首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plant morphology may be shaped, in part, by the third trophic level. Leaf domatia, minute enclosures usually in vein axils on the leaf underside, may provide the basis for protective mutualism between plants and mites. Domatia are particularly frequent among species of trees, shrubs, and vines in the temperate broadleaf deciduous forests in north Asia where they may be important in determining the distribution and abundance of mites in the forest canopy. In lowland and montane broadleaf deciduous forests at Kwangn;akung and Chumbongsan in Korea, we found that approximately half of all woody species in all forest strata, including many dominant trees, have leaf domatia. Pooling across 24 plant species at the two sites, mites occupied a mode of 60% (range 20-100%) of domatia and used them for shelter, egg-laying, and development. On average, 70% of all active mites and 85% of mite eggs on leaves were found in domatia; over three-quarters of these were potentially beneficial to their hosts. Further, mite abundance and reproduction (expressed as the proportion of mites at the egg stage) were significantly greater on leaves of species with domatia than those without domatia in both forests. Effects of domatia on mite abundance were significant only for predaceous and fungivorous mite taxa; herbivore numbers did not differ significantly between leaves of species with and without domatia. Comparable patterns in broadleaf deciduous forest in North America and other biogeographic regions suggest that the effect of leaf domatia on foliar mite abundance is general. These results are consistent with several predictions of mutualism between plants and mites, and indicate that protective mutualisms may be frequent in the temperate zone.  相似文献   

2.
1. Habitat structure is an important factor influencing population dynamics and trophic organisation of terrestrial invertebrates. The phylloplane zone on vascular plant leaves is topographically complex, containing a multitude of microhabitats such as leaf hairs, lesions, and structural refugia such as domatia, which may modify interactions between resident invertebrate communities, colonisers, and subsequent trophic relationships. Leaf domatia are small indentations on the underside of leaves and are often inhabited by potentially beneficial mites and other arthropods. 2. This study investigated the relationship between domatia availability and foliar mite assemblages in contrasting habitats (native forest, plantation forest, and pasture) using a standard test plant (the endemic New Zealand shrub Coprosma lucida, J.R. & G. Forst.). 3. Diverse woody native vegetation types supported higher numbers of mite species than either plantation forest or pastoral grasses. The highest number of mite species occurred in the native forest (63%), plantation forest (38%), and pastoral grasses (25%). In the native vegetation type, experimental C. lucida leaves with domatia supported higher mite densities, greater colonisation success, and more diverse mite assemblages than those without domatia. Mite assemblages within the pastoral site were significantly different from the other two vegetation types. Only one fungivorous mite species, Orthotydeus californicus, occurred compared to five mite species in native and plantation forests. 4. This study indicated that foliar mite assemblages in native vegetation on experimental C. lucida shrubs are influenced by domatia availability, resident foliar mites, and local mite assemblages.  相似文献   

3.
Leaves of plants of several families possess small cavities or tufts of hair where leaf veins bifurcate. These so-called acarodomatia are usually inhabited by predatory and fungivorous mites, which utilize domatia as shelter against adverse conditions or against other predators and cannibals. Plants may benefit from the presence of the mites through reduced densities of herbivores or plant-pathogenic fungi. It has therefore been suggested that domatia mediate a mutualistic interaction between plants and mites. We tested the hypothesis that cavity-like domatia on coffee plants benefit the predatory mite Iphiseiodes zuluagai through providing protection against adverse weather conditions and other predators in three field experiments. We manipulated plant domatia by blocking all on one group of plants, whereas a second group of plants with open natural domatia served as a control. Predatory mite populations were provided with pollen as a food source during part of two experiments. Experiments were done in the dry and rainy season to test the effects of adverse weather conditions and with or without an insect glue barrier on the plant to prevent access of ground-dwelling hyperpredators. High temperatures had a significant negative effect on predator densities in all experiments, whereas rainfall and humidity affected densities in one and two experiments respectively. None of the experiments showed a significant effect of domatia manipulation on mite numbers, or a significant interaction between weather parameters and domatia, suggesting that domatia did not protect against these adverse weather conditions. Nevertheless, predatory mites were frequently observed inside the domatia, suggesting that the mites benefit from using domatia. Perhaps domatia offer protection against hyperpredators, which were rarely observed during our experiments.  相似文献   

