首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The calponin homology-associated smooth muscle (CHASM) protein plays an important adaptive role in smooth and skeletal muscle contraction. CHASM is associated with increased muscle contractility and can be localized to the contractile thin filament via its binding interaction with tropomyosin. We sought to define the structural basis for the interaction of CHASM with smooth muscle tropomyosin as a first step to understanding the contribution of CHASM to the contractile capacity of smooth muscle. Herein, we provide a structure-based model for the tropomyosin-binding domain of CHASM using a combination of hydrogen/deuterium exchange mass spectrometry (HDX-MS) and NMR analyses. Our studies provide evidence that a portion of the N-terminal intrinsically disordered region forms intramolecular contacts with the globular C-terminal calponin homology (CH) domain. Ultimately, cooperativeness between these structurally dissimilar regions is required for CHASM binding to smooth muscle tropomyosin. Furthermore, it appears that the type-2 CH domain of CHASM is required for tropomyosin binding and presents a novel function for this protein domain.  相似文献   

2.
The temporal relationship between Ca2+-induced contraction and phosphorylation of 20 kDa myosin light chain (MLC) during a step increase in Ca2+ was investigated using permeabilized phasic smooth muscle from rabbit portal vein and guinea-pig ileum at 25°C. We describe here a Ca2+-induced Ca2+ desensitization phenomenon in which a transient rise in MLC phosphorylation is followed by a transient rise in contractile force. During and after the peak contraction, the force to phosphorylation ratio remained constant. Further treatment with cytochalasin D, an actin fragmenting agent, did not affect the transient increase in phosphorylation, but blocked force development. Together, these results indicate that the transient phosphorylation causes the transient contraction and that neither inhomogeneous contractility nor reduced thin filament integrity effects the transient phosphorylation. Lastly, we show that known inhibitors to MLC kinase kinases and to a Ca2+-dependent protein phosphatase did not eliminate the desensitized contractile force. This study suggests that the Ca2+-induced Ca2+ desensitization phenomenon in phasic smooth muscle does not result from any of the known intrinsic mechanisms involved with other aspects of smooth muscle contractility.  相似文献   

3.
The two major isoforms of smoothelin (A and B) contain a calponin homology (CH) domain, colocalize with alpha-smooth muscle actin (alpha-SMA) in stress fibers and are only expressed in contractile smooth muscle cells (SMCs). Based on these findings, we hypothesized that smoothelins are involved in smooth muscle cell contraction, presumably via interaction with actin. The interaction between smoothelins and three different actin isoforms (alpha- and gamma-smooth muscle and alpha-skeletal actin [alpha-SKA]) was investigated using several in vitro assays. Smoothelin-B co-immunoprecipitated with alpha-smooth muscle actin from pig aorta extracts. In rat embryonic fibroblasts, transfected smoothelins-A and -B associated with stress fibers. In vitro dot blot assays, in which immobilized actin was overlaid with radio-labeled smoothelin, showed binding of smoothelin-A to actin filaments, but not to monomeric G-actin. A truncated smoothelin, containing the calponin homology domain, associated with stress fibers when transfected and bound to actin filaments in overlay, but to a lesser extent. ELISA results showed that the binding of smoothelin to actin has no significant isoform specificity. Our results indicate an interaction between smoothelin and actin filaments. Moreover, the calponin homology domain and its surrounding sequences appear to be sufficient to accomplish this interaction, although the presence of other domains is apparently necessary to facilitate and/or strengthen the binding to actin.  相似文献   

