首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
Conformation states of Xenopus transcription factor IIIA   总被引:4,自引:0,他引:4  
J S Hanas  A L Duke  C J Gaskins 《Biochemistry》1989,28(9):4083-4088
  相似文献   

6.
We studied the pathway of 5S RNA during oogenesis in Xenopus laevis from its storage in the cytoplasm to accumulation in the nucleus, the sequence requirements for the 5S RNA to follow that pathway, and the 5S RNA-protein interactions that occur during the mobilization of stored 5S RNA for assembly into ribosomes. In situ hybridization to sections of oocytes indicates that 5S RNA first becomes associated with the amplified nucleoli during vitellogenesis when the nucleoli are activity synthesizing ribosomal RNA and assembling ribosomes. When labeled 5S RNA is microinjected into the cytoplasm of stage V oocytes, it migrates into the nucleus, whether microinjected naked or complexed with the protein TFIIIA as a 7S RNP storage particle. During vitellogenesis, a nonribosome bound pool of 5S RNA complexed with ribosomal protein L5 (5S RNPs) is formed, which is present throughout the remainder of oogenesis. Immunoprecipitation assays on homogenates of microinjected oocytes showed that labeled 5S RNA can become complexed either with L5 or with TFIIIA. Nucleotides 11 through 108 of the 5S RNA molecule provide the necessary sequence and conformational information required for the formation of immunologically detectable complexes with TFIIIA or L5 and for nuclear accumulation. Furthermore, labeled 5S RNA from microinjected 7S RNPs can subsequently become associated with L5. Such labeled 5S RNA is found in both 5S RNPs and 7S RNPs in the cytoplasm, but only in 5S RNPs in the nucleus of microinjected oocytes. These data suggest that during oogenesis a major pathway for incorporation of 5S RNA into nascent ribosomes involves the migration of 5S RNA from the nucleus to the cytoplasm for storage in an RNP complex with TFIIIA, exchange of that protein association for binding with ribosomal protein L5, and a return to the nucleus for incorporation into ribosomes as they are being assembled in the amplified nucleoli.  相似文献   

7.
The precise molecular composition of the Xenopus laevis TFIIIA-5S ribosomal RNA complex (7S particle) has been established from small angle neutron and dynamic light scattering. The molecular weight of the particle was found to be 95,700 +/- 10,000 and 86,700 +/- 9000 daltons from these two methods respectively. The observed match point of 54.4% D2O obtained from contrast variation experiments indicates a 1:1 molar ratio. It is concluded that only a single molecule of TFIIIA, a zinc-finger protein, and of 5S RNA are present in this complex. At high neutron scattering contrast radius of gyration of 42.3 +/- 2 A was found for the 7S particle. In addition a diffusion coefficient of 4.4 x 10(-11) [m2 s-1] and a sedimentation coefficient of 6.2S were determined. The hydrodynamic radius obtained for the 7S particle is 48 +/- 5 A. A simple elongated cylindrical model with dimensions of 140 A length and 59 A diameter is compatible with the neutron results. A globular model can be excluded by the shallow nature of the neutron scattering curves. It is proposed that the observed difference of 15 A in length between the 7S particle and isolated 5S RNA most likely indicates that part(s) of the protein protrudes from the end(s) of the RNA molecule. There is no biochemical evidence for any gross alteration in 5S RNA conformation upon binding to TFIIIA.  相似文献   

8.
9.
Immature oocytes from Xenopus laevis contain a 42S ribonucleoprotein particle (RNP) containing 5S RNA, tRNA, a 43 kDa protein, and a 48 kDa protein. A particle containing 5S RNA and the 43 kDa protein (p43-5S) liberated from the 42S particle upon brief treatment with urea can be purified by anion exchange chromatography. The purified p43-5S RNA migrates as a distinct species during electrophoresis on native polyacrylamide gels. Radiolabeled 5S RNA can be incorporated into the p43-5S complex by an RNA exchange reaction. The resulting complexes containing labeled 5S RNA have a mobility on polyacrylamide gels identical to that of purified p43-5S RNPs. RNP complexes containing 5S RNA labeled at either the 5' or 3' end were probed with a variety of nucleases in order to identify residues protected by p43. Nuclease protection assays performed with alpha-sarcin indicate that p43 binds primarily helices I, II, IV, and V of 5S RNA. This is the same general binding site observed for TFIIIA on 5S RNA. Direct comparison of the binding sites of p43 and TFIIIA with T1 and cobra venom nucleases reveals striking differences in the protection patterns of these two proteins.  相似文献   

10.
11.
12.
13.
K E Joho  M K Darby  E T Crawford  D D Brown 《Cell》1990,61(2):293-300
A 5S RNA binding protein (p43) in Xenopus is a major constituent of oocytes and comprises part of a 42S ribonucleoprotein storage particle. We have cloned and sequenced p43 cDNA from X. laevis and X. borealis as well as the cDNA for X. borealis TFIIIA. Like TFIIIA, p43 has nine zinc fingers, seven of which are exactly the same size as their counterparts in TFIIIA. Amino acid homology between the two proteins is restricted mainly to conserved residues characteristic of zinc fingers. In contrast to TFIIIA, which binds specifically to both 5S RNA and 5S RNA genes, p43 binds exclusively to 5S RNA.  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号