首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The localization of chromosome 18 in human interphase nuclei is demonstrated by use of radioactive and nonradioactive in situ hybridization techniques with a DNA clone designated L1.84. This clone represents a distinct subpopulation of the repetitive human alphoid DNA family, located in the centric region of chromosome 18. Under stringent hybridization conditions hybridization of L1.84 is restricted to chromosome 18 and reflects the number of these chromosomes present in the nuclei, namely, two in normal diploid human cells and three in nuclei from cells with trisomy 18. Under conditions of low stringency, cross-hybridization with other subpopulations of the alphoid DNA family occurs in the centromeric regions of the whole chromosome complement, and numerous hybridization sites are detected over interphase nuclei. Detection of chromosome-specific target DNAs by non-radioactive in situ hybridization with appropriate DNA probes cloned from individual chromosomal subregions presents a rapid means of identifying directly numerical or even structural chromosome aberrations in the interphase nucleus. Present limitations and future applications of interphase cytogenetics are discussed.  相似文献   

2.
Sequence heterogeneity within the human alphoid repetitive DNA family.   总被引:19,自引:4,他引:15       下载免费PDF全文
We have cloned and determined the base-sequence and genome organization of two human chromosome-specific alphoid DNA fragments, designated L1.26, mapping principally to chromosomes 13 and 21, and L1.84, mapping to chromosome 18. Their copy number is estimated to be approximately 2,000 per haploid genome. L1.84 has a double-dimer organization, whereas L1.26 has a much less defined higher order tandem organization. Further, we present evidence that the restriction-site spacing within the alphoid DNA family is chromosome specific. From sequence analysis, clones L1.26 and L1.84 are found to consist of 5 and 4 tandemly duplicated 170 bp monomers. Cross-homology between the various monomers is 65-85%. The analysis suggests that the evolution of tandem-arrays does not take place via a defined 340 bp unit, as was inferred by others, but via circularly permutated monomers or multimers of the 170 bp unit.  相似文献   

3.
C. C. Lin  R. Sasi  Y. S. Fan  D. Court 《Chromosoma》1993,102(5):333-339
EcoRI subclones, designated as 50E1 and 50E4, were independently obtained from a cosmid clone previously mapped to the centromeric region of human chromosome 8. Southern blot hybridization analyses suggested that both subclones contain repetitive DNA sequences different from the chromosome 8 specific alphoid DNA. DNA sequence analysis of the 704 bp insert of 50E1 and the 1, 962 bp insert of 50E4 revealed that both inserts contained tandemly repeated units of 220 bp. Fluorescence in situ hybridization studies confirmed these two subclones to be specifically located on the centromeric region of chromosome 8. A 220 bp consensus sequence, derived from nine monomeric repeats, showed no significant homology to alphoid consensus sequences or to other currently known human centromeric DNA sequence. Furthermore, no significant homology was found with any other DNA sequence deposited in the EMBL or GenBank databases, indicating that this chromosome 8 specific repetitive DNA sequence is novel. From slot blot experiments it was estimated that 0.013% of the human genome comprises 1,750 of these monomeric repeats, residing on the centromeric region of chromosome 8 in tandem array(s).  相似文献   

4.
In this study, we have examined a DNA element specific to the centromere domain of human chromosomes. Purified HeLa chromosomes were digested with the restriction enzyme Sau3AI and fractionated by sedimentation through a sucrose gradient. Fractions showing antigenecity to anticentromere (kinetochore) serum obtained from a scleroderma CREST patient were used to construct a DNA library. From this library we found one clone which has specifically hybridized to the centromere domain of metaphase chromosomes using a biotinylated probe DNA and FITC-conjugated avidin. The clone contained a stretch of alphoid DNA dimer. To determine precisely the relative location of the alphoid DNA stretch and the centromere antigen, a method was developed to carry out in situ hybridization of DNA and indirect immunofluorescent staining of antigen on the same cell preparation. Using this method, we have found perfect overlapping of the alphoid DNA sites with the centromere antigen sites in both metaphase chromosomes and nuclei at various stages in the cell cycle. We have also observed this exact correlation at the attachment sites of artificially extended sister chromatids. These results suggest the possibility that alphoid DNA repeats are a key component of kinetochore structure.  相似文献   