4.
The fitness benefits of plant structural adaptations that increase the effectiveness of fungivores against leaf pathogenic fungi are poorly understood. In a 12‐month field experiment, we investigated the effect of domatia on mite density, the role of these mites in limiting leaf fungi, and the associated effects on plant fitness in the endemic New Zealand shrub, Coprosma lucida. The presence of domatia on mite density was controlled using combinations of domatia blocking, sham blocking, mite addition and mite control using miticide. Limiting access to domatia reduced mite density and increased the proportion of leaves without mites. Mite families represented were predominantly fungivorous/detritivorous (97.2%), and predaceous (2.6%); herbivorous mites were absent. Mites significantly reduced fungal hyphae, fungal spores and pollen, but the effect was surface‐(upper/lower) and density‐dependent with the greatest reduction in fungi occurring over low mite densities. Fungal hyphae reduced leaf longevity, but were associated with increased production of new leaves. Hyphae density on old leaves was negatively correlated with the number of domatia produced on new leaves. New leaves in the mite reduction treatment had slightly reduced levels of carbon but not nitrogen. High levels of fungal infection on the lower surface increased the number of fruit fascicles per shoot, however on the upper surface where fungi were reduced by mites, hyphae density was negatively related to reproduction. The data support a limited interpretation of a fitness benefit for plants with domatia. While domatia increased mite density, control of fungi by mites occurred at lower average densities than supported by plants without functioning domatia. We suggest the primary function of leaf domatia in this mutualism is to increase the probability of a leaf‐level beneficial mite presence rather than to maximise mite density. Many mites are not necessarily better than few mites, but some mites are better than none.  相似文献   

5.
Leaf domatia, specialized chambers in the vein axils on the underside of leaves of many plant species, have remained an enigma for over a century. In this study we show a strong association between foliar domatia and mites in 37 plant species in Australasia. Overall, mites accounted for 91% of the arthropods observed in domatia. Across all species, a median of 51% of domatia were occupied and 71% of leaves showed mite evidence in domatia. The level of mite association did not depend on domatia type (pit, pouch, pocket, or tuft) or provenance (Papua New Guinea, Queensland, Victoria, or New Zealand). Mite association with domatia commonly varied between plant species, between individuals within species, and between shoots within individuals. The leaf developmental stage probably explains much of the variation in association for many of these species. The presence of a variety of life history stages of mites within domatia indicates that these structures act as shelters for development and reproduction. Furthermore, in 12 of 13 plant species examined, domatia concentrate mites in particular locations on the leaf. Mite taxa that we classify as largely predaceous (e.g. phytoseiids, stigmaeids and tydeids) or fungivorous (e.g. acarids and oribatids) were most common in domatia and dominated the association in 21 of 24 plant species in which the relative abundance of herbivorous, fungivorous and predaceous groups was quantified. We evaluate hypotheses that explain the role of leaf domatia, including non-functional hypotheses (e.g. architectural constraints), physiological function (e.g. gas exchange and water uptake), bacterial symbiosis and antagonistic and mutualistic associations with mites. Our quantitative results confirm anecdotal accounts of mite association with leaf domatia and are most consistent with Lundströem's century-old hypothesis of plant-mite mutualism in which leaf domatia billet predaceous and fungivorous mites that prey on plant enemies. Leaf domatia are widespread among woody angiosperms and abundant in many temperate and tropical regions of Australasia. Mites, an ancient group of arthropods whose diversity and abundance parallels that of insects, are likely to be important selective agents on terrestrial plants. Our results (1) indicate that mite-domatia association represents a relationship of comparable scope to plant-ant associations mediated by specialized plant structures such as extrafloral nectaries, food bodies and specialized domatia; (2) suggest that sociality is not a necessary prerequisite for widespread and diverse mutualisms between arthropods and plants; and, (3) extend the diversity of organisms that produce specialized mite ‘houses’ from lizards, and wasps and bees to woody angiosperms.  相似文献   

6.
1. Leaf domatia are tiny structures in leaf vein axils that are widespread among plant taxa and have been described to be typically inhabited by predatory and fungivorous mites. The mutualism hypothesis for the function of leaf domatia predicts that predatory and/or fungivorous mites benefit from having a favourable place to take refuge and reproduce and that plants benefit indirectly from reduced herbivory and/or pathogen attack.
2. The effect of leaf domatia on populations of predatory and herbivorous mites was examined for avocado, Persea americana . In separate experiments, domatia were added to leaves of a variety of avocado plants lacking domatia (Hass) and domatia were blocked on a domatia-bearing variety (Toro Canyon).
3. In two out of the five experiments conducted, domatia-bearing plants had significantly higher numbers of predatory mites compared with controls. Although herbivore numbers were consistently lower on plants with domatia than on plants without domatia, in no case did the presence of leaf domatia result in a statistically significant decrease in herbivorous mite populations.
4. These results suggest that domatia may frequently benefit predatory mites, however, indirect effects on herbivorous mites may not commonly exist or may be too difficult to detect.  相似文献   