4.
A novel 40 kDa protein was detected in native thin filaments from catch muscles of the mussel Crenomytilus grayanus. The MALDY-TOF analysis of the protein showed a 40% homology with the calponin-like protein from the muscle of Mytilus galloprovincialis (45 kDa), which has a 36% homology with smooth muscle calponin from chicken gizzard (34 kDa). The amount of the calponin-like protein in thin filaments depends on isolation conditions and varies from the complete absence to the presence in amounts comparable with that of tropomyosin. The most significant factor that determines the contact of the protein in thin filaments is the temperature of solution in which thin filaments are sedimented by ultracentrifugation during isolation. At 22 degrees C and optimal values of both pH and ionic strength of the extraction solution, total calponin-like protein coprecipitates with thin filaments. At 2 degrees C it remains in the supernatant. The 40 kDa calponin-like protein from the mussel Crenomytilus grayanus has similar properties with smooth muscle calponin (34 kDa). It is thermostable and inhibits the actin-activated Mg -ATPase activity of actomyosin. In addition, the 40 kDa calponin-like protein isolated without using thermal treatment contains endogenous kinases. It was found that the calponin-like protein can be phosphorylated by endogenous kinases in the Ca -independent manner. These results indicate that the calponin-like protein from the catch muscle of the mussel Crenomytilus grayanus is a new member of the calponin family. The role of proteins from this family both in muscle and ponmuscle cells is still obscure. We suggest that the calponin-like protein is involved in the Ca -independent regulation of smooth muscle contraction.  相似文献   

5.
Calponin isolated from chicken gizzard smooth muscle inhibits the actin-activated MgATPase activity of smooth muscle myosin in a reconstituted system composed of contractile and regulatory proteins. ATPase inhibition is not due to inhibition of myosin phosphorylation since, at calponin concentrations sufficient to cause maximal ATPase inhibition, myosin phosphorylation was unaffected. Furthermore, calponin inhibited the actin-activated MgATPase of fully phosphorylated or thiophosphorylated myosin. Although calponin is a Ca2(+)-binding protein, inhibition did not require Ca2+. Furthermore, although calponin also binds to tropomyosin, ATPase inhibition was not dependent on the presence of tropomyosin. Calponin was phosphorylated in vitro by protein kinase C and Ca2+/calmodulin-dependent protein kinase II, but not by cAMP- or cGMP-dependent protein kinases, or myosin light chain kinase. Phosphorylation of calponin by either kinase resulted in loss of its ability to inhibit the actomyosin ATPase. The phosphorylated protein retained calmodulin and tropomyosin binding capabilities, but actin binding was greatly reduced. The calponin-actin interaction, therefore, appears to be responsible for inhibition of the actomyosin ATPase. These observations suggest that calponin may be involved in regulating actin-myosin interaction and, therefore, the contractile state of smooth muscle. Calponin function in turn is regulated by Ca2(+)-dependent phosphorylation.  相似文献   

6.
Caldesmon was originally purified from gizzard smooth muscle as a major calmodulin-binding protein which also interacts with actin filaments. It has an alternative binding ability to either calmodulin or actin filaments depending upon the concentration of Ca2+ ("flip-flop binding"). Two forms of caldesmon (Mr's in the range of 120-150 kDa and 70-80 kDa) have been demonstrated in a wide variety of smooth muscles and nonmuscle cells. Immunohistochemical studies suggest that caldesmon is colocalized with actin filaments in vivo. Considering its abundance, the Ca2+-dependent flip-flop binding ability to either calmodulin or actin filaments, and its intracellular localization, caldesmon is expected to be involved in contractile events. Recent results from our laboratory have led to the conclusion that caldesmon regulates the smooth muscle and nonmuscle actin-myosin interaction and the smooth muscle actin-high Mr actin-binding protein (ABP or filamin) interactin in a flip-flop manner. It might function in cell motility by regulating the contractile system.  相似文献   

7.
Smooth muscles develop isometric force over a very wide range of cell lengths. The molecular mechanisms of this phenomenon are undefined, but are described as reflecting "mechanical plasticity" of smooth muscle cells. Plasticity is defined here as a persistent change in cell structure or function in response to a change in the environment. Important environmental stimuli that trigger muscle plasticity include chemical (e.g., neurotransmitters, autacoids, and cytokines) and external mechanical signals (e.g., applied stress and strain). Both kinds of signals are probably transduced by ionic and protein kinase signaling cascades to alter gene expression patterns and changes in the cytoskeleton and contractile system. Defining the signaling mechanisms and effector proteins mediating phenotypic and mechanical plasticity of smooth muscles is a major goal in muscle cell biology. Some of the signaling cascades likely to be important include calcium-dependent protein kinases, small GTPases (Rho, Rac, cdc42), Rho kinase, protein kinase C (PKC), Src family tyrosine kinases, mitogen-activated protein (MAP) kinases, and p21 activated protein kinases (PAK). There are many potential targets for these signaling cascades including nuclear processes, metabolic pathways, and structural components of the cytoskeleton. There is growing appreciation of the dynamic nature of the actin cytoskeleton in smooth muscles and the necessity for actin remodeling to occur during contraction. The actin cytoskeleton serves many functions that are probably critical for muscle plasticity including generation and transmission of force vectors, determination of cell shape, and assembly of signal transduction machinery. Evidence is presented showing that actin filaments are dynamic and that actin-associated proteins comprising the contractile element and actin attachment sites are necessary for smooth muscle contraction.  相似文献   