5.
A degenerate alpha satellite DNA probe specific for a repeated sequence on human chromosomes 13 and 21 was synthesized using the polymerase chain reaction (PCR). Fluorescence in situ hybridization (FISH) with this probe to normal metaphase spreads revealed strong probe binding to the centromeric regions of human chromosomes 13 and 21 with negligible cross-hybridization with other chromosomes. FISH to normal interphase cell nuclei showed four distinct domains of probe binding. However, hybridization with probe to interphase and metaphase preparations from one apparently normal human male resulted in only three major binding domains. Metaphase chromosome analysis revealed a centromeric deletion on one chromosome 21 that caused greatly reduced probe binding. The result suggest caution in the interpretation of interphase ploidy studies performed with chromosome-specific alphoid DNA probes.  相似文献   

6.
We have cloned and characterized two distinct types of alphoid DNA elements. Probe pG-Xba 11/340 was obtained by random cloning of human satellite DNA and contains two basic units with overall 88% homology to the 171-bp consensus alphoid sequence. pG-Xba 11/340-like elements are represented about 2,000-4,000 times in the haploid genome and, by in situ hybridization, are found exclusively at the primary constrictions of chromosomes 4 and 9. Probe pG-A16 was cloned from a chromosome 19-specific cosmid library and represents a 2.25-kb higher-order DNA element which is present at roughly 75-150 copies per haploid genome and which hybridizes to the centromeres of chromosomes 5 and 19. Using the pG-A16 probe, further genetic and physical dissection of the central area of chromosome 19 can be envisaged.  相似文献   

7.
Summary Probe DNA that binds preferentially to the centromeric region of human chromosomes 8 was synthesized. Alpha satellite probe DNA molecules were selectively amplified from sorter-purified human chromosomes 8 by in vitro DNA amplification using the polymerase chain reaction (PCR). Probe labeling was performed during PCR by incorporation of biotinylated deoxyuridine. In situ hybridization of unpurified probe DNA comprised of alpha satellite monomer and higher molecular weight DNA fragments with metaphase chromosome spreads showed binding to the centromeric regions of numerous chromosomes. However, blocking with unlabeled total human alphoid DNA dramatically reduced crosshybridization to chromosomes other than 8. Under these conditions, the degenerate probe DNA allowed unambiguous visualization of domains occupied by centromeric DNA of chromosome 8 in metaphase spreads and interphase cell nuclei, thus greatly facilitating the detection of numerical chromosome aberrations in tumor cells. In situ hybridization of size-fractionated alpha satellite DNA identified the monomeric fraction as the major cause of crosshybridization. Alpha satellite dimers and higher molecular weight DNA fragments showed relatively high specificity for human chromosomes 8.  相似文献   

8.
J Meyne  R K Moyzis 《Genomics》1989,4(4):472-478
The pericentric region of human chromosome 17 was targeted for specific in situ hybridization of the alphoid DNA subfamily enriched on this chromosome. A recombinant DNA clone containing the entire higher order chromosome 17 alphoid repeat preferentially hybridized to the pericentric region of chromosome 17, but frequently cross-hybridized to other chromosomes under normal stringency conditions. Chromosomal specificity, after in situ hybridization to metaphase spreads and interphase nuclei, was improved by using a subclone containing predominantly monomer 1 of the higher order repeat. Further improvement was achieved by synthesizing a 42-nucleotide oligomer of a divergent region of monomer 1. Southern blot analysis confirmed the improved specificity of the shorter probes. Reducing the potential of repetitive DNA probes to cross-hybridize increases the usefulness of the probes, especially when they are used for localizing individual chromosomes in interphase nuclei.  相似文献   

