首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Grassland patches within a semi-arid savanna were evaluated over 45-years for (1) local temporal dynamics of basal area for five dominant grass species within long-term heavily grazed and ungrazed treatments, (2) the influence of soil depth (resource availability) on vegetation dynamics, and (3) the applicability of community-level grazing response groups over fine-scale patterns of soil heterogeneity. Temporal patterns in species composition and basal area were dependent upon soil depth. In the heavy grazed treatment, Hilaria belangeri dominated deep soils while Erioneuron pilosum and Bouteloua trifida were restricted to shallow soils. In the ungrazed treatment, removal of grazing resulted in successional changes that were significantly different across soil depths. After 45 years without grazing, Eriochloa sericea was most abundant on deep soils while Bouteloua curtipendula was more abundant on intermediate and shallow soils. Community-level functional groups that are based on grazing were not appropriate when multiple pattern-driving variables were considered across multiple scales indicating that functional groups should only be applied to certain processes at specific scales. Within the ungrazed treatments, variable soil depths have resulted in a shifting mosaic in time and space where early- and late-successional species co-exist continuously but spatially separated within the community. In the heavily grazed treatment, species are somewhat spatially arranged by soil depths, but much of the inherent heterogeneity is eliminated and species composition is dominated by the three grazing-resistant short-grasses. Broad scale successional changes may appear linear and predictable while at finer scales, the same changes may be described as non-linear and dependent upon soil depth resulting in thresholds that are partially explained by weather patterns, seed bank limitations and competitive inhibitions.  相似文献   

2.
Are the hyperdiverse local forests of the western Amazon undergoing changes linked to global and local drivers such as climate change, or successional dynamics? We analyzed local climatic records to assess potential climatic changes in Yasuní National Park, Ecuador, and compared two censuses (1995, 2012) of a palm community to assess changes in community structure and composition. Over 17 years, the structure and composition of this palm community remained remarkably stable. Soil humidity was significantly lower and canopy conditions were significantly more open in 2012 compared to 1995, but local climatic records showed that no significant changes in precipitation, temperature or river level have occurred during the last decade. Thus, we found no evidence of recent directional shifts in climate or the palm community in Yasuní. The absence of changes in local climate and plant community dynamics in Yasuní contrasts with recent findings from eastern Amazon, where environmental change is driving significant changes in ecosystem dynamics. Our findings suggest that until now, local forests in the northwest Amazon may have escaped pressure from climate change. The stability of this rich palm community embedded in the hyperdiverse Yasuní National Park underlines its uniqueness as a sanctuary for the protection of Amazonian diversity from global change impacts.  相似文献   

3.
Dispersal is a key process in metacommunity dynamics, allowing the maintenance of diversity in complex community networks. Geographic distance is usually used as a surrogate for connectivity implying that communities that are closely located are considered more prone to exchange individuals than distant communities. However, in some natural systems, organisms may be subjected to directional dispersal (air or water flows, particular landscape configuration), possibly leading close communities to be isolated from each other and distant communities to be connected. Using geographic distance as a proxy for realised connectivity may then yield misleading results regarding the role of dispersal in structuring communities in such systems. Here, we quantified the relative importance of flow connectivity, geographic distance, and environmental gradients to explain polychaete metacommunity structure along the coasts of the Gulf of Lions (northwest Mediterranean Sea). Flow connectivity was estimated by Lagrangian particle dispersal simulations. Our results revealed that this metacommunity is strongly structured by the environment at large spatial scales, and that both flow connectivity and geographic distance play an important role within homogeneous environments at smaller spatial scales. We thus strongly advocate for a wider use of connectivity measures, in addition to geographic distance, to study spatial patterns of biological diversity (e.g. distance decay) and to infer the processes behind these patterns at different spatial scales. Synthesis Everything is connected, but connections are seldom accurately quantified. Biological communities are often studied separately, using observations, experiments and models to unravel local dynamics of organisms interacting with each other. However, regional processes such as dispersal through ocean and air circulation, likely to connect distant communities and influence their local dynamics, are not always accounted for, or, at best, used as an homogeneous and distance‐related factor. Ocean models have being extensively developed and validated during the past decades with the increasing availability of accurate meteorological data. Using such model outputs, precise quantifi cation of exchange rates of organisms between communities was performed in a marine Mediterranean coastal area. Jointly with local environmental and biological data, these results were used to quantify the effects of realistic connectivity on local and regional polychaete community structure, and revealed that the environmental gradient, geographic distance, and connectivity were responsible for community structure at different spatial scales.  相似文献   