7.
Acarodomatia are small tufts of hair or invaginations in the leaf surface and are frequently inhabited by several taxa of non-plant-feeding mites. For many years, ecologists have hypothesized that these structures represent a mutualistic association between mites and plants where the mites benefit the plant by reducing densities of phytophagous arthropods and epiphytic microorganisms, and domatia benefit the mite by providing protection from stressful environmental conditions, other predaceous arthropods, or both. We tested these hypothesized benefits of domatia to domatia-inhabiting mites in laboratory and growth chamber experiments. In separate experiments we examined whether domatia on the wild grape, Vitis riparia, provided protection against drying humidity conditions or predaceous arthropods to two species of beneficial mite: the mycophagous species Orthotydeus lambi, and the predaceous species Amblyseius andersoni. For both taxa of beneficial mite, domatia significantly increased mite survivorship in the presence of the predatory bug, Orius insidiosus and the coccinellids Coccinella septempunctata and Harmonia varigata. There was no evidence for a protective effect of domatia with a third species of predatory arthropod, lacewing larvae Chrysoperla rufilabris. In contrast, there was no evidence for either species of beneficial mite that domatia provided any protection against low humidity. Thus in this system the primary mechanism by which domatia benefit beneficial mites is by protecting these organisms from other predatory arthropods on the leaf surface.  相似文献   

8.
Associations between mites and leaf domatia have been widely reported, but little is known about their consequences for either plants or mites. By excising domatia from leaves of the laureltinus, Viburnum tinus L. (Caprifoliaceae), in the garden and laboratory, we showed that domatia alter the abundance, distribution, and reproduction of potential plant mutualists. Over 4 months, leaves with domatia on six garden shrubs had 2–36 times more predatory and microbivorous mites, and more mite eggs than leaves without domatia. However, this effect varied among plants and was weaker on one shrub with few mites on its leaves. Domatia also influenced the distribution of mites on leaves. A significantly higher fraction of mites, representing all life stages, was found in vein axils of leaves with domatia than in vein axils on leaves without domatia. Single-leaf experiments in the laboratory showed that domatia enhanced reproduction by the predatory mite, Metaseiulus occidentalis, especially at low relative humidity (30–38%). When domatia were removed, oviposition was reduced significantly only at low relative humidity, suggesting that domatia provide mites with refuge from environmental extremes on the leaf surface. Moreover, the use of domatia by predatory mites may reduce the impact of some plant enemies. In two experiments where prey consumption was measured, M. occidentalis ate significantly higher percentages of the eggs of the two-spotted spider mite (Tetranychus urticae). Our results are consistent with the viewpoint that mite-domatia associations are mutualistic. By directly aiding and abetting the third trophic level, plants with leaf domatia may increase the efficiency of some predaceous and microbivorous mites in consuming plant enemies.  相似文献   

9.
BACKGROUND AND AIMS: Domatia are small organs usually found in the axils of major veins on the underside of leaves and, although they have received wide attention from ecologists, few detailed reports exist on their anatomy or development. This study is focused on the domatia of Cinnamomum camphora (Lauraceae) and is the first comparative study on the anatomy and development of the different shapes of domatia within a single plant. METHODS: Four types of domatia in C. camphora leaves were observed on paraffin sections under a microscope. KEY RESULTS: The domatia consisted of six histological parts: the upper epidermis, the upper mesophyll tissue, spongy tissue, the lower mesophyll tissue, the tissue filling the rim opening, and the lower epidermis. They differed from the non-domatial lamina mainly in the cell structure of the upper and lower mesophyll tissue and the rim tissue. Differences in domatium shapes were mainly associated with differences in the structure of the upper mesophyll and in the number and size of the rim tissue cells. Differences in the development of domatium types were observed in terms of initiation timing, differentiation of the upper mesophyll cells and degree of rim tissue development. CONCLUSIONS: In domatia, active anticlinal division in the lower mesophyll cells, as compared with the upper mesophyll cells, was coordinated with dynamic growth of rim tissue cells and resulted in cavity formation. The anatomical or developmental differences among the four types of domatia were related to the positions of the domatia within a leaf. In terms of the ecological implications, the major anatomical difference between the domatia used by herbivorous and carnivorous mites was in the development of the rim tissue.  相似文献   

