首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The complete nucleotide sequence (1731 nucleotides) of the gene encoding colicin E7 (cea) of plasmid CoIE7-K317 was determined. This sequence encoded a deduced polypeptide of 576 amino acids of molecular weight 61349 Da. Comparison of the nucleotide and amino acid sequences ofcea E7 with those of other E-group colicins revealed that colicin E7 was closely related to colicin E2, both in gene sequence and in predicted secondary structure of the deduced protein. Judging from the results of cross-immunity tests, we postulated that CoIE7 is probably a proximate ancestor of Co1E2 and Co1E8. Based on results from colicin production tests on cells harboring a 5 end deleted form of thecea E7 gene, we propose, that a previously unknown, non-inducible promoter may be involved in regulation of the constitutive expression of thecea E7 gene.  相似文献   

2.
The specific binding of 125 Iodine labelled colicin Ia and Ib to Escherichia coli cell envelopes and partially purified cell walls is demonstrated. Neither partially purified cytoplasmic membranes isolated from a wild type sensitive strain nor envelopes or cell walls prepared from an E. coli mutant known to be defective in the colicin I receptor could bind the colicins. Competition studies suggest that colicins Ia and Ib have a common bacterial receptor which resides in the bacterial cell wall.  相似文献   

3.
Colicins are plasmid-encoded antibiotics that are produced by and kill Escherichia coli and other related species. The frequency of colicinogeny is high, on average 30% of E. coli isolates produce colicins. Initial observations from one collection of 72 strains of E. coli (the ECOR collection) suggest that resistance to colicin killing is also ubiquitous, with over 70% of strains resistant to one or more colicins. To determine whether resistance is a common trait in E. coli, three additional strain collections were surveyed. In each of these collections levels of colicin production were high (from 15 to 50% of the strains produce colicins). Levels of colicin resistance were even higher, with most strains resistant to over 10 colicins. A survey of 137 non-E. coli isolates revealed even higher levels of resistance. We discuss a mechanism (pleiotropy) that could result in the co-occurrence of such high levels of colicin production and colicin resistance.  相似文献   

4.
WhenEscherichia coli harbouring theppm (earlier calledadi) mutation and the F′lacZU118 episome is subjected to lactose selection in the presence of suboptimal concentrations of glycerol, Lac+ colonies emerge after 5–6 days. They are shown to harbour an ochre suppressor mutation at 15.15 min. Inactivation ofrecA results in approximately four-fold reduction in the response. In theppm — ochre suppressor double mutant background the leakiness of thelacZ allele carried by F′ CC105 is enhanced, suggesting misreading of a valine codon (GUG) as glutamic acid codon (GAG). This is accompanied by reversion of thelacZ mutation tolacZ + (GTG → GAG). In LB medium both the leakiness and reversion are inhibited by streptomycin. Inactivation ofrecA did not affect leakiness but abolished reversion. These data are discussed in relation to the importance of allele leakiness and restricted growth in stationary-phase (adaptive) mutagenesis.  相似文献   

5.
The transfer of theF episome fromEscherichia coli K 12 toE. coli B,Paracolobacter andKlebsiella was studied. The frequency of transfer of the episomal markers toE. coli B was very low. The large majority ofE. coli B cells which had received the episomal markerslac + orgal + were F, which indicates that the episomal markers were stably integrated on the chromosome. Recombinants from K 12 F+ × B F crosses were mostly F. These results suggest that the multiplication of theF-factor ofE. coli K 12 is restricted inE. coli B. The transfer of theF-lac + Ad + episome fromE. coli K 12 toParacolobacter andKlebsiella strains was in most cases only possible when donor and acceptor strain were plated together on selective media. Stable incorporation of episomal markers was also found withParacolobacter coliforme. Paracolobacter aerogenoides andKlebsiella aerogenes strains could be infected withF-lac + Ad +. The episomal markers were not incorporated and the episomes were easily lost, which indicates that these strains contained theF factor in the autonomous state.  相似文献   

6.
Studies with the induced lysogens of λS +R+, λS-R+, λS+R- and λS-R- phages have shown that while theS gene product is essential for the action of intracellularR gene product to release the periplasmic alkaline phosphatase in the presence of EDTA, the latter gene product can bring about this effect while acting onEscherichia coli cells from outside, in the absence of functionalS gene product; chloroform, could help the intracellularR gene product in effecting bacterial lysis in the absence ofS gene product. These result support the premise that theS gene product facilitates theR gene product in crossing the cytoplasmic membrane into the periplasmic space such that the latter can act on the peptidoglycan layer of the host cell thus causing both the release of alkaline phosphatase and cell lysis. An erratum to this article is available at .  相似文献   