9.
A new highly repeated DNA fragment isolated from Macaca fascicularis (MFASAT) is described. Our findings obtained by sequencing, Southern blot analysis, and fluorescent in situ hybridization (FISH) on metaphasic chromosomes strongly suggest that MFASAT can be considered as a member of the alphoid DNA family characteristic of Old World monkeys. The chromosomal localization of MFASAT, obtained by FISH, showed that this alphoid DNA is present in the peri-centromeric area of all the chromosomes. MFASAT showed a high degree of conservation when compared, by sequence alignment, to other Macaca species and Papio papio as expected for species with considerable genome conservation. A low degree of homology has been found comparing M. fascicularis alphoid DNA with a more distantly related Cercopithecidae species such as Cercopithecus aethiops.  相似文献   

10.
K H Choo  E Earle  B Vissel  R G Filby 《Genomics》1990,7(2):143-151
We report the isolation of two distinct subfamilies of alpha satellite DNA (pTRA-20 and -25) from human chromosome 15. In situ hybridization experiments indicated that both subfamilies are highly specific for this chromosome. Southern analysis of a somatic hybrid cell line carrying human chromosome 15 revealed a likely higher-order genomic band of 2.5 kb for pTRA-20. Similar analysis for pTRA-25 showed multiple higher-order bands of 3.5, 4.5, and 5 kb at moderately high hybridization stringency, but a predominance of the 4.5-kb species at very high stringency. Direct comparison with human genomic DNA confirmed the authenticity of these higher-order structures and demonstrated polymorphic variations using both probes. The origin of the different alphoid subfamilies on chromosome 15 is discussed. These sequences should be useful for the construction of centromere-based genetic linkage maps for human chromosome 15 and, in conjunction with the other alphoid sequences already reported for chromosomes 13, 14, 21, and 22, should allow a concerted analysis of the evolution and the possible etiological role of these DNAs in aberrations commonly seen in these chromosomes.  相似文献   

11.
Although alphoid DNA sequences shared among acrocentric chromosomes have been identified, no human chromosome 21-specific sequence has been isolated from the centromeric region. To identify alphoid DNA restriction fragment length polymorphisms (RFLPs) specific for chromosome 21, we hybridized human genomic DNA with alphoid DNA probes [L1.26; aRI(680),21-208] shared by chromosomes 13 and 21. We detected RFLPs with restriction enzymes ECoRI, HaeIII, MboI,StuI, and TaqI. The segregation of these RFLPs was analyzed in the 40 CEPH families. Linkage analysis between these RFLPs and loci previously mapped to either chromosome 13 or 21 revealed RFLPs that appear to be specific to chromosome 21. These polymorphisms may be useful as genetic markers of the centromeric region of chromosome 21. Different alphoid loci within the centromeric region of chromosome 13 were identified.  相似文献   

12.
A collection of human Y-derived cosmid clones was screened with a plasmid insert containing a member of the human X chromosome alphoid repeat family, DXZ1. Two positive cosmids were isolated and the repeats they contained were investigated by Southern blotting, in situ hybridization and sequence analysis. On hybridization to human genomic DNAs, the expected cross-hybridization characteristic of all alphoid sequences was seen and, in addition, a 5500 base EcoRI fragment was found to be characteristic of a Y-specific alphoid repeat. Dosage experiments demonstrated that there are about 100 copies of this 5500 base EcoRI alphoid fragment on the Y chromosome. Studies utilizing DNA from human-mouse hybrids containing only portions of the Y chromosome and in situ hybridizations to chromosome spreads demonstrated the Y centromeric localization of the 5500 base repeat. Cross-hybridization to autosomes 13, 14 and 15 was also seen; however, these chromosomes lacked detectable copies of the 5500 base EcoRI repeat sequence arrangement. Sequence analysis of portions of the Y repeat and portions of the DXZ1 repeat demonstrated about 70% homology to each other and of each to the human consensus alphoid sequence. The 5500 base EcoRI fragment was not seen in gorilla, orangutan or chimpanzee male DNA.  相似文献   