10.
Abstract.  1. Acarodomatia are small structures on the underside of leaves of many plant species, which are mainly inhabited by carnivorous and fungivorous mites.
2. Domatia are thought to protect these mites against adverse environmental conditions and against predation. They are considered as an indirect plant defence; they provide shelter to predators and fungivores and these in turn protect the plants against herbivores and fungi.
3. We studied the possible role of domatia of coffee ( Coffea arabica L.) (Rubiaceae) and sweet pepper ( Capsicum annum L.) (Solanaceae) in reducing cannibalism in the mites inhabiting the domatia. We measured cannibalism of larvae by adults of the predatory mites Iphiseiodes zuluagai Denmark & Muma and Amblyseius herbicolus Chant on coffee leaf discs and of the predatory mite Iphiseius degenerans (Berl.) on sweet pepper leaf. Domatia were closed with glue or left open.
4. Cannibalism in all three species increased when domatia were closed. With I. degenerans , moreover, we found that the previous diet of the cannibal attenuated the effect of domatia on cannibalism.
5. We conclude that domatia can protect young predatory mites against cannibalism by adults and that the diet of cannibals affects the rate of cannibalism.  相似文献   

11.
Romero GQ  Benson WW 《Oecologia》2004,140(4):609-616
Although associations between mites and leaf domatia have been widely reported, their consequences for plants, especially for natural tree populations, particularly in the tropics, are largely unknown. In experiments with paired Cupania vernalis (Sapindaceae) saplings in a semi-deciduous forest in south-east Brazil, we blocked leaf domatia to examine their effect: (1) on mites and other arthropods, and (2) on damage caused by fungi and herbivorous arthropods. In general, plants with resin-blocked domatia had fewer predaceous mites on leaves than control plants with unaltered domatia, but the total abundances of fungivorous and of phytophagous mites remained unchanged. However, phytophagous eriophyid mites, the most numerous inhabitants of domatia, decreased on leaf surfaces with the blocking treatment. In a second experiment, treated plants lacking functional domatia developed significantly greater numbers and areas of chlorosis, apparently due to increased eriophyid attacks, whereas fungal attack, epiphyll abundance and leaf-area loss were unaffected. This seems to be the first experimental study to demonstrate that leaf domatia can benefit plants against herbivory in a natural system. The possible stabilizing effect of leaf domatia on predator-prey interactions is discussed.  相似文献   

12.
Domatia are small structures on the lower surface of a leaf, usually taking the form of cavities, pouches, domes with an opening, or hairs (or a combination of these), and located in the axils between the main veins. They are found in many dicotyledons including certain members of the Rubiaceae. As part of an ongoing study of selected southern African members of the tribe Vanguerieae of this family, their structure in transverse section was investigated. In some taxa, such as Plectroniella armata, light microscopic (LM) observations revealed large numbers of stomata in the domatia as well as a number of channel-like structures extending across the cuticle toward the cavity of the domatia. The cuticle of the epidermis lining the domatia also appeared thicker than in other parts of the leaves. The epidermis in P. armata was also examined using transmission electron microscopy (TEM). Domatia have been shown to house mainly mites, many of which are predatory or fungivorous, in a symbiotic (mutualistic) relationship with the plant. To date, much research has focussed on the role of domatia in providing shelter for various organisms, their eggs and their young. However, the TEM study revealed the apparent "channels" and thick cuticle seen under LM to be electron dense non-cellulosic branching fibrils within pronounced, often closely spaced cuticular folds. The functional significance of these fibrils and folds requires further investigation. Folding of cell walls and membranes at ultrastructural level is usually functionally associated with an increased surface area to facilitate active exchange of compounds/metabolites. This may indicate that translocation of substances and/or other forms of communication is possible between the domatium and its inhabitants. This therefore suggests a far more active role for the leaf in the symbiotic relationship than was previously thought. More work is required to test such a possibility.  相似文献   

