首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
p105, also known as NF-kappaB1, is an atypical IkappaB molecule with a multi-domain organization distinct from other prototypical IkappaBs, like IkappaBalpha and IkappaBbeta. To understand the mechanism by which p105 binds and inhibits NF-kappaB, we have used both p105 and its C-terminal inhibitory segment known as IkappaBgamma for our study. We show here that one IkappaBgamma molecule binds to NF-kappaB dimers wherein at least one NF-kappaB subunit is p50. We suggest that the obligatory p50 subunit in IkappaBgamma.NF-kappaB complexes is equivalent to the N-terminal p50 segment in all p105.NF-kappaB complexes. The nuclear localization signal (NLS) of the obligatory p50 subunit is masked by IkappaBgamma, whereas the NLS of the nonobligatory NF-kappaB subunit is exposed. Thus, the global binding mode of all IkappaB.NF-kappaB complexes seems to be similar where one obligatory (or specific) NF-kappaB subunit makes intimate contact with IkappaB and the nonobligatory (or nonspecific) subunit is bound primarily through its ability to dimerize. In the case of IkappaBalpha and IkappaBbeta, the specific NF-kappaB subunit in the complex is p65. In contrast to IkappaBalpha.NF-kappaB complexes, where the exposed NLS of the nonspecific subunit imports the complex to the nucleus, p105.NF-kappaB and IkappaBgamma.NF-kappaB complexes are cytoplasmic. We show that the death domain of p105 (also of IkappaBgamma) is essential for the cytoplasmic sequestration of NF-kappaB by p105 and IkappaBgamma. However, the death domain does not mask the exposed NLS of the complex. We also demonstrate that the death domain alone is not sufficient for cytoplasmic retention and instead functions only in conjunction with other parts in the three-dimensional scaffold formed by the association of the ankyrin repeat domain (ARD) and NF-kappaB dimer. We speculate that additional cytoplasmic protein(s) may sequester the entire p105.NF-kappaB complex by binding through the death domain and other segments, including the exposed NLS.  相似文献   

2.
3.
Protein structure prediction codes based on the associative memory Hamiltonian were used to probe the binding modes between the nuclear localization signal (NLS) polypeptide of NF-kappaB and the inhibitors IkappaBalpha and IkappaBbeta. Experimentally, it is known that the NLS polypeptide is unstructured in the NF-kappaB complex with DNA but it forms an extended helical structure with the NLS (residues 301-304) between the two helices in the NF-kappaB/IkappaBalpha complex. The simulations included the NF-kappaB(p65) and (p50) NLS polypeptides and various mutants alone and in the presence of IkappaBalpha and IkappaBbeta. The simulations predict that the NLS polypeptide by itself binds tightly to IkappaBalpha and IkappaBbeta. In the NF-kappaB (p50/p65) heterodimer, the p50 NLS is predicted to remain free to bind to importin alpha. In the interaction with IkappaBalpha, both p65 NLSs are predicted to be bound. In IkappaBbeta, the NLS polypeptide binds to two binding sites, as seen in the crystal structure, with one site heavily favored for stable binding.  相似文献   

4.
X-ray crystal structure of an IkappaBbeta x NF-kappaB p65 homodimer complex   总被引:1,自引:0,他引:1  
We report the crystal structure of a murine IkappaBbeta x NF-kappaB p65 homodimer complex. Crystallographic models were determined for two triclinic crystalline systems and refined against data at 2.5 and 2.1 A. The overall complex structure is similar to that of the IkappaBalpha.NF-kappaB p50/p65 heterodimer complex. One NF-kappaB p65 subunit nuclear localization signal clearly contacts IkappaBbeta, whereas a homologous segment from the second subunit of the homodimer is mostly solvent-exposed. The unique 47-amino acid insertion between ankyrin repeats three and four of IkappaBbeta is mostly disordered in the structure. Primary sequence analysis and differences in the mode of binding at the IkappaBbeta sixth ankyrin repeat and NF-kappaB p65 homodimer suggest a model for nuclear IkappaBbeta.NF-kappaB.DNA ternary complex formation. These unique structural features of IkappaBbeta may contribute to its ability to mediate persistent NF-kappaB activation.  相似文献   