4.
Thresholds and Multiple Stable States in Coral Reef Community Dynamics   总被引:11,自引:0,他引:11  
Multiple stable states occur when more than one type of communitycan stably persist in a single environmental regime. Simpletheoretical analyses predict multiple stable states for (1)single species dynamics via the Allee effect, (2) two-speciescompetitive interactions characterized by unstable coexistence,(3) some predator-prey interactions, and (4) some systems combiningpredation and competition. Potential examples of transitionsbetween stable states on reefs include the failure of Diademaantillarum and Acropora cervicornis to recover following catastrophicmortality, and the replacement of microalgal turf by unpalatablemacroalgae after rapid increase in the amount of substratumavailable for colonization by algae. Subtidal marine ecosystemsin general, and reefs in particular, have several attributeswhich favor the existence of multiple stable states. Studiesof transitions between states often need to rely upon poorlycontrolled, unreplicated natural "experiments," as transitionstypically require pulses of disturbance over very large spatialscales. The stability of a state must often be inferred fromanalyses of the dynamics of participants at that state, as generationtimes and the potential for further extrinsic disturbance precludethe use of persistence as an indicator of stability. The potentialfor multiple stable states strongly influences our interpretationof variability in space and time and our ability to predictreef responses to natural and man-made environmental change.  相似文献   

5.
Ecological systems may occur in alternative states that differ in ecological structures, functions and processes. Resilience is the measure of disturbance an ecological system can absorb before changing states. However, how the intrinsic structures and processes of systems that characterize their states affects their resilience remains unclear. We analyzed time series of phytoplankton communities at three sites in a floodplain in central Spain to assess the dominant frequencies or “temporal scales” in community dynamics and compared the patterns between a wet and a dry alternative state. The identified frequencies and cross-scale structures are expected to arise from positive feedbacks that are thought to reinforce processes in alternative states of ecological systems and regulate emergent phenomena such as resilience. Our analyses show a higher species richness and diversity but lower evenness in the dry state. Time series modeling revealed a decrease in the importance of short-term variability in the communities, suggesting that community dynamics slowed down in the dry relative to the wet state. The number of temporal scales at which community dynamics manifested, and the explanatory power of time series models, was lower in the dry state. The higher diversity, reduced number of temporal scales and the lower explanatory power of time series models suggest that species dynamics tended to be more stochastic in the dry state. From a resilience perspective our results highlight a paradox: increasing species richness may not necessarily enhance resilience. The loss of cross-scale structure (i.e. the lower number of temporal scales) in community dynamics across sites suggests that resilience erodes during drought. Phytoplankton communities in the dry state are therefore likely less resilient than in the wet state. Our case study demonstrates the potential of time series modeling to assess attributes that mediate resilience. The approach is useful for assessing resilience of alternative states across ecological and other complex systems.  相似文献   

6.
Abstract Assessment of the ecological risk posed to native vegetation from the development of shallow and saline water tables is considered an urgent task in southern Australia. Ecological risk can be defined as the product of the likelihood of an ecological effect and the consequences of that effect. At present, the likelihood of the development of a shallow water table is determined by hydrological modelling at the catchment scale, and this in itself is often equated to ecological risk. In contrast, the ecological consequences of secondary salinity are generally investigated at the patch scale. Translating ecological likelihood and the ecological consequences of risk across these scales has proved problematic, both conceptually and quantitatively. Here we argue that the consideration of ecological risk within the context of the patch‐ or catchment‐scale is based upon human perceptions of spatial units, rather than the ecological scales at which various processes determine vegetation dynamics. By focusing on the processes that determine vegetation dynamics, and the dimensions of these processes, both spatial and temporal scales can be built into conceptual frameworks that aim to understand vegetation change, such as frameworks of alternative stable states. We present an alternative conceptual framework of the ecological risk from secondary salinity based around using the rates of processes, such as salt accumulation in the soil or the frequency of waterlogging, at the scales at which these processes occur. This framework also integrates concepts of vegetation states and transitions between meta‐stable states and alternative stable states.  相似文献   

7.
Biodiversity and ecosystem functioning at local and regional spatial scales   总被引:11,自引:1,他引:10  
Local niche complementarity among species (the partitioning of species based upon niche differentiation) is predicted to affect local ecosystem functioning positively. However, recent theory predicts that greater local diversity may hinder local ecosystem functioning when diversity is enhanced through source–sink dynamics. We suggest community assembly as a way to incorporate both the local and regional processes that determine biodiversity and its consequent effects on ecosystem functioning. From this, we propose a hump-shaped relationship between diversity and ecosystem functioning at local scales, but a linear increase of functioning with diversity at regional scales due to regional complementarity.  相似文献   