13.
陈燕南  梁铖  陈军 《生物多样性》2022,30(12):22334-593
在全球环境变化的大背景下, 生物多样性丧失日益加剧。土壤动物作为生物多样性重要组成之一, 受到广泛的关注。位于我国江西省新岗山的亚热带森林生物多样性与生态系统功能实验样地(BEF-China)是全世界25个森林生物多样性控制实验样地之一。本研究自2019年9月至2022年4月在BEF-China两个不同树种组成的样地(A样地和B样地)内采样, 共获得甲螨23,704头, 隶属于34科50属61种。本文分析和对比了两个样地内甲螨群落结构的差异, 及其多度、物种丰富度、Shannon多样性指数的季节性差异; 通过Pearson检验探讨了甲螨多度与环境因子的关系。结果表明: 在A、B两个不同树种组成的森林生态系统内, 土壤甲螨群落结构及其季节动态具有显著差异。具体表现在: A样地奥甲螨科、罗甲螨科、若甲螨科和尖棱甲螨科的相对多度高于B样地; B样地菌甲螨科、盖头甲螨科和礼服甲螨科的相对多度高于A样地。A样地中夏季和秋季甲螨多度、物种丰富度和Shannon多样性指数显著低于春季和冬季; 而B样地中秋季甲螨多度和物种丰富度与春季差异不显著。Pearson检验结果显示, 凋落物木质素含量与单翼甲螨科和菌甲螨科多度呈负相关关系, 而与奥甲螨科多度呈正相关关系。菌甲螨科多度与土壤和凋落物同一理化因子的相关性基本相同(碳氮比除外), 但与凋落物碳氮比呈正相关关系而与土壤碳氮比呈负相关关系。  相似文献   

14.
Many plant species possess structures on their leaves that often harbour predatory or fungivorous mites. These so‐called domatia are thought to mediate a mutualistic interaction; the plant gains protection because mites decimate plant pathogenic fungi or herbivores, whereas the mites find shelter in the domatia. We tested this hypothesis using two species of coffee (Coffea spp.) plants that posses domatia consisting of small cavities at the underside of the leaves, and which often harbour mites. We assessed densities of domatia, of the predatory mite Iphiseiodes zuluagai Denmark and Muma (Acari: Phytoseiidae) and of herbivorous mites Oligonychus ilicis (McGregor) (Acari: Tetranychidae) and Brevipalpus phoenicis (Geijskes) (Acari: Tenuipalpidae) on Coffea arabica L. (Rubiaceae) and Coffea canephora Pierre in the field. Over a period of 50 days, C. arabica harboured on average 7.5 times more predatory mites and 0.4–0.66 fewer prey mites than C. canephora. Hence, the higher density of predatory mites on C. arabica could not be explained by higher densities of prey. However, the density of domatia on C. arabica was on average 1.65 times higher than on C. canephora, and within each species, leaves with higher densities of domatia also harboured more predators. This suggests a positive effect of domatia on predatory mites. In the laboratory, survival of adult female predatory mites on leaves of C. arabica with open domatia was indeed significantly higher than on leaves with closed domatia. Hence, predatory mites benefited from the domatia. However, plants with higher densities of domatia did not harbour fewer herbivores. Taken together, our study only provides partial evidence for a mutualistic interaction between coffee plants and predatory mites, mediated by domatia.  相似文献   

15.
Fifteen tree species from a tropical dry thorn forest and fifteen tree species from a tropical dry deciduous forest in the Mudumalai Wildlife Sanctuary, Nilgiri Biosphere Reserve, southern India, were surveyed for their foliar endophyte communities during the dry and wet seasons. Surface sterilized leaf segments of uniform dimension were plated on nutrient agar and culturable endophytes growing from the segments were identified. Endophyte diversity was greater in the dry thorn forest than in the dry deciduous forest in the dry season. Although the isolation frequency of culturable endophytes increased for both forests during the wet season, the assemblages were represented not by any unique fungal species but by the commonly occurring ones. Furthermore, although individual leaves were densely colonized by endophytes, only a few species of endophytes colonized the whole leaves; and, only a few fungal species dominated the foliar endophytic communities and were common for both forests during both dry and wet seasons. Thus, even under wet conditions that favour dispersal and infection by fungi, the endophyte diversity increased only marginally, an indication that certain tropical forests are not hyperdiverse with reference to fungal endophytes. This should be considered when using culturable endophyte diversity as a surrogate for estimating global fungal diversity.  相似文献   

