首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of the ionophores A-23187 and X-537 A on glucose metabolism, ATP content and sucrose permeability in pancreatic islets microdissected from obese-hyperglycemic mice were studied. The formation of 14CO2 from 10 mM D-[U-14C] GLUCOSE WAS INHIBITED BY OMISSION OF Ca2+ from the medium. A-23187 (10 muM) induced a further decrease of 14CO2 formation whereas X-537 A (10 muM) had no effect. At 20 mM glucose both A-23187 (48 muM) and X-537 A (43 muM) decreased the 14CO2 formation in the absence of Ca2+ whereas only X-537 A inhibited in the presence of Ca2+. X-537 A (43 muM) also decreased the formation of 3H2O from 20 mM D-[5-3H] glucose. The islet content of ATP was not changed after incubation in media deficient in either Mg2+ or Ca2+. However, omission of both Mg2+ and Ca2+ resulted in about 50% decrease of the ATP content. A-23187 and X-537 A induced dose-dependent decreases of the islet ATP content. X-537 A was much more potent than A-23187. Both ionophores induced stronger depression of the ATP content when Ca2+ was omitted. X-537 A (43 muM) but not A-23187 (48 muM) increased the beta-cell membrane permeability as indicated by an increased sucrose space in relation to the urea space of islets. Such an effect was not obtained with X-537 A at 1 muM or by omission of Ca2+. It is suggested that the marked metabolic effects of the ionophores reflect an impaired mitochondrial metabolism. These metabolic changes should be considered in interpretations of ionophore action on insulin secretion.  相似文献   

2.
1. The ionophore X-537A increases the rate of catecholamine release from the in vitro frog adrenal.2. The ratio of epinephrine/norepinephrine measured during X-537A stimulation was the same as that during spontaneous release.3. Even when Ca++ was removed from the Ringer, X-537A stimulated catecholamine release, but depolarization by elevated extra-cellular K+ was no longer effective.4. X-537A also increases the release of dopamine β-hydroxylase, suggesting that the ionophore acts, at least in part, by stimulating the exocytosis of the chrommaffin granule contents.5. Therefore, it is questionable whether the release of catecholamines by X-537A is owing to its action as a Ca++- ionophore.6. The divalent cation ionophore, A-23187 (50μM), did not affect the rate of catecholamine release.  相似文献   

3.
Insulin release from isolated perifused pancreatic islets was stimulated by the divalent ionophore A23187 in the absence of exogenous glucose. In addition, A23187 produced a 2-fold elevation of cyclic adenosine 3':5'-monophosphate (cAMP) levels in isolated perifused islets. The elevation of cAMP levels coincided with peak insulin release. Ionophore-induced insulin release was unaffected by pretreatment of the islets with theophylline (5 mM). Stimulation of insulin release produced by the ionophore occurred either in the presence or absence of extracellular Ca-2+; however, cAMP accumulation required the presence of extracellular Ca-2+. The ionophore (10 muM) had no effect on adenylate cyclase activity of homogenates of isolated islets. The results of this study are interpreted as indicating that intracellular Ca-2+ has an essential role in the insulin releasing mechanism, whereas the cAMP system has a modulatory effect on this process.  相似文献   

4.
The role of Ca2+ on insulin release has been studied by the use of ionophore A23187. The ionophore complexes divalent cations and permits Ca2+ entry into cells by acting as a carrier in the plasma membranes. Cultured cells obtained by enzymatic digestion of pancreases from newborn rats were studied on the 3rd day of culture. With Ca2+ in the incubation medium the ionophore induced sustained insulin release even in the absence of glucose. Optimal effects of the ionophore were observed at 3 and 10 mug per ml in the presence of 0.3 to 1.0 mM Ca-2+. Under these conditions the insulin release was greater than that caused by 16.7 mM glucose. A graded response was observed to changes in Ca-2+ concentration from 0.1 to 1.0 mM Ca-2+. Higher Ca-2+ concentrations caused a large amount of insulin to be released promptly, but the release was not sustained. Mg-2+ and Sr-2+ were not found to substitute for Ca-2+. Ba-2+ at 0.3 mM stimulated insulin release even in the absence of ionophore. Cyclic adenosine 3':5'-monophosphate was able to increase ionophore-induced insulin release. The alpha-adrenergic effect of epinephrine to inhibit insulin release was not observed in the presence of Ca-2+ and the ionophore, and a stimulatory effect of epinephrine was seen. This unusual stimulatory effect of epinephrine was blocked by propranolol indicating a beta-adrenergic mechanism for epinephrine. It is concluded that Ca-2+, which plays an essential role in the stimulus-secretion coupling, can alone initiate and cause sustained insulin release.  相似文献   