13.
We have isolated a DNA clone (pMR9A) that identifies an alphoid DNA subset specific for chromosome 9. This alphoid subset is characterized by a dimeric organization as revealed by Southern blot analysis after digestion with HaeIII, HinfI, or StuI. Nonradioactive in situ hybridization demonstrated that pMR9A hybridizes only to the centromeric region of chromosome 9 and reveals chromosome 9 aneuploidies in interphase nuclei. In addition, the probe detects quantitative differences in alpha satellite DNA on chromosome 9, but these quantitative differences are not correlated with the size of the heterochromatic region. Double-labeling experiments, using a chromosome 9-specific satellite 3 clone and pMR9A, enabled us spatially to distinguish the alphoid and satellite 3 domains on metaphase chromosomes after treatment of the cultures with 5-azacytidine.  相似文献   

14.
The alphoid repeat DNA on chimpanzee chromosome 22 was compared with alphoid repeat DNA on its human homologue, chromosome 21. Hybridization of different alphoid probes under various conditions of stringency show that the alphoid repeats of chimpanzee chromosome 22 are not closely related to those of human chromosome 21. Sequence analysis of cloned dimer and tetramer EcoRI fragments from chimpanzee chromosome 22 confirm the low overall level of homology, but reveal the presence of several nucleotide changes which are exclusive to the chromosome 21 subfamily of human alphoid DNA. Southern blot analysis of alphoid repeat DNA on the chimpanzee X chromosome suggests this subfamily has been strongly conserved during and since the separation of chimpanzee and man although the two subfamilies can be distinguished on the basis of Taq I restriction fragments.  相似文献   

15.
Fluorescent in situ hybridization (FISH) was employed in mapping the alpha-satellite DNA that was revealed in the cosmid libraries specific for human chromosomes 13, 21, and 22. In total, 131 clones were revealed. They contained various elements of centromeric alphoid DNA sequences of acrocentric chromosomes, including those located close to SINEs, LINEs, and classical satellite sequences. The heterochromatin of acrocentric chromosomes was shown to contain two different groups of alphoid sequences: (1) those immediately adjacent to the centromeric regions (alpha 13-1, alpha 21-1, and alpha 22-1 loci) and (2) those located in the short arm of acrocentric chromosomes (alpha 13-2, alpha 21-2, and alpha 22-2 loci). Alphoid DNA sequences from the alpha 13-2, alpha 21-2, and alpha 22-2 loci are apparently not involved in the formation of centromeres and are absent from mitotically stable marker chromosomes with a deleted short arm. Robertsonian translocations t(13q; 21q) and t(14q; 22q), and chromosome 21p-. The heterochromatic regions of chromosomes 13, 21, and 22 were also shown to contain relatively chromosome-specific repetitive sequences of various alphoid DNA families, whose numerous copies occur in other chromosomes. Pools of centromeric alphoid cosmids can be of use in further studies of the structural and functional properties of heterochromatic DNA and the identification of centromeric sequences. Moreover, these clones can be employed in high-resolution mapping and in sequencing the heterochromatic regions of the human genome. The detailed FISH analysis of numerous alphoid cosmid clones allowed the identification of several new, highly specific DNA probes of molecular cytogenetic studies--in particular, the interphase and metaphase analyses of chromosomes 2, 9, 11, 14, 15, 16, 18, 20, 21-13, 22-14, and X.  相似文献   

16.
Comparison between results of measurements of heterochromatic regions detected by differential C and DA/DAP1 staining and the hybridization data of two cloned repeated human DNA sequences one alphoid (pH S05) and the other the satellite DNA III (pPD18) on chromosome preparations was made. A positive correlation of heterochromatic region sizes on several chromosomes and the amount of label over them detected after hybridization with both alphoid and satellite sequences was shown, the correlation with the latter being more pronounced.  相似文献   