8.
Community assembly is a dynamic progression that reflects the interaction of several processes functioning at multiple scales. Understanding how these processes work in communities at different successional stages is important for identifying when regional or local processes are more important for community assembly, and for developing effective preservation and restoration strategies. We examined community assembly using a chronosequence of sub‐alpine meadows in Qinghai‐Tibetan Plateau that range from ‘natural’ (never farmed), to those that have been protected from agricultural exploitation for 1 to 10 years. We tested for shifts in species and traits among meadows and also for changes in environmental and spatial correlates of species distributions within meadows. We found that species richness increased and species composition returned to natural conditions within ten years of protection. These changes coincided with shifts in species traits; abundant species had high seed mass and specific leaf area in late‐successional meadows, whereas the opposite occurred in early‐successional meadows. Despite these shifts among meadows of different ages, spatial distributions of species within meadows did not change – when associated with abiotic variables, these spatial patterns reflected changes in soil pH and nitrogen. There was also no consistent change in the relative importance of environmental and spatial correlates of species distributions within meadows. These trends indicate that local processes of community assembly are similar within meadows even when species in those meadows differ. We conclude that successional change is a large‐scale process that alters the species pool and resulting suite of traits that are present within meadows. As a result, regional planning that incorporates successional age should be the focus for the conservation of diversity in this area. In contrast, local processes work within the constraints of the species pool set by successional age, producing consistent patterns within meadows of different ages.  相似文献   

9.
Abstract. A general conceptual model of vegetation based on hierarchy theory is presented. The model emphasizes that prediction of vegetation requires consideration of both mechanisms of vegetation change and the constraints within which it occurs. The mechanisms of vegetation change are the responses to and effects upon their surroundings of individual plants. The most general constraints upon vegetation are aspects of the environment not affected by vegetation over successional time, and the pool of species within dispersal range. Examples of such environmental factors include macroclimate and soil parent material. In some cases, vegetation may alter important labile environmental factors such as soil nutrient and water availability. Some vegetation compositions appear to be resistant to changes in the general constraints. Due to both sources, there are multiple possible vegetation compositions given the same general constraints. Disturbance is defined as an abrupt change in the constraints on the vegetation resulting in a change in the vegetation's state or dynamics. Both the recognition of disturbance and the distinction between independent and labile environmental factors depend on the spatial and temporal scale of observation. For example, a particular wildfire at a given stand may be a disturbance, whereas at a larger scale of observation the same event may contribute to the wildfire regime, part of the constraints at that scale. Similarly, levels of soil organic matter may constrain vegetation over short time scales, due to influencing availability of water and nutrients. Over long time scales, the vegetation itself is a primary determinant of soil organic matter content. This model contains elements of both the initial, holistic theory of vegetation and recent, reductionistic approaches. It reiterates the need to considerboth mechanisms and constraints, stressed by contemporary and earlier workers. Hierarchy theory provides new insights concerning sufficient conditions for prediction, possible limits on predictability, and appropriate research strategy.  相似文献   

10.
Both local- and landscape-scale processes drive succession of secondary forests in human-modified tropical landscapes. Nonetheless, until recently successional changes in composition and diversity have been predominantly studied at the patch level. Here, we used a unique dataset with 45 randomly selected sites across a mixed-use tropical landscape in central Panama to study forest succession simultaneously on local and landscape scales and across both life stages (seedling, sapling, juvenile and adult trees) and life forms (shrubs, trees, lianas, and palms). To understand the potential of these secondary forests to conserve tree species diversity, we also evaluated the diversity of species that can persist as viable metapopulations in a dynamic patchwork of short-lived successional forests, using different assumptions about the average relative size at reproductive maturity. We found a deterministic shift in the diversity and composition of the local plant communities as well as the metacommunity, driven by variation in the rate at which species recruited into and disappeared from the secondary forests across the landscape. Our results indicate that dispersal limitation and the successional niche operate simultaneously and shape successional dynamics of the metacommunity of these early secondary forests. A high diversity of plant species across the metacommunity of early secondary forests shows a potential for restoration of diverse forests through natural succession, when trees and fragments of older forests are maintained in the agricultural matrix and land is abandoned or set aside for a long period of time. On the other hand, during the first 32 years the number of species with mature-sized individuals was a relatively small and strongly biased sub-sample of the total species pool. This implies that ephemeral secondary forests have a limited role in the long-term conservation of tree species diversity in human-modified tropical landscapes.  相似文献   