7.
Eight reagents specifically modifying amino acids were applied to cells of a standardEscherichia coli colicin indicator strain to followin vivo changes of its binding capacity for colicins E1–E3 and hence the binding domains (epitopes) for them in the outer membrane receptor protein BtuB. The effect of these reagents was also investigated in a mutant strain carrying an extensive BtuB deletion. The following differences of the binding epitopes could be ascertained.Colicin E1: Blockage of OH-groups, just as N-substitution of His and modification of Arg and Trp enhance binding of colicin E1. In the deleted receptor, also abolition of carboxylic anion bonds enhances its affinity for colicin E1. It follows that colicin E1 is bound, most of all, to the hydrophobic domain A (loops 1+2) of BtuB.Colicins E2 and E3: both exert rather analogous binding parameters. In contrast to E1, O-substitution of Ser and Thr dramatically decreases the E2 and E3 binding, similarly to modification of Lys. There is also a clear difference in the binding affinity of the domain for E2 and/or E3 and for E1 following modifications of their Arg and His. Colicins E2 and E3 are rather bound to the hydrophilic domain B (loops 5–7) of the receptor. In this respect, interactions of colicins E2 and E3 with deeper parts of A and B domains (Trp, several Arg, Lys and His residues) exhibited subtle differences. Acidic pH (4.5–6.0) shows a positive, while pH 7.0–8.5 a rather negative impact on the receptor-binding function for the colicins. It was clearly demonstrated that there is just a partial difference between the binding behavior of colicins E1, E2 and/or E3.  相似文献   

8.
A new mutation inEscherichia coli K12,isfA, is described, which causes inhibition of SOS functions. The mutation, discovered in a ΔpolA + mutant, is responsible for inhibition of several phenomena related to the SOS response inpolA + strains: UV- and methyl methanesulfonate-induced mutagenesis, resumption of DNA replication in UV-irradiated cells, cell filamentation, prophage induction and increase in UV sensitivity. TheisfA mutation also significantly reduces UV-induced expression of β-galactosidase fromrecA::lacZ andumuC′::lacZ fusions. The results suggest that theisfA gene product may affect RecA* coprotease activity and may be involved in the regulation of the termination of the SOS response after completion of DNA repair. TheisfA mutation was localized at 85 min on theE. coli chromosome, and preliminary experiments suggest that it may be dominant to the wild-type allele.  相似文献   

9.
Colicin A-insensitive mutants ofCitrobacter freundii were isolated and grouped into six phenotypic classes characterized by sensitivity, insensitivity or partial insensitivity to the bacteriocins S6, DF 13 and colicin A, and sensitivity or insensitivity to deoxycholate (DOC) and ampicillin. Mapping by the gradient-of-transmission method revealed the chromosomal regions in which the responsible genes are situated. Res-3 mapped nearpur betweenpur andthr; Tol-5 mapped betweenaro andilv and Tol-4 betweengal andpyr; Tol-1, Tol-2 and Tol-3 are situated close togal. All the mutations that mapped neargal rendered the bacteria more sensitive to DOC and ampicillin. Complementation analysis withE. coli plasmids showed that the three phenotypic groups that map neargal were complemented byE. coli plasmids and fall into three complementation groups. Two of these are equivalent with thetol A andtol B genes inE. coli.  相似文献   

10.
Colicins are toxic exoproteins produced by bacteria of colicinogenic strains ofEscherichia coli and some related species ofEnterobacteriaceae, during the growth of their cultures. They inhibit sensitive bacteria of the same family. About 35%E. coli strains appearing in human intestinal tract are colicinogenic. Synthesis of colicins is coded by genes located on Col plasmids. Until now more than 34 types of colicins have been described, 21 of them in greater detail,viz. colicins A, B, D, E1–E9, Ia, Ib, JS, K, M, N, U, 5, 10. In general, their interaction with sensitive bacteria includes three steps: (1) binding of the colicin molecule to a specific receptor in the bacterial outer membrane; (2) its translocation through the cell envelope; and (3) its lethal interaction with the specific molecular target in the cell. The classification of colicins is based on differences in the molecular events of these three steps. The original version of this review was published in Czech in the journal “Biologické listy”,62, 107–130 (1997).  相似文献   