8.
The contractile state of smooth muscle is regulated primarily by the sarcoplasmic (cytosolic) free Ca2+ concentration. A variety of stimuli that induce smooth muscle contraction (e.g., membrane depolarization, alpha-adrenergic and muscarinic agonists) trigger an increase in sarcoplasmic free [Ca2+] from resting levels of 120-270 to 500-700 nM. At the elevated [Ca2+], Ca2+ binds to calmodulin, the ubiquitous and multifunctional Ca(2+)-binding protein. The interaction of Ca2+ with CaM induces a conformational change in the Ca(2+)-binding protein with exposure of a site(s) of interaction with target proteins, the most important of which in the context of smooth muscle contraction is the enzyme myosin light chain kinase. The interaction of calmodulin with myosin light chain kinase results in activation of the kinase that catalyzes phosphorylation of myosin at serine-19 of each of the two 20-kDa light chains (native myosin is a hexamer composed of two heavy chains (230 kDa each) and two pairs of light chains (one pair of 20 kDa each and the other pair of 17 kDa each)). This simple phosphorylation reaction triggers cycling of myosin cross-bridges along actin filaments and the development of force. Relaxation of the muscle follows removal of Ca2+ from the sarcoplasm, whereupon calmodulin dissociates from myosin light chain kinase regenerating the inactive kinase; myosin is dephosphorylated by myosin light chain phosphatase(s), whereupon it dissociates and remains detached from the actin filament and the muscle relaxes. A substantial body of evidence has been accumulated in support of this central role of myosin phosphorylation-dephosphorylation in the regulation of smooth muscle contraction. However, a wide range of physiological and biochemical studies supports the existence of additional, secondary Ca(2+)-dependent mechanisms that can modulate or fine-tune the contractile state of the smooth muscle cell. Three such mechanisms have emerged: (i) the actin-, tropomyosin-, and calmodulin-binding protein, calponin; (ii) the actin-, myosin-, tropomyosin-, and calmodulin-binding protein, caldesmon; and (iii) the Ca(2+)- and phospholipid-dependent protein kinase (protein kinase C).  相似文献   

9.
Acidic calponin is an actin binding protein expressed in smooth muscle and brain. Although the role of smooth muscle calponin (basic calponin) has been well studied, few studies have been performed on acidic calponin. In the present study, we demonstrated that acidic calponin binds to filamentous actin, but not monomeric actin. A co-sedimentation assay indicated that acidic calponin binds to actin with an apparent binding constant of 4 x 10(5) M(-1). In the presence of an excess amount of calmodulin, the binding of acidic calponin to actin was inhibited. The binding of acidic calponin to calmodulin was Ca(2+)-dependent with K(d) of 31 microM. We next investigated whether or not acidic calponin could be a substrate for mu-calpain in vitro, since it has been shown that basic calponin is cleaved by mu-calpain. The results showed that acidic calponin was also cleaved by mu-calpain. Neither the proteolytic pattern nor velocity of acidic calponin was different in the absence or presence of calmodulin. When acidic calponin had bound to actin, however, the susceptibility of the acidic calponin to mu-calpain was significantly reduced, which was reversed by the addition of calmodulin. Our results suggest that acidic calponin might be involved in the mu-calpain-regulated actin cytoskeleton.  相似文献   