5.
A preparation of synaptosomes isolated from rat brain was used as a model of nerve to study affects of drugs on uptake and release of biogenic amines. The influence of ionophores, which bind calcium, on the release of noripinephrine from synaptosomes was examined to determine their effect on the release of the amine. A23187 induced release of norepinephrine mainly as the amine and this action was enhanced by calcium and depressed by magnetism. X-537A however, released norepinephrine mostly as deaminated metabolites but acted independently of calcium or magnetism. A23187, therefore is thought to be associated at least in part, with exocytotic amine release, possibly by enhancing entry of calcium across the plasma membrane. X-537A on the other hand may act as a carrier of the amine across the vesicular membrane and expose the amine to intrasynaptosomal monoamine oxidase.  相似文献   

6.
A microsomal fraction resembling striated muscle sarcoplasmic reticulum was isolated from uterine smooth muscle. ATP induces calcium accumulation in this fraction. Increased temperature enhances calcium accumulation and calcium-activated ATPase. In the absence of ATP, approximately 35% of the intrinsic calcium exchanges with the 45Ca in the incubation medium. In the presence of ATP, exchange of intrinsic calcium with 45Ca increases by an amount which equals the ATP-dependent calcium binding. In preparations partially preloaded with calcium, a steady state of bound calcium is reached when the ATP is exhausted. Calcium is released under these conditions by prostaglandins E2 and F2alpha, but not by PGF1beta. The antibiotic ionophores X537A and A23187, as well as oxytocin, also release calcium previously accumulated under ATP stimulation. None of these agents, with the exception of oxytocin, release intrinsic calcium. Thus, the effect of prostaglandins resembles that of the ionophores, suggesting an ionophoretic action of these prostaglandins. The release of calcium conforms with the in vivo smooth muscle contracting action of these agents.  相似文献   

7.
Elevated concentrations of potassium chloride (50 to 120 mM) in the incubation medium stimulated in vitro discharge of secretory protein from guinea pig pancreatic lobules. The effect of potassium was not inhibited by 10(-4) M atropine, sodium substitutes, or 10(-5) M tetrodotoxin. Exposure of lobules to elevated concentrations of potassium chloride did not increase the release of tissue lactic dehydrogenase and resulted in the appearance of exocytotic images detected by electron microscopy. The time course and extent of discharge due to 75 mM KCl were similar to those caused by the ionophore A23187 and the secretory effect of both agents depended on extracellular calcium and intracellular energy reserves. Potassium chloride stimulation of 75 mM increased the influx of extracellular calcium by 49%, as measured by net 45Ca uptake. Optimal carbamylcholine chloride or pancreozymin stimulation consistently showed a greater effect on discharge than optimal KCl or A23187 stimulation and the additional effect depended on the ability of these physiological secretagogues to recruit calcium from intracellular sources. Potassium chloride stimulation did not result in cyclic GMP elevations in the presence of atropine and those elevations due to A23187 stimulation were small (21 to 30%) and dissimilar both in character (calcium dependence) and time course compared to those resulting from the physiological secretagogues. These findings allow us to define two interrelated pathways which couple hormonal stimulation and discharge of secretory protein in the exocrine pancreas.  相似文献   

8.
Summary The effects of divalent cation ionophores, A23187 and X-537A, on the electrical membrane properties were investigated by using the soma membrane of the X-organ of the crayfish. They reduced the amplitude and maximum rate of rise of Ca-action potential in lower concentration. As the concentration increased, a reduction of membrane resistance and hyperpolarization occurred simultaneously. Further increase resulted in membrane depolarization with a further decrease in resistance. The threshold concentration of X537A was 100 times higher than that of A23187. These effects were reversible only when the application period was relatively short, while a longer application resulted in an incomplete reversibility or in no reversibility at all. The ionophore effect was facilitated in high Ca medium and diminished in low Ca medium. In Sr medium, the same effects on the resistance and the membrane potential were barely observable. TEA reduced the effects of A23187 but did not completely inhibit the effects. The Na-action potential was also reduced by the higher concentration of the ionophore. From these results it is concluded that the divalent cation ionophores, A23187 and X537A, carry divalent cation, Ca ions in a physiological medium, into the neuron soma through the membrane and the consequent increase of the intracellular divalent cations induces K conductance increase and that higher concentration of the ionophore induces the increase in the conductance of the other ion species, such as Na.  相似文献   