11.
The mechanisms by which colicins, protein toxins produced by Escherichia coli, kill other E. coli, have become much better understood in recent years. Most colicins initially bind to an outer membrane protein receptor, and then search for a separate nearby outer membrane protein translocator that serves as a pathway into target cells. Many colicins use the outer membrane porin, OmpF, as that translocator, while using a different primary receptor. Colicin N is unique among known colicins in that only OmpF had been identified as being required for uptake of the colicin and it was presumed to somehow serve as both receptor and translocator. Genetic screens also identified a number of genes required for lipopolysaccharide (LPS) synthesis as uniquely required for killing by colicin N, but not by other colicins. Johnson et al. show that the receptor‐binding domain of colicin N binds to LPS, and does not require OmpF for that binding. LPS of a minimal length is required for binding, explaining the requirement for specific elements of the LPS biosynthetic pathway. For colicin N, the receptor‐binding domain does not recognize a protein, but rather the most abundant component of the outer membrane itself, LPS.  相似文献   

12.
Thirty eight mutant clones of the colicin indicator strainEscherichia coli K 12 ROW, selected by their insensitivity to any of the colicins El–E7, were isolated. Comparison of their sensitivity-resistance patterns to colicins El–E7 enabled us to draw a rough preliminary map of the receptor for E colicins. In this receptor, the highly specific binding site for colicin El partially overlaps with the domain shared by all colicins E2 through E7. A specific binding site of this domain appears to be common for colicins E3 and E6; a part of the E3 and E6 binding site is also common for colicins E4 and E5 and a small, least specific, part also for colicins E2 and E7. Using colicin assay experiments, the binding capacity of coliein E receptor mutants could be estimated. A decreased, but not completely lost ability of certain mutants to bind colicins E, correlated to their lowered sensitivity to them, was found. Thus the phenomenon of partial colicin resistance was established, showing that colicin sensitivity—resistance is not a qualitative but a quantitative marker.  相似文献   

13.
Colicin A is a pore-forming bacteriocin that depends upon the Tol proteins in order to be transported from its receptor at the outer membrane surface to its target, the inner membrane. The presequence of yeast mitochondria cytochrome c1 (pc1) as well as the first 167 amino acids of cytochrome b2 (pb2) were fused to the pore-forming domain of colicin A (pfColA). Both hybrid proteins (pc1-pfColA and pb2-pfColA) were cytotoxic for Escherichia coli strains devoid of colicin A immunity protein whereas the pore-forming domain without presequence had no lethal effect. The entire precursors and their processed forms were found entirely associated with the bacterial inner membrane and their cytotoxicities were related to their pore-forming activities. The proteins were also shown to kill the tol bacterial strains, which are unable to transport colicins. In addition, we showed that both the cytochrome C1 presequence fused to the dihydrofolate reductase (pc1-DHFR) and the cytochrome c, presequence moiety of pc1-pfColA were translocated across inverted membrane vesicles. Our results indicated that: (i) pc1-pfColA produced in the cell cytoplasm was able to assemble in the inner membrane by a mechanism independent of the tol genes; (ii) the inserted pore-forming domain had a channel activity; and (ii) this channel activity was inhibited within the membrane by the immunity protein.  相似文献   

14.
To clone bifunctional vectors in streptomycetes, it was necessary to define the restriction-modification system ofStreptomyces flavopersicus. Plasmid DNA from bifunctional vectors pIJ699 and pXED3-13, isolated fromE. coli strains with different methylation systems:E. coli DH5α (dam + dcm +),E. coli MB5386(dam dcm), E. coli CB51 (dam dcm +),E. coli NM544 (dam + dcm), was used for transformation of protoplasts from strainS. flavopersicus. Restriction ofdcm-methylated DNA fromS. flavopersicus was established. As a host in the intermediate cloning strainE. coli NM544 (dam + dcm) should be used, as thedcm-transmethylase-dependent strainS. flavopersicus does not process DNA from this strain.  相似文献   

15.
Summary The E1 subgroup (E1, A, Ib, etc.) of antibacterial toxins called colicins are known to form voltage-dependent channels in planar lipid bilayers. The genes for colicins E1, A and Ib have been cloned and sequenced, making these channels interesting models for the widespread phenomenon of voltage dependence in cellular channels. In this paper we investigate ion selectivity and channel size—properties relevant to model building. Our major finding is that the colicin E1 channel is large, having a diameter ofat least 8 Å at its narrowest point. We established this from measurements of reversal potentials for gradients formed by salts of large cations or large anions. In so doing, we exploited the fact that the colicin channel is permeable to both cations and anions, and its relative selectivity to them is a functions and anions, and its relative selectivity to them is a function of pH. The channel is anion selective (Cl over K+) in neutral membranes, and the degree of selectivity is highly dependent on pH. In negatively charged membranes, it becomes cation selective at pH's higher than about 5. Experiments with pH gradients cross the membrane suggest that titratable groups both within the channel lumen and near the channel ends affect the selectivity. Individual E1 channels have more than one open conductance state, all displaying comparable ion selectivity. Colicins A and Ib also exhibit pH-dependent ion selectivity, and appear to have even larger lumens than E1.  相似文献   

