文献   

11.
Mammalian cardiomyocytes actively proliferate during embryonic stages, following which cardiomyocytes exit their cell cycle after birth. The irreversible cell cycle exit inhibits cardiac regeneration by the proliferation of pre-existing cardiomyocytes. Exactly how the cell cycle exit occurs remains largely unknown. Previously, we showed that cyclin E- and cyclin A-CDK activities are inhibited before the CDKs levels decrease in postnatal stages. This result suggests that factors such as CDK inhibitors (CKIs) inhibit CDK activities, and contribute to the cell cycle exit. In the present study, we focused on a Cip/Kip family, which can inhibit cyclin E- and cyclin A-CDK activities. Expression of p21Cip1 and p27Kip1 but not p57Kip2 showed a peak around postnatal day 5, when cyclin E- and cyclin A-CDK activities start to decrease. p21Cip1 and p27Kip1 bound to cyclin E, cyclin A and CDK2 at postnatal stages. Cell cycle distribution patterns of postnatal cardiomyocytes in p21Cip1 and p27Kip1 knockout mice showed failure in the cell cycle exit at G1-phase, and endoreplication. These results indicate that p21Cip1 and p27Kip play important roles in the cell cycle exit of postnatal cardiomyocytes.  相似文献   

12.
13.
14.
A 3(')-terminal fragment of a splice variant of KIAA0641, a human homologue of apoptosis-associated tyrosine kinase (AATYK), was screened from human brain cDNA libraries by a yeast two-hybrid system using a Cdk5 activator p35 as a bait. The cloned cDNA encoded 477 amino acids, composed of internal 458 amino acids of KIAA0641 and 19 amino acids unique to this variant after splicing, then referred to this clone as hAATYKs-p35BP (human AATYK short isoform-p35 binding polypeptide). Using GST-fusion protein, hAATYKs-p35BP was shown to bind to Cdk5/p35 in a rat brain extract. hAATYKs made by fusing the kinase domain of KIAA0641 to the N-terminus of hAATYKs-p35BP was used for binding to Cdk5/p35 in HEK293 cells. Both hAATYKs and KIAA0641 bound to and were phosphorylated by Cdk5/p35. These results suggest that both isoforms of hAATYK are novel Cdk5/p35-binding and substrate proteins.  相似文献   

15.
16.
The cyclin-dependent kinase (CDK) inhibitor p27(Kip1) (p27) is an important regulator of cell cycle progression controlling the transition from G to S-phase. Low p27 levels or accelerated p27 degradation correlate with excessive cell proliferation and poor prognosis in several forms of cancer. Phosphorylation of p27 at Thr187 by cyclin E-CDK2 is required to initiate the ubiquitination-proteasomal degradation of p27. Protecting p27 from ubiquitin-mediated proteasomal degradation may increase its potential in cancer gene therapy. Here we constructed a non-phosphorylatable, proteolysis-resistant p27 mutant containing a Thr187-to-Ala substitution (T187A) which is not degraded by ubiquitin-mediated proteasome pathway, and compared its effects on cell growth, cell-cycle control, and apoptosis with those of wild-type p27. In muristerone A-inducible cell lines overexpressing wild-type or mutant p27, the p27 mutant was more resistant to proteolysis in vivo and more potent in inducing cell-cycle arrest and other growth-inhibitory effects such as apoptosis. Transduction of p27(T187A) in breast cancer cells with a doxycycline-regulated adenovirus led to greater inhibition of proliferation, more extensive apoptosis, with a markedly reduced protein levels of cyclin E and increased accumulation of cyclin D1, compared with wild-type p27. These findings support the potential effectiveness of a degradation-resistant form of p27 in breast cancer gene therapy.  相似文献   