9.
To gain further insight on the mechanism of GH secretion in general and on the stimulation of this process by prostaglandins in particular, we compared the effects of PGE1 and PGE2 on hormone release and cyclic nucleotide levels with those of the ionophores A23187 and X537A under a variety of experimental conditions. All these substances (in the presence but not in the absence of calcium) enhanced GH release in incubated rat anterior pituitaries , prostaglandins being considerably more potent than ionophores. However, while PGE2 caused a dose-dependent rise in pituitary cyclic AMP levels (from doubling at 10−7 M to a two-hundred fold increase at 10−5 M), the ionophores had no effect on the concentrations of this nucleotide. Neither PGE2 nor the ionophores had any measurable effect on cyclic GMP levels. Exposure of tissues to ionophores for 60 minutes rendered them refractory to subsequent stimulation by PGE1 or to ionophores themselves, whereas preincubation with PGE1 did not diminish GH responses during a second incubation period. On the other hand, 60-minute preincubation of hemipituitaries in the presence of ionophores (10−5 M) did not suppress subsequent PGE1-promoted cyclic AMP accumulation. Metabolic blockers inhibited PGE2 and A23187-promoted GH-release but failed to suppress GH-response to X537A. Verapamil partially inhibited PGE2 but not ionophore induced GH secretion. Ionophores particularly X537A, accelerated 45Ca efflux while PGE1 did not influence this. Electronmicroscopy revealed extensive vacuolization localized chiefly at the Golgi apparatus when tissues were incubated with X537A. PGE1 and A23187 had no such morphological effect. It is concluded that prostaglandins E and ionophores promote GH secretion by different mechanisms.  相似文献   

10.
The divalent ionophores A23187 and X-537A induce parthenogenesis in sea urchin eggs. This results from their ability to mobilize intracellular Ca2+, which is implicated in both artificial parthenogenesis as well as the natural fertilization process. A23187 causes expulsion of cortical granules and elevation of the fertilization membrane within 0.5–9 min followed by an initiation of cell cleavage. The broader spectrum ionophore X-537A is less potent, but the production of cytoplasmic aberrations are more apparent. In contrast to the sperm-activated egg, the initial phase of ionophore induced activation is accompanied either by relatively insignificant changes in membrane resistance, or an increase.  相似文献   

11.
Summary The antibiotic ionophores Br-X-537A and A-23187 alter the ultrastructure of neurohaemal tissue on the transverse nerve of the stick insect, Carausius morosus. Br-X-537A induces dramatic changes in the ultrastructural appearance of all three types of neurosecretory fibres present in the neurohaemal tissue. The neurosecretory granules become more electron-lucent and the mitochondria become more electron-opaque. The bounding membrane of the granules is frequently ruptured. A-23187, on the other hand, has no effect on two of the three types of fibres, but does produce an increase in the number of exocytotic profiles in the third.The two ionophores therefore have different effects on the same tissue. The results are discussed in the light of previous work with the use of these ionophores.We wish to thank Mrs. J. Birch for assistance with the electron micrographs, and Roche Products Ltd. and Lilly Research Centre Ltd. for gifts of the ionophores Br-X-537A and A-23187. The work was supported by the Science Research Council  相似文献   

12.
The calcium ionophore A-23187 induced spontaneous, rhythmic contractions in the rat isolated vas deferens in a concentration-dependent manner. Contractions were blocked by phentolamine and were abolished following pretreatment with reserpine. In tissues preloaded with [3H]noradrenaline, A-23187 (10 microM) caused a time-dependent increase in the release of tritium. The findings suggest that A-23187-induced contractions in the rat vas deferens are secondary to the release of endogenous noradrenaline from the adrenergic nerves, as are contractions induced in this preparation by X-537A (another calcium ionophore) described earlier by other investigators.  相似文献   