16.
Summary We have surveyed the frequency of each of 64 trinucleotide permutations at every nucleotide frame located from 1 to 15 nucleotides upstream of primer RNA-DNA transition sites mapped within a 1.5 kb region of the bacteriophage lambda genome and a 1.4 kb region of theEscherichia coli genome. We have demonstrated that in both systems initiation of DNA synthesis strongly correlates with a CAG sequence located 11 nucleotides upstream of the DNA start sites. Based on the examination of various reports of the priming reaction catalyzed byE. coli primase in vivo and in vitro, we propose that (i)E. coli primase itself recognizes a 3′GTC 5′ sequence on the template strand, (ii) DnaB helicase releases the specificity ofE. coli primase and, (iii) the consensus recognition sequence forE. coli primase associated with DnaB helicase is 3′PuPyPy 5′.  相似文献   

17.
Colicin Ia, a channel‐forming bactericidal protein, uses the outer membrane protein, Cir, as its primary receptor. To kill Escherichia coli, it must cross this membrane. The crystal structure of Ia receptor‐binding domain bound to Cir, a 22‐stranded plugged β‐barrel protein, suggests that the plug does not move. Therefore, another pathway is needed for the colicin to cross the outer membrane, but no ‘second receptor’ has ever been identified for TonB‐dependent colicins, such as Ia. We show that if the receptor‐binding domain of colicin Ia is replaced by that of colicin E3, this chimera effectively kills cells, provided they have the E3 receptor (BtuB), Cir, and TonB. This is consistent with wild‐type Ia using one Cir as its primary receptor (BtuB in the chimera) and a second Cir as the translocation pathway for its N‐terminal translocation (T) domain and its channel‐forming C‐terminal domain. Deletion of colicin Ia's receptor‐binding domain results in a protein that kills E. coli, albeit less effectively, provided they have Cir and TonB. We show that purified T domain competes with Ia and protects E. coli from being killed by it. Thus, in addition to binding to colicin Ia's receptor‐binding domain, Cir also binds weakly to its translocation domain.  相似文献   

18.
Summary Bacteriophage Mu grown on Escherichia coli K12 (Mu. K) is restricted by wild type Citrobacter freundii. In two C. freundii mutants, where the restriction of foreign F factors is absent (de Graaff and Stouthamer, 1971), the restriction for Mu. K, although at a lower level, still exists. Consequently two host specificity systems exist in C. freundii, one affecting mainly the acceptance of foreign plasmidal and chromosomal DNA and one affecting foreign DNA of bacteriophage Mu. Mu is able to lysogenize C. freundii and to induce mutations at random in its chromosome. Furthermore Mu is able to promote the mobilization of the C. freundii chromosome in strains carrying F factors. Mu promoted integration of F ts 114 lac + into the C. freundii chromosome was observed, resulting in the formation of stable Hfr strains. In this way it is possible to devise a method for chromosome transfer in other genera than E. coli to which plasmids of E. coli can be transferred, but in which no chromosome mobilization is possible because of poor DNA homology between the foreign plasmid and the host chromosome.  相似文献   

19.
Out of 175Escherichia coli strains isolated from the urinary tract 45% were colicinogenic. Out of these 175 strains 19% produced colicin V, colicin G was produced by 6% of the strains, colicin I by 9%, colicin A by 4%, colicin B by 4.5%, colicins E by 7.4%, and 1% yielded colicin K. The number of transmissible col factors was 10%. The majority of strains produced colicin V but the sensitivity towards it was also among the highest. The relationship between the type of colicin and the O-serotype, found in some case, may have been caused by strain selection which apparently takes place in hospitalized patients. Serologic typing supplemented by typing of colicins helps in elucidating the epidemiological relationships.  相似文献   

20.
Growth of E. coli K-12 under severe iron stress results in increased production of the outer membrane receptors for colicins B, D, Ib and M. The increase in colicin receptor activity coincides with the appearance of large amounts of two high molecular weight proteins in the outer membrane of the cells. These proteins are identified as the outer membrane receptors for colicins B and D and for colicin M. Mutants lacking a functional outer membrane receptor for colicins B and D are defective in the uptake of iron complexed with the siderochrome enterochelin, and are thus comparable with tonA mutants which lack a functional receptor for colicin M and are defective in the uptake of iron complexed with ferrichrome (6). The colicin B and D receptor may therefore function in the uptake of ferri-enterochelin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号