10.
The contractile systems of vertebrate smooth and striated muscles are compared. Smooth muscles contain relatively large amounts of actin and tropomyosin organized into thin filaments, and smaller amounts of myosin in the form of thick filaments. The protein contents are consistent with observed thin:thick filament ratios of about 15-18:1 in smooth compared to 2:1 in striated muscle. The basic characteristics of both types of contractile proteins are similar; but there are a variety of quantitative differences in protein structures, enzymatic activities and filament stabilities. Biochemical and X-ray diffraction data generally support recent ultrastructural evidence concerning the organization of the myofilaments in smooth muscle, although a basic contractile unit comparable to the sarcomere in striated muscle has not been discerned. Myofilament interactions and contraction in smooth muscle are controlled by changes in the Ca2+ concentration. Recent evidence suggests the Ca2+-binding regulatory site is associated with the myosin in vertebrate smooth muscle (as in a variety of invertebrate muscles), rather than with troponin which is the regulatory protein associated with the thin filament in vertebrate striated muscle.  相似文献   

11.
The fluorescence parameters of the environment-sensitive acrylodan, selectively attached to Cys273 in the C-terminal domain of smooth muscle calponin, were studied in the presence of F-actin and using varying salt concentrations. The formation of the F-actin acrylodan labeled calponin complex at 75 mm NaCl resulted in a 21-nm blue shift of the maximum emission wavelength from 496 nm to 474 nm and a twofold increase of the fluorescent quantum yield at 460 nm. These spectral changes were observed at the low ionic strengths (< 110 mm) where the calponin : F-actin stoichiometry is 1 : 1 as well as at the high ionic strengths (> 110 mm) where the binding stoichiometry is a 1 : 2 ratio of calponin : actin monomers. On the basis of previous three-dimensional reconstruction and chemical crosslinking of the F-actin-calponin complex, the actin effect is shown to derive from the low ionic strength interaction of calponin with the bottom of subdomain-1 of an upper actin monomer in F-actin and not from its further association with the subdomain-1 of the adjacent lower monomer which occurs at the high ionic strength. Remarkably, the F-actin-dependent fluorescence change of acrylodan is qualitatively but not quantitatively similar to that earlier reported for the complexes of calponin and Ca2+-calmodulin or Ca2+-caltropin. As the three calponin ligands bind to the same segment of the protein, encompassing residues 145-182, the acrylodan can be considered as a sensitive probe of the functioning of this critical region. A distance of 29 A was measured by fluorescence resonance energy transfer between Cys273 of calponin and Cys374 of actin in the 1 : 1 F-actin-calponin complex suggesting that the F-actin effect was allosteric reflecting a global conformational change in the C-terminal domain of calponin.  相似文献   

12.
13.
Cell calcium and its regulation in smooth muscle   总被引:22,自引:0,他引:22  
A P Somlyo  B Himpens 《FASEB journal》1989,3(11):2266-2276
Two novel methods used to study smooth muscles-electron probe X-ray microanalysis and Ca2+-sensitive indicators (which are used for resolving, respectively, the spatial distribution and temporal distribution of calcium)-are briefly reviewed and the major findings obtained are summarized. In smooth muscle the sarcoplasmic reticulum is the major intracellular source of Ca2+; mitochondria do not play a significant role in the physiological regulation of [Ca2+]i. Under pathological conditions mitochondria can reversibly accumulate large amounts of calcium. Resting [Ca2+]i generally ranges from 80 to 200 nM, and is lower in phasic than in tonic smooth muscles. Removal of extracellular Ca2+ and Ca2+ entry blockers can reduce [Ca2+]i, but the effects of beta-adrenergic agents are variable. Increases in [Ca2+]i are triggered by electrical stimulation, depolarization with high K+, and excitatory agonists. Stretch, after a delay of several seconds, can cause an increase in [Ca2+]i in some smooth muscles. There is also a delay of approximately 200-400 ms between the initiation of the rise of Ca2+ and contraction that follows spontaneous action potentials or electrical stimulation. Agonist-induced Ca2+ release, a major mechanism of pharmacomechanical coupling, has been demonstrated in smooth muscles depolarized with high K; evidence suggests that it is mediated by G proteins that couple receptors to phospholipase C. Ca2+ release can be triggered directly in permeabilized smooth muscle with inositol 1,4,5-trisphosphate. Even though Ca2+ is the major physiological regulator of contraction, Ca2+ sensitivity of the regulatory-contractile apparatus differs in different (phasic and tonic) smooth muscles, and can be modulated in a given smooth muscle. The force [Ca2+]i ratio is higher during agonist-stimulated than during high K+-induced contractions, owing to agonist-induced increases in Ca2+ sensitivity mediated by G proteins. In some phasic smooth muscles (guinea pig ileum), the time course of the initial myosin light chain phosphorylation is extremely rapid and returns to basal levels while force remains elevated. In these smooth muscles there is also a marked decrease in the Ca2+ sensitivity of the regulatory-contractile apparatus during maintained depolarization in Ca2+-free or low Ca2+ solutions. It has been suggested that regulation of myosin light chain phosphatase plays a major role in the modulation of the Ca2+ sensitivity manifested as either potentiation or desensitization to [Ca2+]i.  相似文献   