11.
Thorough understanding of the potential for threshold dynamics and catastrophic shifts to occur in natural systems is of great importance for ecosystem conservation and restoration. However, verifying the presence of alternative stable states, one of the theoretical explanations for sudden shifts in natural systems, has proven to be a major challenge. We examine processes on local and landscape scales in salt-marsh pioneer zones, to assess the presence of alternative stable states in this system. To that end, we investigated the presence of typical characteristics of alternative stable states: bimodality and threshold dynamics. We also studied whether vegetation patches remained stable over long time periods. Analysis of false-color aerial photographs revealed clear bimodality in plant biomass distribution. By transplanting Spartina anglica plants of three different biomass classes on three geographically different marshes, we showed that a biomass threshold limits the establishment of Spartina patches, potentially explaining their patchy distribution. The presence of bimodality and biomass thresholds points to the presence of alternative stable states and the potential for sudden shifts, at small, within-patch scales and on short time scales. However, overlay analysis of aerial photographs from a salt marsh in The Netherlands, covering a time span of 22 years, revealed that there was little long-term stability of patches, as vegetation cover in this area is slowly increasing. Our results suggest that the concept of alternative stable states is applicable to the salt-marsh pioneer vegetation on small spatio-temporal scales. However, the concept does not apply to long-term dynamics of decades or centuries of heterogeneous salt-marsh pioneer zones, as landscape-scale processes may determine the large-scale dynamics of salt marshes. Hence, our results provide the interesting perspective that threshold dynamics may occur in systems with, on the long term, only a single stable state. Author Contributions: Bregje van Wesenbeeck executed the major part of this research and wrote this paper. Johan van de Koppel was involved in every part of this study and restructured major parts of this paper. Peter Herman helped with statistical analyses. Mark Bertness adjusted the design of this study and provided new views. Daphne van der Wal performed GIS analyses. Jan Bakker supervised and facilitated field work. Tjeerd Bouma supervised design of study and paper and substantially contributed to the writing of this paper. All authors commented on several drafts of this paper.  相似文献   

12.
Eliza C. Moore  Kevin A. Hovel 《Oikos》2010,119(8):1299-1311
Habitat structure at many scales influences faunal communities. Although habitat structure at different scales often covaries, studies rarely examine the relative effects of structure at multiple scales on faunal density and diversity. In shallow‐water seagrass systems, epifaunal density at local scales generally increases with increased habitat structural complexity (e.g. shoot density per unit area). In turn, structural complexity often varies with other aspects of habitat structure at patch scales, such as proximity to patch edges, which itself modifies ecological processes that structure epifaunal communities. We conducted surveys and a manipulative experiment in the eelgrass Zostera marina beds of San Diego Bay, California, USA, to determine (1) whether eelgrass structural complexity, epifaunal density and diversity, and fish (predator) density and diversity vary with proximity to patch edges, and (2) the relative influences of structural complexity, proximity to patch edges and predator presence on epifaunal distribution. Seagrass structural complexity generally increased from patch edges to patch interiors at all sites and in all sampling periods. However, patterns of epifaunal density, diversity, and biomass varied among sites and sampling periods, with density and biomass increasing from patch edges to interiors at some sites and decreasing at others. In the manipulative experiment, we allowed epifauna to colonize sparse or dense artificial seagrass habitat at both the edge and interior of a seagrass patch, and enclosed a subset of experimental units in predator exclusion cages. Overall, proximity to patch edges had a larger influence on epifaunal density and community structure than did structural complexity or predation, with the exception of some common taxa which responded more strongly to either complexity or predator exclusion. Our results emphasize the importance of addressing and evaluating habitat structure at multiple scales to better understand the distribution and interactions of organisms in a particular environment.  相似文献   