17.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by selective loss of motor neurons in the brain and spinal cord. Neurotoxicity mediated by glutamate is thought to play a role in the neuronal death through intracellular calcium-dependent signaling cascades. Cyclin-dependent kinase 5 (Cdk5) has been proposed as one of the calcium-dependent mediators that may cause neuronal death observed in this disease. Cdk5 is activated in neurons by the association with its activators, p35 or p39. The calcium-activated protease calpain cleaves p35 to its truncated product, p25, which eventually causes the cellular mislocalization and prolonged activation of Cdk5. This deregulated Cdk5 induces cytoskeletal disruption and apoptosis. To examine whether inhibition of the calpain-mediated conversion of p35 to p25 can delay the disease progression of ALS, we generated double transgenic mice in which ALS-linked mutant copper/zinc superoxide dismutase 1 (SOD1G93A) was expressed in a p35-null background. The absence of p35 neither affected the onset and progression of motor neuron disease in the mutant SOD1 mice nor ameliorated the pathological lesions in these mice. Our results provide direct evidence that the pathogenesis of motor neuron disease in the mutant SOD1 mice is independent of the Cdk5 activation by p35 or p25.  相似文献   

18.
CDK5 plays a major role in neuronal functions, and is hyperactivated in neurodegenerative pathologies as well as in glioblastoma and neuroblastoma. Although this kinase constitutes an established biomarker and pharmacological target, there are few means of probing its activity in cell extracts or in living cells. To this aim a fluorescent peptide reporter of CDK5 kinase activity, derived from a library of CDK5‐specific substrates, is engineered and its ability to respond to recombinant CDK5/p25 is established and CDK5 activity in glioblastoma cell extracts is reported on through sensitive changes in fluorescence intensity. A cell‐penetrating variant of this biosensor which can be implemented to image CDK5 activation dynamics in space and in time is further implemented. This original biosensor constitutes a potent tool for quantifying differences in CDK5 activity following treatment with selective inhibitors and for monitoring CDK5 activation, following inhibition or stimulation, in a physiologically relevant environment. As such it offers attractive opportunities to develop a diagnostic assay for neuronal pathologies associated with hyperactivated CDK5, as well as a companion assay to evaluate response to new therapies targeting this kinase.  相似文献   

19.
Hyperthermia is a proteotoxic stress that is lethal when exposure is extreme but also cytoprotective in that sublethal exposure leads to the synthesis of heat shock proteins, including HSP70, which are able to inhibit stress-induced apoptosis. CDK5 is an atypical cyclin-dependent kinase family member that regulates many cellular functions including motility and survival. Here we show that exposure of a human lymphoid cell line to hyperthermia causes CDK5 insolubilization and loss of tyrosine-15 phosphorylation, both of which were prevented in cells overexpressing HSP70. Inhibition of CDK5 activity with roscovitine-sensitized cells to heat induced apoptosis indicating a protective role for CDK5 in inhibiting heat-induced apoptosis. Both roscovitine and heat shock treatment caused increased accumulation of NOXA a pro-apoptotic BH3-only member of the BCL2 family. The increased abundance of NOXA by CDK5 inhibition was not a result of changes in NOXA protein turnover. Instead, CDK5 inhibition increased NOXA mRNA and protein levels by decreasing the expression of miR-23a, whereas overexpressing the CDK5 activator p35 attenuated both of these effects on NOXA and miR-23a expression. Lastly, overexpression of miR-23a prevented apoptosis under conditions in which CDK5 activity was inhibited. These results demonstrate that CDK5 activity provides resistance to heat-induced apoptosis through the expression of miR-23a and subsequent suppression of NOXA synthesis. Additionally, they indicate that hyperthermia induces apoptosis through the insolubilization and inhibition of CDK5 activity.  相似文献   

20.
Bao GC  Wang JG  Jong A 《FEBS letters》2006,580(15):3687-3693
Cip/Kip family protein p21, a cyclin-dependent kinase (CDK) inhibitor, is directly transactivated by retinoic acid receptor alpha (RARalpha) upon retinoic acid (RA):RARalpha binding. Yet the role of p21 upregulation by RA in lymphoma cells remains unknown. Here, we show that, in human pre-B lymphoma Nalm6 cells, RA-induced proliferation inhibition results from massive cell death characterized by apoptosis. Upregulated p21 by RA accompanies caspase-3 activation and precedes the occurrence of apoptosis. p21 induction leads to increased p21 complex formation with cyclin E/CDK2, which occurs when cyclin E and CDK2 levels remain constant. CDK2 can alternatively promote apoptosis, but the mechanisms remain unknown. Data presented here suggest a novel RA-signaling, by which RA-induced p21 induction and complex formation with cyclin E/CDK2 diverts CDK2 function from normally driving proliferation to alternatively promoting apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号