5.
6.
7.
8.
9.
10.
One of the most prominent NF-kappaB target genes in mammalian cells is the gene encoding one of its inhibitor proteins, IkappaBalpha. The increased synthesis of IkappaBalpha leads to postinduction repression of nuclear NF-kappaB activity. However, it is unknown why IkappaBalpha, among multiple IkappaB family members, is involved in this process and what significance this feedback regulation has beyond terminating NF-kappaB activity. Herein, we report an important IkappaBalpha-specific function dictated by its amino-terminal nuclear export sequence (N-NES). The IkappaBalpha N-NES is necessary for the postinduction export of nuclear NF-kappaB, which is a critical event in reestablishing a permissive condition for NF-kappaB to be rapidly reactivated. We show that although IkappaBalpha and another IkappaB member, IkappaBbeta, can enter the nucleus and repress NF-kappaB DNA-binding activity during the postinduction phase, only IkappaBalpha allows the efficient export of nuclear NF-kappaB. Moreover, swapping the N-terminal region of IkappaBbeta for the corresponding IkappaBalpha sequence is sufficient for the IkappaB chimera protein to export NF-kappaB similarly to IkappaBalpha during the postinduction state. Our findings provide a mechanistic explanation of why IkappaBalpha but not other IkappaB members is crucial for postrepression activation of NF-kappaB. We propose that this IkappaBalpha-specific function is important for certain physiological and pathological conditions where NF-kappaB needs to be rapidly reactivated.  相似文献   

11.
12.
13.
The inhibitor of NF-kappaB (IkappaB) family of proteins is believed to regulate NF-kappaB activity by cytoplasmic sequestration. We show that in cells depleted of IkappaBalpha, IkappaBbeta and IkappaBepsilon proteins, a small fraction of p65 binds DNA and leads to constitutive activation of NF-kappaB target genes, even without stimulation, whereas most of the p65 remains cytoplasmic. These results indicate that although IkappaBalpha, IkappaBbeta and IkappaBepsilon proteins could be dispensable for cytoplasmic retention of NF-kappaB, they are essential for preventing NF-kappaB-dependent gene expression in the basal state. We also show that in the absence of IkappaBalpha, IkappaBbeta and IkappaBepsilon proteins, cytoplasmic retention of NF-kappaB by other cellular proteins renders the pathway unresponsive to activation.  相似文献   

14.
15.
16.
17.
IkappaB proteins are known as the regulators of NF-kappaB activity. They bind tightly to NF-kappaB dimers, until stimulus-responsive N-terminal phosphorylation by IKK triggers their ubiquitination and proteasomal degradation. It is known that IkappaBalpha is an unstable protein whose rapid degradation is slowed upon binding to NF-kappaB, but it is not known what dynamic mechanisms control the steady-state level of total IkappaBalpha. Here, we show clearly that two degradation pathways control the level of IkappaBalpha. Free IkappaBalpha degradation is not controlled by IKK or ubiquitination but intrinsically, by the C-terminal sequence known as the PEST domain. NF-kappaB binding to IkappaBalpha masks the PEST domain from proteasomal recognition, precluding ubiquitin-independent degradation; bound IkappaBalpha then requires IKK phosphorylation and ubiquitination for slow basal degradation. We show the biological requirement for the fast degradation of the free IkappaBalpha protein; alteration of free IkappaBalpha degradation dampens NF-kappaB activation. In addition, we find that both free and bound IkappaBalpha are similar substrates for IKK, and the preferential phosphorylation of NF-kappaB-bound IkappaBalpha is due to stabilization of IkappaBalpha by NF-kappaB.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号