17.
In situ DNA hybridization with 18S-28S and 5S ribosomal DNA probes was used to map 18S-28S nucleolar organizers and tandem 5S repeats to meiotic chromosomes of cotton (Gossypium hirsutum L.). Mapping was performed by correlating hybridization sites to particular positions in translocation quadrivalents. Arm assignment required translocation quadrivalents with at least one interstitial chiasma and sufficient distance between the hybridization site and the centromere. We had previously localized a major 18S-28S site to the short arm of chromosome 9; here we mapped two additional major 18S-28S sites to the short arm of chromosome 16 and the left arm of chromosome 23. We also identified and mapped a minor 18S-28S site to the short arm of chromosome 7. Two 5S sites of unequal size were identified, the larger one near the centromere of chromosome 9 and the smaller one near the centromere of chromosome 23. Synteny of 5S and 18S-28S sites indicated homeology of chromosomes 9 and 23, while positions of the other two 18S-28S sites supplement genetic evidence that chromosomes 7 and 16 are homeologous.  相似文献   

18.
The recovery of maize (Zea mays L.) chromosome addition lines of oat (Avena sativa L.) from oat x maize crosses enables us to analyze the structure and composition of individual maize chromosomes via the isolation and characterization of chromosome-specific cosmid clones. Restriction fragment fingerprinting, sequencing, and in situ hybridization were applied to discover a new family of knob associated tandem repeats, the TR1, which are capable of forming fold-back DNA segments, as well as a new family of centromeric tandem repeats, CentC. Analysis of knob and centromeric DNA segments revealed a complex organization in which blocks of tandemly arranged repeating units are interrupted by insertions of other repeated DNA sequences, mostly represented by individual full size copies of retrotransposable elements. There is an obvious preference for the integration/association of certain retrotransposable elements into knobs or centromere regions as well as for integration of retrotransposable elements into certain sites (hot spots) of the 180-bp repeat. DNA hybridization to a blot panel of eight individual maize chromosome addition lines revealed that CentC, TR1, and 180-bp tandem repeats are found in each of these maize chromosomes, but the copy number of each can vary significantly from about 100 to 25,000. In situ hybridization revealed variation among the maize chromosomes in the size of centromeric tandem repeats as well as in the size and composition of knob regions. It was found that knobs may be composed of either 180-bp or TR1, or both repeats, and in addition to large knobs these repeated elements may form micro clusters which are detectable only with the help of in situ hybridization. The association of the fold-back elements with knobs, knob polymorphism and complex structure suggest that maize knob may be consider as megatransposable elements. The discovery of the interspersion of retrotransposable elements among blocks of tandem repeats in maize and some other organisms suggests that this pattern may be basic to heterochromatin organization for eukaryotes.  相似文献   

19.
To estimate the possibility of plant genome mapping using human genome probes, the probes fluorescent in situ hybridization (FISH) of human 18S-28S rDNA (clon 22F9 from the LA-13NCO1 library) was carried out on chromosomes of the spring barley Hordeum vulgare L. As a control, wheat rDNA probe (clon pTa71) was taken. Hybridization of the wheat DNA probe revealed two major labelling sites on mitotic barley chromosomes 5I (7H) and 6I (6H), as well as several minor sites. With the human DNA probe, signals were detected in the major sites of the ribosomal genes on chromosomes 5I (7H) and 6I (6H) only when the chromosome preparations were obtained using an optimized technique with obligatory pepsin treatment followed by hybridization. Thus, this study demonstrates that physical mapping of plant chromosomes with human DNA probes that are 60 to 75% homologous to the plant genes is possible. It suggests principal opportunity for the FISH mapping of plant genomes using probes from human genome libraries, obtained in the course of the total sequencing of the human genomes and corresponding to the coding regions of genes with known functions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号