16.
We examined the influence of acarodomatia in the riverbank grape Vitis riparia Michaux (Vitaceae) on the distribution and abundance of predatory mites (Phytoseiidae) and their interactions with herbivorous mites. Acarodomatia are tufts of nonglandular trichomes or pits located in major leaf vein axes of many species of woody perennial plants and are often occupied by predatory and mycophagous mites. In common garden plantings of different accessions of V. riparia we found a significant positive relationship between size of domatia and the abundance of naturally occurring predatory mites. Behavior of adult predatory mites may explain this positive association, in part. In separate laboratory experiments, gravid females of Typhlodromus pyri Scheuten and Amblyseius andersoni Chant spent more time and deposited more eggs on half of a V. riparia leaf with accessible domatia versus the other half in which access to domatia was blocked with pruning tar. Domatia also had population consequences. In an outdoor experiment using potted grapevines, population size of T. pyri and A. andersoni mites was greater on V. riparia with open domatia compared to V. riparia in which domatia were blocked with pruning tar. Population size of predatory mites was also greater on V. riparia with domatia than on Vitis vinifera L., whether their axils were blocked or not. Since V. vinifera have very small domatia, these results indicate that the presence of domatia is important, not just access to vein axils. Elevated predatory mite populations in response to domatia, however, did not translate into differences in the abundance of European red mite Panonychus ulmi (Koch), an important pest of grapes.Overall, these results indicate that domatia in uncultivated V. riparia promote higher densities of some species of generalist phytoseiid mites. However, domatia are small in most cultivated grapes. We crossed females and males of V. riparia that varied in domatia size and reared their offspring and found that average domatia size in the parents was highly correlated (r2 = 0.77, slope = 0.55) with average domatia size in offspring (high narrow-sense heritability). Given that V. riparia possesses many other desirable agronomic traits, this result suggests it should be practical to breed for well-developed domatia in cultivated accessions.  相似文献   

17.
Domatia are small invaginations and hair tufts usually found at vein junctions on the undersides of leaves in many woody dicots. Domatia of 32 plant species (of worldwide origin from 18 families) growing in California, Hawaii, and Costa Rica were examined for mites. Domatia of 31 of 32 (97%) of these plants contained mites, and 24 of 32 (75%) contained mite eggs. Mites were found within the domatia of 48% of the sampled leaves. The domatia of 26 of 31 (84%) plants had mite species considered beneficial (primarily in the families Phytoseiidae and Tydeidae, but also Bdellidae, Cheyletidae and Stigmaeidae), while 6 of 31 (19%) had mite species considered harmful (Tenuipalpidae and Eriophyidae). Based on these findings (and in part upon Lundström's 1887 domatia theory), we hypothesize the existence of a widespread facultative mutualism between plants with leaf domatia and beneficial mites: leaf domatia serve as shelters and nurseries for mites which in turn eat phytophagous arthropods and pathogens using the plants. This proposed mutualism could be of importance to agriculture since domatia are known to occur in some crop plants, including coffee, grape, and walnut.  相似文献   

18.
The intermediate disturbance hypothesis (IDH) predicts local species diversity to be maximal at an intermediate level of disturbance. Developed to explain species maintenance and diversity patterns in species-rich ecosystems such as tropical forests, tests of IDH in tropical forest remain scarce, small-scale and contentious. We use an unprecedented large-scale dataset (2504 one-hectare plots and 331 567 trees) to examine whether IDH explains tree diversity variation within wet, moist and dry tropical forests, and we analyse the underlying mechanism by determining responses within functional species groups. We find that disturbance explains more variation in diversity of dry than wet tropical forests. Pioneer species numbers increase with disturbance, shade-tolerant species decrease and intermediate species are indifferent. While diversity indeed peaks at intermediate disturbance levels little variation is explained outside dry forests, and disturbance is less important for species richness patterns in wet tropical rain forests than previously thought.  相似文献   

19.
Biotic interactions of mites, plants and leaf domatia   总被引:1,自引:0,他引:1  
Leaf domatia, minute structures that typically house mites and other small arthropods, are produced by an impressive number of plants; however, their role in mediating plant-mite mutualism has only recently been elucidated. New evidence indicates that domatia function primarily as refuges for beneficial mites against predators. The presence of domatia therefore results in more beneficial mites on leaves, fewer pathogen attacks and reduced leaf herbivory. Unexpectedly, herbivorous mites are specialized domatia inhabitants of some plants. By providing refuges for herbivores, however, domatia may stabilize interactions between predator and their mite prey and thereby reduce the chances of herbivore outbreaks. Understanding the ecological mechanisms that promote beneficial interactions between mites and plants could have important implications for pest management.  相似文献   

20.
Associations between mites and leaf domatia are widespread, abundant and probably ancient. Recent research has shown that mites commonly shelter, develop and reproduce within domatia on plants in many geographic regions, from the tropics to the temperate zone, and most of these mites belong to predaceous or fungivorous taxa. Of hypotheses offered to explain these associations, protective mutualism is most consistent with the reported characteristics and patterns of mitedomatia association.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号