13.
Greenbeard genes identify copies of themselves in other individuals and cause their bearer to behave nepotistically towards those individuals. Bacterial toxins (bacteriocins) exemplify the greenbeard effect because producer strains carry closely linked genes for immunity, such that toxicity is limited to nonproducer strains. Bacteriocin producers can be maintained in a dynamic polymorphism, known as rock‐paper‐scissors (RPS) dynamics, with immune and susceptible strains. However, it is unclear whether and how such dynamics will be maintained in the presence of multiple toxin types (multiple beard ‘colours’). Here, we analyse strain dynamics using models of recurrent patch colonization and population growth. We find that (i) polymorphism is promoted by a small number of founding lineages per patch, strong local resource competition and the occurrence of mutations; (ii) polymorphism can be static or dynamic, depending on the intensity of local interactions and the costs of toxins and immunity; (iii) the occurrence of multiple toxins can promote RPS dynamics; and (iv) strain diversity can be maintained even when toxins differ in toxicity or lineages can exhibit multitoxicity/multi‐immunity. Overall, the factors that maintain simple RPS dynamics can also promote the coexistence of multiple toxin types (multiple beard colours), thus helping to explain the remarkable levels of bacteriocin diversity in nature. More generally, we contrast these results with the maintenance of marker diversity in genetic kin recognition.  相似文献   

14.
Chung MY  Nason JD  Chung MG 《Molecular ecology》2007,16(13):2816-2829
Spatial genetic structure within plant populations is influenced by variation in demographic processes through space and time, including a population's successional status. To determine how demographic structure and fine-scale genetic structure (FSGS) change with stages in a population's successional history, we studied Hemerocallis thunbergii (Liliaceae), a nocturnal flowering and hawkmoth-pollinated herbaceous perennial with rapid population turnover dynamics. We examined nine populations assigned to three successive stages of population succession: expansion, maturation, and senescence. We developed stage-specific expectations for within-population demographic and genetic structure, and then for each population quantified the spatial aggregation of individuals and genotypes using spatial autocorrelation methods (nonaccumulative O-ring and kinship statistics, respectively), and at the landscape level measured inbreeding and genetic structure using Wright's F-statistics. Analyses using the O-ring statistic revealed significant aggregation of individuals at short spatial scales in expanding and senescing populations, in particular, which may reflect restricted seed dispersal around maternal individuals combined with relatively low local population densities at these stages. Significant FSGS was found for three of four expanding, no mature, and only one senescing population, a pattern generally consistent with expectations of successional processes. Although allozyme genetic diversity was high within populations (mean %P = 78.9 and H(E) = 0.281), landscape-level differentiation among sites was also high (F(ST) = 0.166) and all populations exhibited a significant deficit of heterozygotes relative to Hardy-Weinberg expectations (range F = 0.201-0.424, mean F(IS) = 0.321). Within populations, F was not correlated with the degree of FSGS, thus suggesting inbreeding due primarily to selfing as opposed to mating among close relatives in spatially structured populations. Our results demonstrate considerable variation in the spatial distribution of individuals and patterns and magnitude of FSGS in H. thunbergii populations across the landscape. This variation is generally consistent with succession-stage-specific differences in ecological processes operating within these populations.  相似文献   

15.
In order to understand the changes in protein dynamics that occur in the final stages of protein folding, we have used neutron scattering to probe the differences between a protein in its folded state and the molten globule states. The internal dynamics of bovine alpha-lactalbumin (BLA) and its molten globules (MBLA) have been examined using incoherent, quasielastic neutron scattering (IQNS). The IQNS results show length scale dependent, pico-second dynamics changes on length scales from 3.3 to 60 A studied. On shorter-length scales, the non-exchangeable protons undergo jump motions over potential barriers, as those involved in side-chain rotamer changes. The mean potential barrier to local jump motions is higher in BLA than in MBLA, as might be expected. On longer length scales, the protons undergo spatially restricted diffusive motions with the diffusive motions being more restricted in BLA than in MBLA. Both BLA and MBLA have similar mean square amplitudes of high frequency motions comparable to the chemical bond vibrational motions. Bond vibrational motions thus do not change significantly upon folding. Interestingly, the quasielastic scattering intensities show pronounced maxima for both BLA and MBLA, suggesting that "clusters" of atoms are moving collectively within the proteins on picosecond time scales. The correlation length, or "the cluster size", of such atom clusters moving collectively is dramatically reduced in the molten globules with the correlation length being 6.9 A in MBLA shorter than that of 18 A in BLA. Such collective motions may be important for the stability of the folded state, and may influence the protein folding pathways from the molten globules.  相似文献   