13.
The antibiotics X 537A and A 23187 are negatively charged divalent cation ionophores. X 537A may, in addition, be an ionophore for amines including catecholamines. The effects of these ionophores were examined on the uptake and release of dopamine by synaptosomes prepared from rat corpus striatum. Both X 537A and A 23187, at concentrations less than 0.5 μM, release both endogenous and [3H]-dopamine from synaptosomes. They had virtually no effect on the uptake of exogenous dopamine. These compounds act by different mechanisms. X 537A causes divalent ion-independent release in which a large fraction of the effluent consists of deaminated products. X 537A, in addition, releases [3H]dopamine from rat adrenal medullary chromaffin granules. The results suggest that X 537A causes release of dopamine from intrasynaptosomal storage vesicles and perhaps is acting as a catecholamine carrier across the vesicular membrane. A 23187, on the other hand, causes a Ca2+-dependent release in which only a small fraction of the catechol in the effluent is deaminated. A 23187 has little effect on the release of [3H]dopamine from chromaffin granules. These results suggest that A 23187 carries Ca2+ into the synaptosomes and thereby initiates exocytotic release.  相似文献   

14.
The possible role of calcium in the uptake of transferrin and iron by rabbit reticulocytes was investigated by altering cellular calcium levels through the use of the chelating agents EDTA and ethyleneglycol-bis-(3-aminoethylether)-N,N′-tetraacetic acid (EGTA) and the ionophores, A23187 and X537A. Incubation of reticuloyctes with EDTA or EGTA at 4°C had no effect on transferrin and iron uptake but incubation at 37°C resulted in an irreversible inhibition associated with decreased adsorption of transferrin to the cells and evidence of inactivation or loss of the transferrin receptors. Transferrin and iron uptake were also inhibited when the cells were incubated with A23187 or X537A. In the case of A23187 the action was primarily exerted on the temperature-sensitive stage of transferrin uptake and was associated with loss of cellular K+ and decrease in cell size. The effect was greater when Ca2+ was added to the incubation medium than its absence. X537A produced relatively greater inhibition of iron uptake than of transferrin uptake, associated with a reduction in cellular ATP concentratio. The action of X537A was unaffected by the presence of Ca2+ in the incubation medium.The results obtained with EDTA and EGTA indicate that cell membrane Ca2+ is required for the integrity or binding of transferrin receptors to the reticulocyte membrane. No evidence was obtained from the experiments with ionophores that an increase of cellular Ca2+ affects transferrin and iron uptake directly. The inhibition caused by A23187 was mainly due to a reduction in cell size resulting from increased membrane permeability to K+ and that caused by X537A appeared to result from an inhibition of energy metabolism and ATP production.  相似文献   

15.
The role of Ca2+ in the secretion of insulin and glucagon was investigated by studying the effects of Ca2+ ionophores on hormone secretion from isolated perifused islets of Langerhans. Ionophore X537A (100 muM), which binds alkaline earth cations and also complexes some univalent cations, caused a rapid transient increase in insulin and glucagon secretion which was not dependent on the presence of Ca2+ in the perifusion medium. Ionophore A23187 (100 muM), which specifically binds bivalent cations at neutral pH values, similarly increased insulin secretion in complete and Ca2+-free medium, but only stimulated glucagon release in the presence of extracellular Ca2+. Since the stimulatory effects of both ionophores were associated with an increased Ca2+ flux in the islets, these experiments support the hypothesis that Ca2+ may trigger the release of insulin and suggest that it is also involved in the secretion of glucagon. The basal rate of both insulin and glucagon release was significantly increased when Ca2+ was omitted from the perifusion medium, but it is proposed that this finding may be due to adverse effects on cell-membrane function under these conditions.  相似文献   

16.
Effective concentrations50 of androgens, i.e. testosterone, androsterone, androstanediol, 5 beta-dihydrotestosterone and progestins: progesterone, pregnanolone, pregnanedione, epipregnanolone, allopregnanolone and allopregnanedione were assayed on the tonic contractions of the isolated rat myometrium induced by calcium in high-potassium calcium-free depolarizant solutions. Steroids showed their relaxant effect by fadding the sustained contraction induced by calcium in a depolarized state. Also, the addition of the calcium ionophores A-23187 and X-537A reversed the steroid relaxant effect by increasing sharply the tonic contraction. The possibility of steroid-induced relaxation through release of noradrenaline or histamine was discarded by blocking their specific receptors. From the results it is concluded that delta-4 and 5-reduced androgens and progestins produce relaxation by a myogenic mechanism acting on the smooth muscle cell, most likely by directly blocking the calcium channels they causing modulation of: the contraction-relaxation cycle.  相似文献   