14.
A novel 40-kDa calponin-like protein (CaP) was detected in thin filaments from catch muscles of the mussel Crenomytilus grayanus. The content of CaP in thin filaments depends on isolation conditions and varies from complete absence to the presence in amounts comparable with that of tropomyosin. The most significant factor that determines the CaP content in thin filaments is the temperature of solution in which thin filaments are sedimented by ultracentrifugation during isolation. At 22°C and optimal values of pH and ionic strength of the extraction solution, all CaP co-sediments with thin filaments. At 2°C it does not interact with thin filaments and remains in the supernatant. Like vertebrate smooth muscle calponin (33 kDa), the mussel CaP is thermostable, inhibits the Mg2+-ATPase activity of actomyosin, and can be phosphorylated, which is performed by endogenous (co-isolated) kinases in a Ca2+-independent manner. Thus, the C. grayanus CaP is a new member of the family of calponins, the function of which in muscle and nonmuscle cells is still obscure. We suggest that CaP is involved in Ca2+-independent regulation of smooth muscle contraction.  相似文献   

15.
Expression and purification of the h1 and h2 isoforms of calponin   总被引:2,自引:0,他引:2  
Three homologous calponin isoforms, named h1, h2, and acidic calponins, have been found in birds and mammals. Based primarily on studies of chicken gizzard smooth muscle (h1) calponin, calponin has been identified as a family of actin-associated proteins that inhibit actomyosin ATPase activity. Evolutionary divergence of the calponin isoforms suggests differentiated function. While the role of h1 calponin in smooth muscle contraction is under investigation, h2 calponin has been shown regulating the function of actin cytoskeleton. Using cloned cDNA, we expressed mammalian h1 and h2 calponins in Escherichia coli. We have developed effective methods to purify biologically active h1 and h2 calponin proteins from transformed bacterial culture. The purified calponin isoform proteins were used to generate monoclonal antibodies that reveal epitopic structure difference between h1 and h2 calponins. Together with their differential expression in tissues and during development, the structural diversity of h1 and h2 calponins suggests non-redundant physiological function. Nevertheless, h1 and h2 calponins bind F-actin with similar affinity, indicating a conserved mechanism for their role in regulating actin filaments in smooth muscle and non-muscle cells.  相似文献   

16.
Calponin, an actin-linked regulatory protein in smooth muscle, caused a remarkable change in the fluorescence intensity of pyrene-labeled actin in the filamentous form. Calponin, an equimolar ratio to actin, decreased the fluorescence intensity of pyrene-labeled F-actin by some 60% to the level near monomeric actin. This change was partially reversed by Ca2+, when calmodulin was present. Thus it appears that calponin causes conformational changes in actin molecules in an actin filament so as to inhibit their interactions with myosin.  相似文献   

17.
H Miyata  S Chacko 《Biochemistry》1986,25(9):2725-2729
The binding of gizzard tropomyosin to gizzard F-actin is highly dependent on free Mg2+ concentration. At 2 mM free Mg2+, a concentration at which actin-activated ATPase activity was shown to be Ca2+ sensitive, a molar ratio of 1:3 (tropomyosin:actin monomer) is required to saturate the F-actin with tropomyosin to the stoichiometric ratio of 1 mol of tropomyosin to 7 mol of actin monomer. Increasing the Mg2+ could decrease the amount of tropomyosin required for saturating the F-actin filament to the stoichiometric level. Analysis of the binding of smooth muscle tropomyosin to smooth muscle actin by the use of Scatchard plots indicates that the binding exhibits strong positive cooperativity at all Mg2+ concentrations. Calcium has no effect on the binding of tropomyosin to actin, irrespective of the free Mg2+ concentration. However, maximal activation of the smooth muscle actomyosin ATPase in low free Mg2+ requires the presence of Ca2+ and stoichiometric binding of tropomyosin to actin. The lack of effect of Ca2+ on the binding of tropomyosin to actin shows that the activation of actomyosin ATPase by Ca2+ in the presence of tropomyosin is not due to a calcium-mediated binding of tropomyosin to actin.  相似文献   