16.
Disturbance and environmental change may cause communities to converge on a steady state, diverge towards multiple alternative states or remain in long-term transience. Yet, empirical investigations of successional trajectories are rare, especially in systems experiencing multiple concurrent anthropogenic drivers of change. We examined succession in old field grassland communities subjected to disturbance and nitrogen fertilization using data from a long-term (22-year) experiment. Regardless of initial disturbance, after a decade communities converged on steady states largely determined by resource availability, where species turnover declined as communities approached dynamic equilibria. Species favoured by the disturbance were those that eventually came to dominate the highly fertilized plots. Furthermore, disturbance made successional pathways more direct revealing an important interaction effect between nutrients and disturbance as drivers of community change. Our results underscore the dynamical nature of grassland and old field succession, demonstrating how community properties such as β diversity change through transient and equilibrium states.  相似文献   

17.
Traditional explorations of infectious disease evolution have considered the competition between two cross-reactive strains within the standard framework of disease models. Such techniques predict that diseases should evolve to be highly transmissible, benign to the host and possess a long infectious period: in general, diseases do not conform to this ideal. Here we consider a more holistic approach, suggesting that evolution is a trade-off between adaptive pressures at different scales: within host, between hosts and at the population level. We present a model combining within-host pathogen dynamics and transmission between individuals governed by an explicit contact network, where transmission dynamics between hosts are a function of the interaction between the pathogen and the hosts' immune system, though ultimately constrained by the contacts each infected host possesses. Our results show how each of the scales places constraints on the evolutionary behavior, and that complex dynamics may emerge due to the feedbacks between epidemiological and evolutionary dynamics. In particular, multiple stable states can occur with switching between them stochastically driven.  相似文献   

18.
Abstract. We compared the plant species composition, productivity and canopy structure of seven mown sites to a chronosequence of 20 abandoned calcareous fens in northeastern Switzerland. Cessation of mowing led to an 18% decline in overall plant species richness and the diversity of most functional groups. Abandonment did not lead to marked increases of above‐ground productivity, but rather selectively favoured certain functional groups. On abandoned fens biomass of grasses increased nearly threefold, at the expense of biomass of Cyperaceae and Juncaceae, which declined by 30% compared to mown fens, while forb biomass remained unaffected. Litter mass increased more than 15‐fold in fallows, while canopy height increased by 50%. The foliage in abandoned fens was oriented more horizontally and had a lower overall cover. However, these successional changes were never dependent upon the age of the fallow. Furthermore, nearly all traits differed significantly on regional and local spatial scales, suggesting that floristic and (meso‐)climatic differences obscure or override successional trajectories in these species‐rich wetlands.  相似文献   

19.
Over a long time frame, an ecological system may not exhibit constancy due to successional and evolutionary changes in the species composing the system. However, over shorter time frames an ecological system exhibits a certain degree of constancy (i.e., varies within defined bounds). Traditionally, ecologists considered this short-term constancy to reflect a “balance of nature,” which was viewed akin to the simple homeostatic dynamics of physiological systems. This is an appealing perspective because the disruption of the system's “balance” (i.e., its ”health“) can be ascertained by comparing the system's current state after the imposition of a perturbation with the societally desired state (i.e., baseline). Recently, ecologists have started to develop a much more complex, and perhaps more realistic, perspective regarding ecosystem dynamics, which does not depend upon homeostasis with a single baseline state. This new view includes stochastic variation, nonlinear dynamics and alternative states, and poses a challenge for assessing environmental “health” and the risk of creating “unhealthy” ecological systems  相似文献   

20.
Planning riparian restoration to resemble historic reference conditions requires an understanding of both local and regional patterns of plant species diversity. Thus, understanding species distributions at multiple spatial scales is essential to improve restoration planting success, to enhance long‐term ecosystem functioning, and to match restoration planting designs with historic biogeographic distributions. To inform restoration planning, we examined the biogeographic patterns of riparian plant diversity at local and regional scales within a major western U.S.A. drainage, California's Sacramento—San Joaquin Valley. We analyzed patterns of species richness and complementarity (β‐diversity) across two scales: the watershed scale and the floodplain scale. At the watershed scale, spatial patterns of native riparian richness were driven by herbaceous species, whereas woody species were largely cosmopolitan across the nearly 38,000 km2 study area. At the floodplain scale, riparian floras reflected species richness and dissimilarity patterns related to hydrological and disturbance‐driven successional sequences. These findings reinforce the importance of concurrently evaluating both local and regional processes that promote species diversity and distribution of native riparian flora. Furthermore, as restoration activities become more prevalent across the landscape, strategies for restoration outcomes should emulate the patterns of species diversity and biogeographic distributions found at regional scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号