17.
The expression of glucagon-like peptide-1 (GLP-1) receptor and the effects of GLP-1-(7-36) amide (t-GLP-1) on glucose metabolism and insulin release by pancreatic islets during rat development were studied. GLP-1 receptor mRNA was found in significant amounts in pancreatic islets from all age groups studied, GLP-1 receptor expression being maximal when pancreatic islets were incubated at physiological glucose concentration (5.5 mM), but decreasing significantly when incubated with either 1.67 or 16.7 mM glucose. Glucose utilization and oxidation by pancreatic islets from fetal and adult rats rose as a function of glucose concentration, always being higher in fetal than in adult islets. The addition of t-GLP-1 to the incubation medium did not modify glucose metabolism but gastric inhibitory polypeptide and glucagon significantly increased glucose utilization by fetal and adult pancreatic islets at 16.7 mM glucose. At this concentration, glucose produced a significant increase in insulin release by the pancreatic islets from 10-day-old and 20-day-old suckling rats and adult rats, whereas those from fetuses showed only a significant increase when glucose was raised from 1.67 to 5.5 mM. t-GLP-1 elicited an increase in insulin release by pancreatic islets from all the experimental groups when the higher glucose concentrations were used. Our findings indicate that GLP-1 receptors and the effect of t-GLP-1 on insulin release are already present in the fetus, and they therefore exclude the possibility that alterations in the action of t-GLP-1 are responsible for the unresponsiveness of pancreatic beta cells to glucose in the fetus, but stimulation of t-GLP-1 release by food ingestion in newborns may partially confer glucose competence on beta cells.  相似文献   

18.
The ionophores A 23187 and X-537 A induce an uptake of 45Ca by human blood platelets. They induce the release of adenine nucleotides and of serotonin. A 23187 also induces platelet aggregation and the retraction of a clot formed in platelet-rich plasma by reptilase. These results suggest that an increase of the concentration of Ca2+ in the cytoplasm plays a role in the activation of blood platelets.  相似文献   

19.
Summary Exposure of isolated pancreatic islets (mouse or rat) to low temperature (2° C) evoked a threefold increase in insulin release irrespective of the glucose concentration in the incubation medium. Cold-induced release was transient and rewarming to 37° C restored the sensitivity of B-cells to glucose stimulation. In islets cooled to 2° C, exocytotic profiles could easily be detected both by thin-section and freeze-fracture electron microscopy. As revealed by the freeze-fracture technique, the number of exocytotic profiles per membrane area was increased three-to fourfold as compared to islet cells incubated at 20° C. This was paralleled by intracellular fusion of secretory vesicles. Cold-induced insulin release was not affected by theophylline, cytochalasin B, omission of extracellular Ca++ or D600. Replacement of extracellular Na+ with choline or sucrose suppressed the increase in insulin release and in frequency of exocytotic profiles recorded after exposure to 2° C. It is suggested that a redistribution of Ca++ from intracellular stores, possibly mediated by an increase in intracellular Na+, triggers exocytosis of insulin granules upon exposure to cold.  相似文献   

20.
S Heisler 《Life sciences》1976,19(2):233-242
The ionophore, A-23187, was an effective pancreatic secretagogue. The response to A-23187 was Ca2+-dependent; Mg2+ reduced the secretory response to the ionophore. A-23187-stimulated enzyme release was potentiated by dibutyryl cyclic AMP; in the presence of carbachol, output of pancreatic protein paralleled the response to A-23187 alone. The time-course for secretion with A-23187 was similar to that observed with carbachol. The ionophore did not affect basal cyclic AMP levels but did stimulate a rapid Ca2+-dependent production of pancreatic cyclic GMP which preceded the onset of the secretory response. A-23187 did not significantly alter basal or carbachol-stimulated 45Ca efflux from isotope preloaded glands; yet in Ca2+-lowered media, it inhibited (reversed) the secretory response to carbachol, an effect which may have been due to an outward transport by the ionophore of cholinergic-mobilized intracellular Ca2+. Like carbachol, A-23187, inhibits the incorporation of amino acid into new protein, the effect being partially dependent on extracellular Ca2+. The data suggest that the pancreatic cholinergic receptor acts as a Ca2+-ionophore and that extracellular Ca2+ is utilized in the synthesis of cyclic GMP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号