18.
Thin filament-associated proteins such as calponin, caldesmon, and smoothelin are believed to regulate acto-myosin interaction and thus, muscle contraction. Oxidative stress has been found to affect the normal contractile behavior of smooth muscle and is involved in the pathogenesis of a number of human diseases such as diabetes mellitus, hypertension, and atherosclerosis. However, very little is known about the effect of oxidative stress on the expression of smooth muscle contractile proteins. The aim of the current study is to investigate the effect of oxidative stress on the expression of thin filament-associated proteins in rat gastric smooth muscle. Single smooth muscle cells of the stomach obtained from Sprague–Dawley rats were used. Muscle cells were treated with hydrogen peroxide (H2O2) (500 μM) for 30 min or the peroxynitrite donor 3-morpholinosydnonimine (SIN-1) (1 mM) for 90 min to induce oxidative stress. Calponin, caldesmon, and smoothelin expressions were measured via specifically designed enzyme-linked immunosorbent assay. We found that exposure to exogenous H2O2 or incubation of dispersed gastric muscle cells with SIN-1 significantly increased the expression of calponin, caldesmon, and smoothelin proteins. In conclusion: oxidative stress increases the expression of thin filament-associated proteins in gastric smooth muscle, suggesting an important role in gastrointestinal motility disorders associated with oxidative stress.  相似文献   

19.
Calponins are proteins present in vertebrate smooth musculature where they occur in association with thin myofilaments. Calponins are not present in vertebrate or invertebrate striated muscles. The blood fluke Schistosoma japonicum expresses a 38.3-kDa protein that bears substantial homology with vertebrate calponin and occurs entirely within smooth musculature of adults. Calponin-like immunoreactivity has been demonstrated in smooth muscles of many invertebrate phyla. The Schistosoma japonicum calponin has been localised in smooth myofibrils of adults where it is associated with myofilaments and sarcoplasmic reticulum. In this study, the ultrastructural localisation of the protein in muscles of S. japonicum cercariae is described. The protein is present in smooth muscles of the forebody and the stratified muscle of the tail. Within the stratified layer, the protein occurs predominantly in transverse arrays of sarcoplasmic reticulum. The localisation data suggest that the calponin-like protein of S. japonicum is involved in contraction of the stratified tail muscle. Furthermore, the presence of a calponin system in the stratified muscle suggests that this muscle is simply a superior form of muscle, closely related to smooth muscles that use a caldesmin-calponin system in contraction.  相似文献   

20.
Myosin light chain kinase phosphorylation in tracheal smooth muscle   总被引:6,自引:0,他引:6  
Purified myosin light chain kinase from smooth muscle is phosphorylated by cyclic AMP-dependent protein kinase, protein kinase C, and the multifunctional calmodulin-dependent protein kinase II. Because phosphorylation in a specific site (site A) by any one of these kinases desensitizes myosin light chain kinase to activation by Ca2+/calmodulin, kinase phosphorylation could play an important role in regulating smooth muscle contractility. This possibility was investigated in 32P-labeled bovine tracheal smooth muscle. Treatment of tissues with carbachol, KCl, isoproterenol, or phorbol 12,13-dibutyrate increased the extent of kinase phosphorylation. Six primary phosphopeptides (A-F) of myosin light chain kinase were identified. Site A was phosphorylated to an appreciable extent only with carbachol or KCl, agents which contract tracheal smooth muscle. The extent of site A phosphorylation correlated to increases in the concentration of Ca2+/calmodulin required for activation. These results show that cyclic AMP-dependent protein kinase and protein kinase C do not affect smooth muscle contractility by phosphorylating site A in myosin light chain kinase. It is proposed that phosphorylation of myosin light chain kinase in site A in contracting tracheal smooth muscle may play a role in the reported desensitization of contractile elements to activation by Ca2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号